
HAL Id: hal-00761679
https://hal.science/hal-00761679v1

Submitted on 5 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

K-Stores: A Spatial and Epistemic Concurrent
Constraint Interpreter

Andres Felipe Barco Santa, Sophia Knight, Frank D. Valencia

To cite this version:
Andres Felipe Barco Santa, Sophia Knight, Frank D. Valencia. K-Stores: A Spatial and Epistemic
Concurrent Constraint Interpreter. 21st Workshop on Functional and Constraint Logic Programming
(WFLP2012), May 2012, Nagoya, Japan. �hal-00761679�

https://hal.science/hal-00761679v1
https://hal.archives-ouvertes.fr

K-Stores: A Spatial and Epistemic Concurrent

Constraint Interpreter
Andrés Barco

AVISPA Research Group
Pontificia Universidad Javeriana

Santiago de Cali, Valle del Cauca, Colombia
anfelbar@javerianacali.edu.co

Sophia Knight,
Frank D. Valencia

INRIA and LIX, École Polytechnique
Palaiseau, France

sophia,frank.valencia@lix.polytechnique.fr

Abstract

Concurrent constraint programming (ccp) is a mature formalism for reasoning about
concurrent systems that exhibit a constrained behavior. Spatial ccp and epistemic ccp
are two novel variants of ccp currently being developed by Knight and Valencia. These
variants model systems with spatial hierarchies of group information and knowledge. These
systems are ubiquitous due to the advent of social networks and cloud computing where
agents may share certain information with certain groups.

This paper introduces an interpreter for these extensions we call k-stores. The inter-
preter is a Prolog implementation of the operational semantics of the languages allowing
the programmer to simulate distributed information systems. The main feature consists
of an implementation of a spatial (distributed) store that allows epistemic information in
it. The system supports the specification of (named) processes along with the ccp classic
primitives, namely, ask and tell operations. The declarative view of processes is inherited
from the ccp extensions. The orthogonal implementation of the local space abstraction
and the epistemic constraint system makes further extensions possible. Special attention
is paid to the representation of distributed knowledge and common knowledge.

Introduction

In current information systems sharing knowledge (information such as photos, links, phrases,
or passwords) is an event that occurs on a daily basis and in a distributed fashion. From bank
transactions to tags on photographs, pools of knowledge are generated from different types
of interactions. Interesting applications come along with the advent of technologies such as
semantic web [15], grid computing [4] and amorphous computing [1] in which agents interact
using, or taking into account, some knowledge representation and premises. As these epistemic
scenarios are common in computer science, i.e., computational agents trying to reach some first-
order knowledge or construct higher-order knowledge, the necessity of reasoning tools increases.
Tools such as interpreters, compilers and model checkers, are a remarkably important element
for understanding the underlying properties of a given system.

Concurrent constraint programming is a mature formalism for reasoning about concurrent
systems [20]. In this formalism agents are modeled as processes that interact with each other
by means of a shared medium. Classical operations read and write are replaced by ask and tell
primitives. Information in this calculus is represented as constraints (i.e., first order formulas
such as x+y = 3) and is kept shared by means of a global storage medium, a so-called constraint
store. Several extensions to this model have been proposed in the literature within the last 20
years or so. Each of those extensions addresses particular notions of concurrency and reactive
interactions. Process calculi extending temporal relations (tccp [18]), linear relations (lccp [6])
and nondeterminism (ntcc [17]) are good examples of such extensions.

A particularly novel extension of ccp is spatial-epistemic ccp; an extension for distributed
information and knowledge [13]. Although not the first attempt at modelling distributed (local

1

anfelbar@javerianacali.edu.co
sophia,frank.valencia@lix.polytechnique.fr

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

stores), spatial and epistemic ccp neatly combine the idea of distributed stores with the declar-
ative nature of ccp. It means that we can take advantage of techniques in the logical theory to
reason about knowledge and distributed information.

There are several interpreters and other tools for concurrent constraint programming. Dif-
ferent implementation for different flavours of the ccp model are found in the literature. Some
of these implementations are for very popular constraint systems among scientists; CLP SWI-
Prolog, Gecode library, Chocho library, Mozart-Oz and others. Common characteristics among
them include the implementation of finite domain constraints and full store representation.

We contribute to the field of concurrency by introducing a novel tool called k-stores; a spatial
and epistemic concurrent constraint interpreter1. We use the SWI-Prolog system to build
a simple yet powerful interpreter modeling the operational semantics of the languages. The
main feature is an implementation of a spatial (distributed) store enhanced with an epistemic
constraint system. The system supports the specification of (named) processes along with the
ccp classic primitives, namely, ask and tell operations. As it models the constraint programming
paradigm, it makes it possible to add partial information to agents’ stores by means of atoms
and first-order formulas. The declarative view of processes is inherited from the calculus and
necessary functionality (e.g. interleaving, constraint posting and information access) are added.
Orthogonal implementation of the local space abstraction and the epistemic constraint system
make further extensions possible.

