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ABSTRACT

In this paper, the physical analysis of planetary hyperspectral images

is addressed. To deal with high dimensional spaces (image cubes

present 256 bands), two methods are proposed. The first method

is the support vectors machines regression (SVM-R) which applies

the structural risk minimization to perform a non-linear regression.

Several kernels are investigated in this work. The second method is

the Gaussian regularized sliced inverse regression (GRSIR). It is a

two step strategy; the data are map onto a lower dimensional vector

space where the regression is performed. Experimental results on

simulated data sets have showed that the SVM-R is the most accurate

method. However, when dealing with real data sets, the GRSIR gives

the most interpretable results.

Index Terms— Hyperspectral images, Gaussian regularized

sliced inversion regression, SVM, Mars surface.

1. INTRODUCTION

For two decades, imaging spectroscopy has been a key technique for

exploring planets [1, 2]. The very high resolution in the spectral do-

main allows a fine characterization of the physical properties of the

scene. For instance, the OMEGA sensor acquires the spectral radi-

ance coming from the planet in more than 200 contiguous spectral

channels. A pixel of the image is represented by a spectrum/vector

x ∈ R
d, each component corresponds to a particular wavelength,

d being the total number of wavelengths. Chemical composition,

granularity, texture, and physical state are some of the parameters

that characterize the morphology of spectra and thus the area of in-

terest.

Deducing the physical parameters y from the observed spectra x

is a central problem in geophysics, called an inverse problem. Since

it generally cannot be solved analytically, optimization or statistical

methods are necessary. Solving inverse problems requires an ade-

quate understanding of the physics of the signal formation, i.e. a

functional relation between x and y must be specified: x = g(y).

Given g, different methods can be used to deduce the parameters

from new observations. Current solutions to inverse problems can

be divided into three main categories (for further details and com-

parisons, see [3]):
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1. Optimization algorithms: These methods minimize an objec-

tive quality function that measures the fit between x and g(y).

Inverse problems are often ill-posed, therefore estimations

can be unstable and a regularization is needed. For instance,

a prior distribution on model parameters can be used.

2. Look-up table (LUT) / k-nearest neighbors approach (k-NN):

A large database (LUT) is generated by a physical model for

many parameter values. Each observed spectrum is then com-

pared with the LUT spectra in order to find the best match (the

nearest neighbor), according to an objective function mini-

mization. Parameters are then deduced from this best match.

3. Training approaches: A functional relation y = f(x) be-

tween spectra and parameters is assumed, such as f−1 = g,

and a LUT is used to estimate f . For instance, training ap-

proaches include neural network approaches.

Inversion algorithms for hyperspectral images must be defined with

the following constraints: a) Large datasets and various models re-

quire fast methodologies, b) High-dimensional data and “curse of

dimensionality” with the associated sparsity issues require simple

model with few parameters, c) Noisy spectra require robust algo-

rithms.

Optimization based approaches suffer from heavy computa-

tional cost and are thus not adapted to hyperspectral images. Nearest

neighbors algorithms are faster, but the solution is unstable and

noise-sensitive. Problems associated to training methods are the

difficult interpretation of the estimated function f and the choice

of the statistical model. Moreover, neural networks are in general

difficult to train for high dimensional data [4, Chapter 11].

In this paper, several approaches are presented to estimate the

functional f : The well-known Support Vectors Machines regression

(SVM-R) [4, Chapter 12], which works in high dimension, the Gaus-

sian Regularized Sliced Inverse Regression (GRSIR) [5], which re-

duces the dimension before the estimation, the Partial Least Squares

regression [4, Chapter 3] and the k-NN [4, Chapter 13]. The start-

ing point was that methods not relying on statistical models (SVM

or k-NN) have two main advantages over parametric ones: no prior

information is needed and no parameters estimation are necessary.

However, in general, results are hardly interpretable and thus no in-

formation about the relationship between the input and the output

is available. On the contrary, methods such as GRSIR or PLS re-

duce the dimension of spectra and the resulting subspace provides

some physical information which can be used by astrophysicists [6].

Moreover, the training time is generally favorable to the parametric

methods.

Section 2 presents the different methods. Emphasis is put on



SVM and GRSIR which are novel methods in planetary images anal-

ysis. The data sets are presented in Section 3 and the experimental

results are given in Section 4. The analysis of real observation is

done in Section 5.

2. INVERSION METHODS

For each method, we are given a training set
`

xi, yi

´n

i=1
∈ R

d × R

and we try to learn f : y = f(x). We concentrate on R-valued

function, i.e., p functions are necessary to deduce p parameters from

the spectra.