The paper is structured as follows: in the next section we will present a brief background
of spatial ccp and epistemic ccp. In particular we are interested in presenting the operational
semantics of the calculus. Section 2 shows the design of the interpreter and builds the notion of a
distributed implementation of the store. Constructors for programs and the general mechanism
of the interpreter are explained in section 3. Finally some conclusions and future work are
discussed.

1 Preliminaries

Concurrent constraint programming (ccp) is a computational model where agents interact with
each other by means of a shared medium [20]. The fundamental aspect of ccp is the view of
the store as a conjunction of partial information instead of the store as valuation, a central
notion of the Von Neumann computing paradigm. In this sense, communication of processes
(agents) is made by the shared monotonic store. The notion of read is changed for the notion
of ask, which takes a constraint c and tests whether it can be inferred from the store. The write
operation is replaced by tell, which adds partial information, represented as a constraint, to the
store. The formalism takes a declarative view of processes that enables the implementation of
different reactive systems.

Yet, this ccp viewpoint is not appropriate for the modelling of distributed information given
the local computing constraints agents may have, i.e., both local processing and storage. Spatial
and Epistemic ccp extend concurrent constraint programming calculus in order to capture some
notions of spatiality and knowledge that have not been addressed by other extensions. In
particular, the epistemic structure S4 [7] is used as the underlying logic. In this section we
present some notions of these calculi. It is worth noting that both calculi, whose mathematical-
theoretical foundations are currently under development [13], are not part of the contribution of
the present work. Rather, we use the underlying model to build the programming environment.
We shall begin with the definition of the process construction terms.

1Do not use copy/paste on the pdf to avoid mistakes: http://cic.javerianacali.edu.co/~anfelbar/Sitio_
web/teccpf/

2

http://cic.javerianacali.edu.co/~anfelbar/Sitio_web/teccpf/
http://cic.javerianacali.edu.co/~anfelbar/Sitio_web/teccpf/

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

Definition 1. Construction terms for processes.
Let P and Q be two spatial-epistemic ccp processes. We define the language of construction
terms as:

P,Q... := 0 skip
tell(c) adds partial information
ask(c)→ P asks whether c, then executes P
P ‖ Q parallel execution
[P]i local scope
X process invocation

We assume that for each process variable X there exists a process definition, possibly recur-

sive, of the form X
def
= P .

These processes are defined over an underlying spatial or epistemic constraint system. This
is much like a standard constraint system, a set Con with partial order v with a few particular
properties. A spatial or epistemic constraint system has, in addition to the properties of stan-
dard constraint systems, a special function si : Con→ Con for each agent i. In the constraint
system, si(c) represents c holding in agent i’s space or store. The details of these constraint
systems can be found in [13].

Intuitively, each agent i has his own local store si(·) where processes and other agents’ stores
may reside and execute. Thus, si(c) means that in the store attributed to agent i the constraint
c holds. Along the same lines, si(sj(c)) should be viewed as a hierarchical specification meaning
that c holds in agent j’s store, which is a store that agent i is attributing to j. The spatial
construct [P]i represents the process P executing within the store of agent i.

Additionally, the semantics of tell play a two-fold role. Executing a spatial operation, the
process [tell(c)]i only adds partial information to the agent’s store2, without adding information
to the global store. This is akin to the notion of belief; agent i may believe that it is raining
while agent j believes it is not. Also, it reflects the distributed nature of agents as they may
have different information about the true state of affairs. This implies that no spatial tell
operation can cause the overall computation to fail but rather only can fail the computation
of the executing agent, i.e., [tell(false)]i does not produce false and [tell(c)]i t [tell(d)]j does
not produce false even when c t d = false.

The second role for the tell operator is as an epistemic view3. Essentially, it is used as an
epistemic modal operator to represent whatever is true in the system. But also, [·]i makes it
possible to model the viewpoint that a given agent may have over the constraint store, i.e.,
capturing the knowledge (rather than belief) of a given agent. Intuitively, the process [tell(c)]i
causes c to be added to the knowledge of agent i. Some interesting properties of the epistemic
tell operator are:

• After [tell(c)]i is executed, the store entails c, meaning that if an agent knows something
then it is true. However, this does not mean that the other agents know c.

• [tell(c)]i is idempotent; meaning that agent i knows that he knows c.

• After [[tell(c)]j]i is executed, c will be in i’s store. This is because if i knows that j knows
c, he can conclude c from this fact.

2In what follows, we refer to this spatial operation as spatial tell.
3In the remaining of the paper, we shall refer to the epistemic operation as epistemic tell.

3

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

1.1 Spatial and epistemic ccp operational semantics

The operational semantics defines the transformation of spatial-epistemic ccp processes, i.e.,
rules for the reduction of processes specified in the language (there is also a declarative deno-
tational semantics for this calculus available in [13]). The parallel rule, for instance, allows two
processes to be executed concurrently (at the same logical time). In what follows, si(c) can
be thought of as representing agent i’s belief or knowledge of c, and ci represents what agent
i believes or knows when c holds: ci =

⊔
{d | si(d) v c} (see [13] for further details). The

operational semantic rules common to both languages are shown in table 1.

tell :
〈tell(c), d〉 → 〈0, d t c〉

ask :
c v d

〈ask(c)→ P, d〉 → 〈P, d〉

spatial :
〈P, ci〉−→〈P ′, c′〉

〈[P]i, c〉−→〈[P ′]i, c t si(c′)〉
parallel :

〈P, d〉−→〈P ′, d′〉
〈P ‖ Q, d〉−→〈P ′ ‖ Q, d′〉

recursive :
〈P, d〉 → γ

〈A, d〉 → γ
where A

def
= P is a process definition

Table 1: Spatial and epistemic ccp operational semantics. The symmetric rule for parallel
evolution of Q, is omitted.

The spatial rule says that if P could evolve to P ′ based on what i believes when c is actually
true, then when c holds, P can evolve to P ′ inside i’s store, adding whatever information
is computed inside of i’s store. The other operational semantic rules behave as expected.
An additional rule for the epistemic operator, in table 2, states that in the epistemic case,
information (facts) are propagated upwards.

epistemic :
〈[P]i ‖ P, c〉 → 〈[P]i ‖ P ′, c′〉
〈[P]i, c〉 → 〈[P]i ‖ P ′, c′〉

Table 2: Aditional rule for epistemic ccp operational semantics.

Common knowledge. Individual knowledge is also referred to as first order knowledge, i.e.,
atomic and monotonic knowledge that is not part of an inference nor interactive process. Higher
order knowledge refers to the knowledge that is not explicit in the predicates but that is some-
how built from them. For example, if we have a set of agents G = {a1, ..., an} and each of them
knows some predicate φ, then we can denote by EGφ the event that “everybody in group G
knows φ”. This can be expressed using the individual knowledge operator from epistemic logic
[7], see fig 1 equation a.

4

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

EG(φ) =
∧
i∈G

Ki(φ) CKG(φ) = EG(φ ∧ CKG(φ))

a) Everybody in group G knows φ. b) Event E is common knowledge for group G.

Figure 1: Mutual knowledge modelling.

Intuitively, the expression can be extended to model “everybody knows that everybody
knows φ” by means of the conjunction of all individuals’ knowledge and nesting of the knowledge
operators, denoted as E2

G(φ) = EG(φ ∧ EG(φ)).

Common knowledge can be defined as the greatest fixed point of equation b. This can be
thought of as “everybody knows that [k times] the event φ is the case”, i.e., Ek

G(φ)) for arbitrary
k.

This knowledge notion, necessary for any agreement on coordination or synchronization, is
captured nicely by the epistemic ccp calculus. It does so by means of a nested store abstraction,
i.e., allowing agent stores to have other local stores. For in a spatial-epistemic specification a
group G of agents may have group knowledge of c when all agents in G know c. Consequently,
a fact c may be common knowledge among G if all agents knows c, they all know they know c,
they all know that they all know that they know c, and so on ad infinitum.

1.2 Distributed store

A constraint system is essentially an arbitrary set containing partial information (variable
relations) along with the relation v, called reverse entailment, that specifies when a given
formula is implied by other formulas (e.g. x+y > 0 v x+y > 42). Different constraint systems
allow different relations on the variables, that is, the formula constructions are constrained by
the underlying model. Typical constraint systems are finite domains, finite sets and boolean
domains.

Relations can be extended to model a particular logic such as linear logic, temporal logic or
epistemic logic. The underlying logic makes it possible to focus the simulation tools and proof
systems on particular properties such as timeouts, linearity properties or knowledge interaction.

Despite the great expressive power of ccp, it does not allow an easy representation of agents
with local processing and storage. The novelty of spatial ccp and epistemic ccp lies in the
viewpoint change of the store. In this formalism the store is not a unique shared medium for
the agents. Instead, each agent has its own projection of the store, and hence, of variable
domains and constraints. Furthermore, agents are allowed to have beliefs about the beliefs that
any other agent may have. This translates into a hierarchy of nested stores and distributed
information.

The distributed store abstraction is quite similar to that for distributed constraint satisfac-
tion problems. The distributed constraint satisfaction view regards solving problems as being
done by different independent agents, as we do here. However, any given problem variable is
controlled by a different agent, i.e., the agent is in charge of setting the variable value [9]. In
constrast, the spatial-epistemic view holds that any agent has his own local store with his own
representation of a subset of variables and a subset of constraints.