2.1. Support Vectors Machines Regression

SVM are supervised methods for regression or estimation stemming

from the machine learning theory. For inversion problems, the algo-

rithm, which is called the ǫ-SVR, approximates the functional using

solutions of the form f(x) =
Pn

i=1
αik(x,xi) + b, where k is a

kernel function and
`

(αi)i=1,...,n, b
´

are the parameters of f which

are found during the training process. The kernel k is used to pro-

duce non-linear functions. Given a training set, the training of an

ǫ-SVR entails the following optimization problem:

min

»

1

n

n
X

i=1

l
`

f(xi), yi

´

+ λ‖f‖2

–

(1)

with l
`

f(x), y
´

=

8

<

:

0 if |f(x) − y| ≤ ǫ

|f(x) − y| − ǫ otherwise.

The ǫ-SVR satisfies the sparsity constraint: Only some αi are non-

null which corresponding sample xi are called “Support Vectors”

(SVs). Some limitations come from the learning step: With a large

training set, the training time can be very long. Moreover, the prob-

lem is exacerbated when several optimizations for parameter selec-

tion are considered.

The choice of the kernel function is a crucial step with ǫ-SVR. A

kernel function is a similarity measure between two samples and cor-

responds to a dot product in some feature space. To be an acceptable

kernel, the function should be positive semi-definite [4, Chapter 12].

In this work, several kernels were investigated:

• Linear kernel k(x, z) = 〈x, z〉.
• Inhomogeneous polynomial kernel k(x, z) =

`

〈x, z〉 + q
´p

,

where q ≥ 0 induces a weight of each degree: k(x, z) =
Pp

k=0

`

p

k

´

〈x, z〉p−kqk.

• Gaussian kernel k(x, z) = exp
`

−γ‖x − z‖2
´

.

• Spectral kernel k(x, z) = exp
`

−γα(x, z)2
´

, with α(x, z) =

acos
` 〈x,z〉
‖x‖‖z‖

´

.

The spectral kernel was first introduced in hyperspectral imagery for

the classification purposes [7]. It is based on the angle between two

spectra. It is a scale invariant kernel which is used in k-NN ap-

proaches or spectral unmixing [8].

Before running the algorithm, some hyperparameters need to be

fitted: a) ǫ: Which controls the resolution of the estimation. Large

values produce rough approximations while small values produce

fine estimations. It can be set using some prior on the noise. b) λ:

Which controls the smoothness of the solution. Large values imply

nearly linear functions. c) Kernel parameters: e.g., γ for the Gaus-

sian kernel.

Table 1. SIR Regularization

ϕ m Ω Eigen problem Regularization

1

δi

= d Σ−1 Σ−1Γ -

1 = d Id

`

Σ + τId

´−1
Γ Ridge

1 < d
Pm

i=1
viv

t
i eq. (3) PCA-Ridge

δi = d Σ
`

Σ2 + τId

´−1
ΣΓ Tikhonov

δi < d
Pm

i=1
δiviv

t
i eq. (3) PCA-Tikhonov

2.2. Gaussian Regularized Sliced Inverse Regression

To circumvent the “curse of dimensionality” effects, an alternative

approach is to reduce the dimension of the data before the estimation.

This is done by mapping the data onto a lower dimensional space and

then doing the estimation:

y = f
`

β
t
x

´

. (2)

where βt
x denotes the projection on the subspace spanned by β.

The Principal Component Analysis (PCA) is surely one of the

most used approach: β corresponds to the p firsts eigenvectors of

the covariance matrix Σ of x. However, in the case of a regression

problem, PCA is generally not satisfying since only the explanatory

variables x are considered and the dependent variable y is not taken

into account. Specific dimension reduction techniques have been

developed for regression problems, and among them Sliced Inverse

Regression (SIR) is very effective in high dimensional spaces [9].

It consists of applying PCA to the inverse regression curve E(x|y)
instead of applying it to the original predictor x. The projection axis

β is then deduced by calculating the eigenvector corresponding to

the largest eigenvalue of Σ−1Γ, where Γ = Cov(E(x|y)) is the

covariance matrix of the inverse regression curve.

In high dimensional vector spaces, inverse problems are gener-

ally ill-posed [10, 11], i.e., Σ is ill-conditioned making its inversion

difficult. We thus have proposed to compute a Gaussian Regularized

version of Sliced Inverse Regression (GRSIR). Theoretical details

can be found in [5]. The concept of this method is to incorporate

some Gaussian prior on the projections in order to dampen the effect

of noise in the input data, and to make the solution more regular or

smooth. The ill-posed problem is then replaced by a slightly per-

turbed well-posed problem. Finally, GRSIR consists of computing

the eigenvector corresponding to the largest eigenvalue of

`

ΩΣ + τId

´−1

ΩΓ (3)

where τ is a positive regularization parameter, Id is the identity ma-

trix and Ω is a d × d matrix modeling the prior on the projection: it

describes which directions are the most likely to contain β [5].