2 Implementing epistemic systems

In this section we show in detail the interpreter and its primary components. First, we address
the design of the overall system explaining the way agents add and ask for partial information
and how the constraint system and axiomatic epistemic system are related. Then we go deeper

5

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

into the issues involving the distributed store. Some useful graphics are presented to show the
architecture.

2.1 Architecture

The core characteristic of the epistemic ccp calculus is the distributed (possibly nested) store.
As the store is the shared communication medium of ccp it allows different agents to interact
by telling partial information. Now, with a distributed store agents are only aware of some
partial information within the store, we say that agents have a limited knowledge of the state
of affairs, i.e., variables, domains, and constraints.

Our programming interpreter implements different abstractions needed for the proper sim-
ulation of the operational semantics of spatial and epistemic ccp: distributed store, constraint
imposition and domain pruning, epistemic axiomatic rule consistency, along with the tell and
ask operations. The basic design of the epistemic interpreter divides the different abstractions
in order to a) make any component orthogonal to any other and b) allow the interface with
different constraint systems and axiomatic system implementations. Figure 2 shows the design
of the system at first glance.

Figure 2: General architecture of the interpreter.

Spatial tell operation. This tell operation allows a given agent to add knowledge to his
current knowledge partition, i.e., to add constraints to his own constraint store. Given that
in an n-agent spatial constraint system there are n different local stores, any given agent is
allowed to add information to any store referencing the agent the store belongs to. The purpose

6

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

of this primitive, on the one hand, is to add enough information to the agent’s store so that an
assignment for the variables may be inferred. An assignment θ is a mapping from variables to
integers, i.e., {x1 7→ val1, x2 7→ val2, ..., xn 7→ valn}. However, as any given agent has its own
variable and domain view, then there must be an assignment for each agent. Let Θ represent
a set of assignments such that Θ(i) gives the assignment θ for agent i. On the other hand, the
spatial tell is a primitive that allows agents to communicate by means of opened channels and
announcements.

Epistemic tell operation. This tell operation allows a given agent to add facts (knowledge)
to his current knowledge partition. However, any epistemic tell is propagated upwards through
all agents’ stores in the hierarchy. For in an n-agent epistemic constraint system knowledge is
indeed true information, i.e., facts. Thus, there is no place for false statements. So, if any agent
knows a fact, it must be true. Consequently, facts in a local nested store must be propagated
to any agent in the hierarchy up to the global store. Any agent outside the hierarchy, however,
is not necessarily aware of such an epistemic tell. This models the notion that agents may
have independent knowledge, and may be unaware of one anothers’ knowledge. Epistemic tell
in local stores may generate inconsistency in higher stores, and consequently, all computation
fails.

Ask operation. Ask operations in the interpreter have two components and are expressed as
ask(s1, c)→ (s2, P). First, we have the constraint c and store s1 in which we want to make the
query. Second, we have the process P and the store s2 in which we want the partial information
to be added. This is akin to the notion of post in social networks. Semantics remains as in
classic ccp, i.e., if the constraint c in the first part is not entailed in the store s1, then the
consequence is discarded. Moreover, if the first constraint c is entailed by the store, then the
interpreter checks whether the consequence P can be applied or not in s2. The consequence may
not be applied if it results in a false domain. Additionally, given that an ask operation includes
a consequence P , then we make a division about how to handle such a consequence. Basically,
agents are allowed to make spatial consequences or epistemic ones. Similar to the semantics of
tell, a system may be either spatial or epistemic. In the spatial setting, the results of an ask
operation remain in the local store. In the epistemic setting, the ask operator propagates up
through the hierarchy of agents’ views of the variables.

Constraint system. Once an agent executes a tell operation on a particular store, the
constraint system ensures domain pruning. For in a constraint system, relations over variables
are imposed by constraints which implies narrowing variable domains whenever a change occurs.
Our underlying constraint system, CLP SWI-Prolog, allows some constraint imposition which
behaves concurrently removing values from domains. It implements several constraints over
finite-domain variables (e.g. <, ≤, >, ≥, all distincts, sum). In our interpreter the narrowing
process taking place in a particular store only uses information in that store. It means that
any change in the store of agent i affects the computation of that agent. Any other store and
computation in the remaining n− 1 processes remains intact.

Axiomatic system. The axiomatic system of epistemic logic is implemented as a set of rules.
Essentially, it ensures that the rules are applied when an agent is asking whether a first order
formula is entailed by the store. In particular it ensures that the following rules apply (typical
names for each axiom are provided, see [12, 14] for a detailed explanation). Both φ and ψ are
constraints (i.e. first order formulaes) and > represents true.

7

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

Ki(>) : Self evidence axiom.
Ki(φ ∧ ψ) ≡ Ki(φ) ∧Ki(ψ) : Deducible closure or distribution axiom.
φ v Ki(φ) : Truth axiom.
Ki(Ki(φ)) v Ki(φ) : Positive introspection axiom.

In order to simplify the implementation, we add a primitive which is a combination of tell
operations. The primitive is everyone(c) tell; whatever the constraint c is, it must be added
to all individual stores. This combinator is an abstraction for the programmer, without it the
programmer could execute several tell operations to make a constraint known in all local stores.

2.2 Distributed store design

A distributed store is just a projection of the knowledge of all agents over the variable domains.
Any given agent is aware of a subset of all variables V of the overall store. Furthermore, agents
are allowed to know a limited set of constraints over the variables of which they are aware. This
projection is the realization of the Ki modal operator of the logic.

In several applications some variables are publicly accessible and some other variables are
only known by a subset of agents. This is the case for emails and passwords. Furthermore,
in many real-life scenarios information may come from different sources, in such a way that
centralization can never be achieved[9]. These are properties that we need to model.

So we want a distributed store that maintains different properties; agents should be allowed
to know a subset of variables and a subset of domains; the asking and telling operations are
local to the owned store; inconsistency in any local store does not affect other stores and some
public annoucements may be allowed in the specification of programs.

All these features are implemented by K-stores in a simplistic way. A reflection mechanism is
in charge of the communication among agents. Note that a given agent can allow another agent
to access its store and post constraints over a subset of variables, opening a communication
channel. This means that one agent can ask for a particular property to hold on another local
store. This resembles the friend access modifier in object oriented programming; any friend
class is able to interfere with and modify private data.

Global store. Since we want to represent the ccp and spatial-epistemic ccp views, we define
a global shared store where all tell operations are made. This is useful if we want to know
whether the intersection of all agents’ local stores are consistent or not. We may think about
this global store as an implementation of the traditional ccp store. Essentially, the global store
is the least upper bound (t) of all individual agents’ stores and, of course, may include false,
meaning there is a contradiction and the computation has failed. For example, agent i has
x ∈ {1..5} and agent j has x ∈ {3..7} then an epistemic tell of x := 2 by agent i causes the
computation of agent j to fail. Epistemic tell for an agent is only propagated to the global store
and to those other agents’ stores that are aware of the agent’s knowledge. For in an epistemic
system agents are not allowed to know false statements.

Reflection mechanism. This mechanism is in charge of locking and unlocking certain vari-
ables in the local store of any given agent. It keeps track of opened channels among agents so
that ask and tell operations can be applied among stores. If an agent wants a variable to be
seen by another agent, he opens the channel by declaring the variable to be global. Without
such an opened channel other agents are not allowed to ask nor to tell partial information to
that agent’s store. Nevertheless, in the spatial (non-epistemic) case, whatever an agent believes
about other agents does not necessarily have to relate to what the other agent really knows,
i.e., agents may think anything about the state of variables of other agents even when they are
absolutely wrong.

8

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

Figure 3: Each store may be accessed by means of a reflection mechanism.

Local constraint imposition. Constraint posting in local stores is the same as in classic ccp.
Yet, we have a fundamental difference: any given agent may have some beliefs (or knowledge)
about other agents’ beliefs (or knowledge). The core design is nested stores. Any given agent
i is waiting for its variable assignment θi and he may use whatever beliefs he has about other
agents to determine the variable assignment. If the agent has beliefs about another agent, say
j, then i has in his store another store representing the beliefs of agent j. Then, agent i may
ask and tell partial information to their own local representation of j’s beliefs. Moreover, agent
j’s local store may have some beliefs about another agent, say l, in which case we have nested
stores working together to find the assignment θi for agent i.

Figure 4: Agent i may have nested stores (agent i’s belief).

9

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

3 A simple interpreter

According to Borshchev et al. [3] a simulation model may be seen as a set of rules that explains
how a system passes from its initial state to future states. A simulation is, then, the process of
model execution that leads the system through state changes over time [3].

The K-stores interpreter is an implementation of the spatial and epistemic ccp formalism,
i.e., its operational semantics, along with an underlying constraint system, specifically, the SWI-
Prolog constraint logic programming. The basic construction in the interpreter is specifications
of spatial-epistemic ccp agents that interact with each other simulating the semantics of the
language. Programs’ inputs (processes) are executed in an interleaved fashion and outputs
(store information) are shown in the standard Prolog output.

3.1 General mechanism

Constraint programming is concurrent in the sense that processes are executed in an interleaved
fashion. Execution of processes implies ask and tell operations that possibly will narrow variable
domains which in turn may unblock some other ask operations. The general mechanism is shown
in fig 5.

Interleaved process execution is a basic strategy for multiplexing a processor unit in a
typical operating system. There exist many different multiplexing algorithms in the literature
(e.g. round robin, priority scheduling, first-come first-served). Each one of those algorithms
defines certain criteria to assign the processor to a given process. Our implementation is based
on an early implementation of the Erlang language as described by Armstrong et al. [2] that
uses a round robin strategy. We choose the round robin algorithm for the system because:

• It has a standard sense of fairness, i.e., any given process will be executed eventually.