Using eigenvalue decomposition of Σ, we have proposed several

definitions of Ω that lead to several well known regularizations. Let

us write

Σ =

d
X

i=1

δiviv
t
i (4)

with δ1 ≥ . . . ≥ δd, the eigenvalues and vi their associated eigen-

vectors. Then for all real valued function ϕ, Ω is defined as:

Ω(ϕ) =

m
X

i=1

ϕ(δi)viv
t
i (5)



Table 2. NRMSE and computing time for GRSIR, PLS and SVM with various kernels. “x-Pol” is q = x in the polynomial kernel. The power

of the polynomial kernel was fixed to 9 for each parameter, after cross-validation. The bottom line of the table corresponds to the training

time of parameter “Prop. of H2O” after the selection of optimal hyperparameters.

Parameter
GRSIR

PLS
SVM

Ridge Tik. PCA-Ridge PCA-Tik. lin. Gauss. Spect. 0-Pol 0.5-Pol 1-Pol 2-Pol

Prop. of H2 0.29 0.29 0.30 0.29 0.32 0.31 0.14 0.25 0.24 0.17 0.14 0.13

Prop. of CO2 0.20 0.20 0.22 0.22 0.31 0.30 0.15 0.27 0.27 0.18 0.16 0.15

Prop. of dust 0.11 0.12 0.12 0.12 0.22 0.22 0.09 0.19 0.19 0.11 0.10 0.10

Grain size of H2O 0.34 0.34 0.34 0.35 0.39 0.39 0.15 0.34 0.33 0.23 0.19 0.18

Grain size of CO2 0.17 0.17 0.17 0.17 0.24 0.25 0.11 0.21 0.20 0.14 0.12 0.11

CPU time (s) 0.17 0.18 0.20 0.20 0.66 3.57 10.30 5.89 5.98 10.20 60.30 478

with m ∈ {1, . . . , d}. Table 1 sums up the different strategies we

have proposed. ϕ controls which directions of Σ that are favored:

For instance, with the classical SIR approach (first row of Table 1)

direction corresponding to small variances are most likely, while no

directions are privileged with ridge regularization. For Tikhonov

regularization, directions corresponding to large variance are most

likely, in contrast to classical SIR. PCA based regularization ap-

proaches correspond to the situation where only directions with large

variance are kept, i.e., a dimension reduction of Σ is done. Once β

is computed, a piecewise linear estimator is used, i.e. f in eq. (2) is

a 1-dimensional piecewise linear function.

3. DATA SETS

In this paper, real and simulated data sets are used. Real data have

been collected during orbit 41 61 and 103 by the imaging spectrom-

eter OMEGA on board Mars Express Mission. A detailed analysis

of this image by an expert led to a surface reflectance model [1].

This model allows by radiative transfer calculations the generation of

many synthetic spectra with the corresponding physical parameters:

The proportions of CO2, water and dust; and the grain sizes of water

and CO2. Centered multiGaussian noise has been added, its covari-

ance matrix was determined experimentally from the real image. For

the validation sake, separate training and testing datasets have been

generated. The notations are the following: n (respectively nt) is

the number of spectra from the training data (respectively test data),

xi ∈ R
d, i ∈ 1, . . . , n denotes the spectra from the training data

and y
p
i ∈ R, i ∈ 1, . . . , n, p ∈ 1, . . . , 5, is one of the 5 associated

parameters (respectively x̌j , y̌
p
j , j ∈ 1, . . . , nt). In these experi-

ments, n = 3584, nt = 3528 and the number of spectral bands is

d = 184. Each parameter takes a finite number of values regularly

distributed in a given interval of variation. The different realizations

of the vector y
p
i are generated by building all possible combinations

of the individual parameter values. In the following, the index p is

omitted in y and in its associated functional f : fp(x) = yp is written

f(x) = y.

For validation purpose, see Section 4, spectra from several im-

ages of the same area of Mars where extracted. They correspond to

three acquisitions at different times. All the spectra were atmospher-

ically corrected.

4. EXPERIMENTS

In all experiments, parameters were selected by a 5-fold cross vali-

dation. The quality of the estimation is assessed by computing the

Normalized Root Mean Square Errors (NRMSE):

NRMSE =

v

u

u

u

u

u

t

1

nt

nt
P

i=1

(ŷi − y̌i)2

1

nt

nt
P

i=1

(y̌i − y)2
with y =

1

nt

nt
X

i=1

y̌i (6)

where y̌i is the real value and ŷi the estimated one. NRMSE is close

to zero when the predicted values are accurate and becomes larger

when predictions are poor. Results are reported in Table 2.

From the table, the worst results in terms of NRMSE are ob-

tained with linear algorithms: PLS and SVM with the linear ker-

nel. Non-linear SVM provides the best results in terms of accuracy,

for both Gaussian and inhomogeneous polynomial kernels. Spec-

tral or homogeneous polynomial kernel provide the lowest accuracy

for non-linear SVM. For the GRSIR approaches, results are nearly

the same, and less accurate than non-linear SVM. The different reg-

ularization methods yield the same results, however regularization

parameters (τ and m) are set to different values: Using PCA based

regularization, τ is in general set to a lower value than with non-PCA

based regularization. Furthermore, β is not the same depending on

the regularization. For instance, cos
`

βridge, βpca-ridge

´

= 0.87 and

cos
`

βridge, βTik.

´

= 0.93.

Considering the training time, SVM based approaches lead to

the longer processing times, for every kernel and GRSIR is the

fastest. Because of the diagonalization of the covariance matrix

in eq. (5), PCA based regularization is a little longer. Note that

the SVM solver was the LIBSVM, which is a higly optimized

C++ solver, while the GRSIR was naively implemented in Matlab.

Thus the difference may be higher after a proper implementation of

GRSIR.

Inversions are performed on the real data using the functional f .

We have considered only the best SVM (Gaussian kernel) and the

best GRSIR (ridge). Since no ground data is available, the inversion

accuracy is difficult to appreciate quantitatively. We used two sub-

jective criteria: the physical possibility, e.g., proportion is greater

than 0 and lower than 1, and the stability of estimations over the

time, e.g., estimations from the same area at closed dates should be

closed.

Fig. 1.(a) and Fig. 1.(b) present the estimation of the “propor-

tion of dust”. It can be seen that estimations are very different from

GRSIR and SVM. Estimates provided by GRSIR are more realis-

tic: First, the range is around 10−3 which is physically acceptable;

second, the variation of the proportion between two dates is low in

agreement with experts analysis. On the opposite, SVM estimations

are not convincing since the range of the estimations is not realis-

tic. This phenomenon can be mitigated by a suitable selection of the

simulated training set, as detailed in [12, 13]. The idea is to select

training samples that are similar to those to be inverted. However,
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(a) GRSIR (b) SVM (c) Orbit 41

Fig. 1. (a) GRSIR and (b) SVM: Histogram of the “proportion of dust” estimates from real data from the same geographical area acquired at

different dates (t1, t2 and t3). (c) Estimation of the “proportion of dust” of orbit 41.

this step is time consuming and still does not provide satisfactory

results with SVM.

Fig. 1.(c) presents the observation 41 by GRISR for the param-

eter “proportion of dust”. The mapping is very smooth and the pro-

portion of dust increases significantly with proximity to the bound-

aries.

5. DISCUSSION

A machine learning discussion is done in this section. We let read-

ers interested in a detailed astrophysical analysis consult the refer-

ence [6].

Non-linear SVMs provide very accurate results in term of

NRMSE on the simulated data sets. It comes with an increased

training time, which can be critical with the polynomial kernel.

Therefore, Gaussian kernel should be preferably used. The defini-

tion of new kernels handling more efficiently the physical model is

under investigation. The GRSIR approach provides less accurate

results on the simulated data sets, but it performs better than SVM

of real data sets and his training is very fast.

The regularization strategy does not influence too much the re-

sults once the optimal parameters have been found, the key point is

to regularize. In the experiments, all the parameters have been se-

lected by cross-validation using the simulated data sets. In the con-

text of our work (training on simulated data and validation on real

data), this strategy should be changed. Statistical differences exist

between the simulated data and real data, depending on the geome-

try of the observed image and the atmospheric effects. For instance,

the cosine angle, computed with the Frobenius inner product, be-

tween the covariance matrix Σ of simulated data and the real data

is 0.60. We are currently working on a semi-supervised framework

to match statistics from simulated data and real data before the es-

timation of the regression function. This should improve the results

obtained on real data sets.

As a conclusion, handling efficiently the inversion of hyperspec-

tral images is possible and of an interest for astrophysicists. First re-

sults are promising yet some works are still needed to obtain a fully

automatised framework.
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[13] C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes, and S. Gi-

rard, “Support vectors machines regression for the estimation

of Mars surface physical properties,” in European Symposium

on Artificial Neural Networks, Advances in Computational In-

telligence and Learning, 2009.