• It uses the execution steps (e.g. reductions, tell operations, clock ticks) as a criteria to
know how many times the process will be executed.

• As the spatial-epistemic processes do not have priorities we only create a circular structure
for iteration.

• As spatial-epistemic ccp processes do not synchronize, we can execute any process inde-
pendently from any other.

Of course the round robin algorithm is not useful for the execution when the processes are
executed in different processor units. However, the present work does not address execution in
different nodes nor processor cores. That functionality is postponed for further research.

3.2 Construction of programs

The K-stores tool allows parallel execution of (named) spatial-epistemic ccp agents. A program
consists of a list of agent specifications. Any specification must be a spatial or an epistemic
one; we do not allow the two types to be mixed. All specifications are run in parallel with the
following notation

<program> ::= parallel(<agent_list_spec>)

10

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

Figure 5: General mechanism for program execution.

An agent consists of an identifier (agent name) and a list of operations which may be tell and
ask operations and another agent’s specifications (fresh nested stores). Two atoms are avaliable
for the creation of a new named agent. The first atom is spatial which creates a spatial ccp
agent. The second atom is epistemic, and defines a new epistemic ccp agent in the program.
These agent definitions are exclusive, i.e., combining them in a program specification is not
permitted. All Ids should be pairwise distinct in order to avoid ambiguity. Additionally, we
include a construction for making knowledge known to every agent. We call this construction
everyone. The syntax of these constructions is

<agent_list_spec> ::= <agent_spec> {,<agent_list_spec> *} |

everyone(<constraint_list>) {,<agent_list_spec> *} |

<agent_spec> ::= {spatial | epistemic} (<id>, <operation_list>)

If an agent knows a constraint variable he must declare it to be within a given domain. He
may do so by declaring the variable global or local to his own store. Declaring a global variable
represents opening a public channel where other agents may ask and tell partial information.
To declare a global variable the agent uses the declare atom along with the variable and its
domain. If the variable is supposed to be local, then the atom tell is enough to make the
declaration.

A tell operation is done with the atom tell along with a constraint (e.g. tell(X # > 10)).
Used without an identifier it means a tell in the owned store. Conversely, a tell with an identifier

11

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

adds partial information to the store of the agent represented by the identifier (provided an
open channel between the two agents exists). For nested stores, there is no need for an opened
channel, as expected. The operation list is too long to include, but an important part is

operation_list ::= tell(<var> in l..u) {,<operation_list> *} |

tell(<constraint>) {,<operation_list> *} |

tell(<id>, <constraint>) {,<operation_list> *} |

<agent_spec> {,<operation_list> *}
...

An agent is allowed to ask whether certain formulae are entailed by the store and then apply
another constraint given the response. The first way to do this is by asking in any store (with
an open channel) whether a formula is entailed and then applying a constraint c in the owned
store (using the atom askI). The second possibility is to ask in any store (with an open channel)
whether a formula is entailed and then apply a constraint c in the store in which the query is
made (using the atom ask). This abstraction enables any given agent to a) change his current
store provided some property holds or change his belief about other agents in his nested stores,
and b) to change the current belief of other agents by means of partial information posting (as
is done in social networks and amorphous computing).

Also, another non-formal operation is allowed for agents, solve, which invokes search from
the contraint logic programming module of Prolog. This last primitive is useful when solving
puzzles. If used, it should be put in the last position of the operation list. The final part of the
operation list is

<operation_list> ::= ...

ask(<id>, <constraint> → <constraint>) {,< operation_list> *} |

askI(<id>, <constraint> → <constraint>) {,< operation_list> *} |

solve(<var_list>)

Tell operations are used when an agent wants to add partial information to any given store.
Partial information is represented by first order formulae. For a practical development we use
the SWI-Prolog constraint system, hence we interface the set of formulae they provide

<constraint_list> ::= <constraint> {,<constraint> *}
<constraint> ::= < var> < operator> < var> |

sum(< var_list>, < operator>, <var_list>) | all_different(<var_list>)

<operator> ::= #= | #\ = | #< | #=< | #> | #>=

Of course we are using Prolog syntax, so variables are represented by capital letters and
identifiers are atoms or numbers

<id> ::= & any integer or atom as Prolog understands it

<var_list> ::= & <var> {,<var> *}
<var> ::= & X | Y | Z

3.3 Example

We use examples of program specifications involving spatial hierarchies and knowledge. The
distributed nature of the language implies that any agent may run in a separate computer node
or processor core.

12

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

Example 1 (Distributed send+more=money). The Send More Money Problem consists of
finding distinct digits for the letters D, E, M, N, O, R, S, Y such that S and M are different
from zero (no leading zeros) and the equation SEND+MORE=MONEY is satisfied. The unique
solution of the problem is 9567+1085=10652.

The first attempt to solve the problem uses a spatial division. Two agents are trying to
reach a solution. Agent katherine ignores that all variables are pairwise disticnts, whereas
agent andres does not know that s and m are can not be zero.

parallel([

spatial(katherine, [tell([S,E,N,D,M,O,R,Y] ins 0..9),

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10, E*1],

#=, [M*10000, O*1000, N*100, E*10, Y*1])),

tell(M #\= 0), tell(S #\= 0),

tell(solve([S,E,N,D,M,O,R,Y]))]),

spatial(andrew, [tell([S,E,N,D,M,O,R,Y] ins 0..9),

tell(sum([S*1000, E*100, N*10, D*1, M*1000, O*100, R*10, E*1],

#=, [M*10000, O*1000, N*100, E*10, Y*1])),

tell(all_different([S,E,N,D,M,O,R,Y])),

tell(solve([S,E,N,D,M,O,R,Y]))])

]).

Knowledge for agent katherine --> {9,0,0,0,1,0,0,0,ø}

Knowledge for agent andrew --> {2,8,1,7,0,3,6,5,ø}

In this specification, agents have different information about the state of affairs, i.e., the
complete set of constraints. Thus, neither agent is able to reach the valid answer4.

Example 2 (Client discounts). A vendor sells phones, laptops, and tablets. All products prices
ranges from 500 to 3000 dollars. He has three different discounts, one for each product. A given
client is allowed to have only one discount.

parallel([

epistemic(vendor, [

epistemic(client, [tell([Phones, Laptops, Tablets] ins 500..3000), tell(Discount in 1..3)]),

tell(’client:own’, tell(Discount#=1))]),

epistemic(client, [tell([Phones, Laptops, Tablets] ins 500..3000), tell(Discount in 1..3),

askI(client, Discount#=1 -> Phones#=<1000),

askI(client, Discount#=2 -> Laptops#=<2000),

askI(client, Discount#=3 -> Tablets#=<2500)])

]).

When the vendor executes the statement tell(Discount#=1) he means that he knows that
the clients knows the discount is equal 1. Hence, the client must actually know that he has a
discount on phones. The output of the program is

Knowledge for agent vendor --> {500..3000,500..3000,500..3000,1,ø}

Knowledge for nested:vendor’s representation of client --> {500..3000,500..3000,500..3000,1,ø}

Knowledge for agent client --> {500..1000,500..3000,500..3000,1,ø}

4The symbol ø means that there is no more knowledge in that particular store.

13

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

4 Concluding remarks and future work

Theories for reasoning about concurrent systems and knowledge interaction are a major research
field nowadays [11, 7]. As these theories evolve an implicit need must be satisfied: the use of
these theories in real-life applications. The system presented in this paper is a realization of the
operational semantics of the novel calculi spatial ccp and epistemic ccp. Although it is just a
basic tool, it can be used for educational purposes in epistemology, logic and concurrency. Also,
it can be used to simulate processes that have their own local storage and may gain information
by means of a shared medium, such as amorphous computing and social networks.

Social networks, mainly web-based networks, are a growing field of research because of their
complexity and ubiquity. In such multi-agent systems information flows in huge magnitudes
from client to client. Two fundamental features in these networks are the private data locality
and the (possibly constrained) public information posting that is allowed for agents. Fur-
thermore, information exchange may take place within a subset of agents inside the network.
Moreover, different information (knowledge) shared inside the network may become common
knowledge throughout the entire network (e.g. worldwide disasters).

It seems likely that simulation of social networks is a necessary condition for their under-
standing. An interpreter is an initial and basic tool for this task. Interpreters allow system
models to be mapped and simulated, allowing the programmer to build systems with a specified
behaviour and logic. These kinds of tools are an active research topic which have been demon-
strating their capabilities in recent years. Results of such research include several programming
environments.

One example of such results is Timed Gentzen. It is a framework for programming timed
concurrent reactive systems [19]. This framework is an implementation of Timed ccp [16, 5]
which is an extension to ccp made by Saraswat for programming and modelling timed reactive
systems. NtccRt is another tool for analyzing systems which involve real-time interaction among
agents [21]. This framework is built using the concepts and semantics for the ccp extension Ntcc
[17]. Yet another tool is an interpreter in which the timed concurrent constraint programming
paradigm is modelled; Timed ccp. Villanueva et. al [8] developed this interpreter in Maude5

facilitating the simulation of concurrent agents and enabling some model checking involving
different logics. Finally, we have the MOLOG implementation; an extension of Prolog using
modal logics [10]. In that work Fariñas shows a method for extending Prolog with modal
operators. They do so by analyzing and comparing two deduction approaches; one with modal
resolution limited to modal Horn clauses and the other, called compilation, that transforms
modal Horn clauses into clauses closer to classical Horn clauses. In particular, he uses epistemic
logic to exemplify the deduction methods.

4.1 Relevant Perspectives

The main feature of the tool is to model a distributed and nested store. This feature allows
us to think about computation made in different nodes. Furthermore, any given node may
have its own constraint system (e.g. Choco, Gecode, Mozart-Oz) that helps with constraint
imposition and possibly search. This means that the interpreter must be orthogonal to any
platform and any constraint system. Along those line we propose certain previously unaddressed
developments: a) to implement the system taking into account different nodes (a distribution
layer); b) to interface the system with several constraint systems; c) to interface the system
with different axiomatic system implementations in languages other than Prolog.

5http://maude.cs.uiuc.edu/

14

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

Acknowledgments. We thank Alex Lang for presenting our work at this workshop. This
work has been partially supported by the project ANR-09-BLAN-0169-01 PANDA.

References

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight Jr., R. Nagpal, E. Rauch, G. Jay
Sussman, and R. Weiss. Amorphous computing. Commun. ACM, 43:74–82, May 2000.

[2] J. Armstrong, S. Virding, and M. Williams. Use of Prolog for developing a new programming
language. In Proceedings of The practical Application of Prolog, 1992.

[3] A. Borshchev and A. Filippov. From system dynamics and discrete event to practical agent based
modeling: reasons, techniques, tools. In Proceedings of the 22nd International Conference of the
System Dynamics Society, pages 24–29, 2004.

[4] E. Cody, R. Sharman, R. Rao, and S. Upadhyaya. Security in grid computing: A review and
synthesis. Decision Support Systems, 44(4):749 – 764, 2008.

[5] F. de Boer, M. Gabbrielli, and M. Meo. A timed concurrent constraint language. Information and
Computation, 161(1):45 – 83, 2000.

[6] F. Fages, P. Ruet, and S. Soliman. Linear concurrent constraint programming: Operational and
phase semantics. Information and Computation, 165(1):14 – 41, 2001.

[7] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. MIT Press, 1995.

[8] M. Falaschi and A. Villanueva. Automatic verification of timed concurrent constraint programs.
Computing Research Repository, abs/cs/0505026, 2005.

[9] B. Faltings. Distributed constraint crogramming, pages 699–729. Foundations of Artificial Intelli-
gence. Elsevier, 2006.

[10] L. Fariñas. Molog: A system that extends prolog with modal logic. New Generation Computing,
4:35–50, 1986.

[11] H. Garavel. Reflections on the future of concurrency theory in general and process calculi in
particular. Research Report RR-6368, INRIA, 2007.

[12] J. Geanakoplos. Common knowledge. In Proceedings of the 4th conference on Theoretical aspects
of reasoning about knowledge, pages 254–315. Morgan Kaufmann Publishers Inc., 1992.

[13] S. Knight, C. Palamidessi, P. Panangaden, and F. Valencia. Spatial distribution of information in
constraint-based calculi. Lix École Polytechnique, Paris, France, Technical Report, 2012. Avali-
able: http://www.lix.polytechnique.fr/∼fvalenci/papers/eccp-extended.pdf.

[14] F. Koessler. Common knowledge and interactive behaviors: A survey. Working Papers of BETA
2000-07, Bureau d’Economie Théorique et Appliquée, UDS, Strasbourg, 2000.

[15] C. Marshall and F. Shipman. Which semantic web? In Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia, pages 57–66. ACM, 2003.

[16] M. Nielsen and F. Valencia. Notes on timed ccp. In In 4th Advanced Course on Petri Nets
ICPN’03. LNCS. Springer-Verlag, 2004.

[17] C. Palamidessi and F. Valencia. A temporal concurrent constraint programming calculus. In
Proceedings of the 7th International Conference on Principles and Practice of Constraint Pro-
gramming, pages 302–316, London, UK, UK, 2001. Springer-Verlag.

[18] V. Saraswat, R. Jagadeesan, and V. Gupta. Foundations of timed concurrent constraint program-
ming. In Proceedings of the Ninth Annual IEEE Symposium on Logic in Computer Science, pages
71–80. IEEE Computer Press, 1994.

[19] V. Saraswat, R. Jagadeesan, and V. Gupta. Programming in timed concurrent constraint lan-
guages, 1994.

[20] V. Saraswat, X. Parc, and M. Rinard. Semantic foundations of concurrent constraint programming.
pages 333–352. ACM, 1991.

15

Spatial-epistemic ccp interpreter Barco, Knight, and Valencia

[21] M. Toro, C. Rueda, G. Assayag, and C. Agón. Ntccrt: A concurrent constraint framework for
real-time interaction. In Proc. of International Computer Music Conference, 2009.

16

	Preliminaries
	Spatial and epistemic ccp operational semantics
	Distributed store

	Implementing epistemic systems
	Architecture
	Distributed store design

	A simple interpreter
	General mechanism
	Construction of programs
	Example

	Concluding remarks and future work
	Relevant Perspectives

