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Investigation on the Effort 
Transmission in Planar 
Parallel Manipulators 
 

In the design of a mechanism, the quality of effort transmission is a key issue. 
Traditionally, the effort transmissivity of a mechanism is defined as the quantitative 
measure of the power flowing effectiveness from the input link(s) to the output link(s). 
Many researchers have focused their work on the study of the effort transmission in 
mechanisms and diverse indices have been defined. However, the developed indices have 
exclusively dealt with the studies of the ratio between the input and output powers and 
they do not seem to have been devoted to the studies of the admissible reactions in 
passive joints. However, the observations show that is possible for a mechanism to reach 
positions in which the transmission indices will have admissible values but the 
reaction(s) in passive joint(s) can reach excessively high values leading to the 
breakdown of the mechanism. In the present paper, a method is developed to ensure the 
admissible values of reactions in passive joints of planar parallel manipulators. It is 
shown that the increase of reactions in passive joints of a planar parallel manipulator 
depends not only on the transmission angle but also the position of the instantaneous 
centre of rotation of the platform. It allows the determination of the maximal reachable 
workspace of planar parallel manipulators taking into account the admissible reactions 
in its passive joints. The suggested method is illustrated vie a 5R planar parallel 
mechanism and a planar 3-RPR parallel manipulator. 

 

I Introduction  

 
Parallel manipulators have many advantages in terms of 

acceleration capacities and payload-to-weight ratio [1], but one of 
their main drawbacks concerns the presence of singularities [2]–
[5]. It is known that in the neighbourhood of the singular 
positions the reactions in joints of a manipulator considerably 
grow up. 

In order to have a better understanding of this phenomenon, 
many researchers have focused their works on the analysis of the 
effort transmission in parallel manipulators. One of the evident 
criterions for evaluation of effort transmission is the transmission 
angle (or pressure angle which is equal to 90 degrees minus the 
transmission angle) [7]–[9]. The pressure angle is well known for 
characterizing the transmission quality in lower kinematic pairs, 
such as cams [10], but this idea was also used for effort 
transmission analysis in the parallel manipulators [7], [9].  

To evaluate the effort transmission quality, several indexes 
have been introduced. One of the first attempts was proposed in 
[6]. This paper presents a criterion named the Transmission Index 
(TI) that is based on transmission wrench screw. The TI varies 
between 0 and 1. If it is equal to 0, the considered link is in a dead 
position, i.e. it cannot move anymore. If it is equal to 1, this link 
has the best static properties. 

In the same vein as [6], the study [11] generalizes the TI for 
spatial linkages and defines the Global TI (GTI). The authors also 
prove that the GTI is equal, for prismatic and revolute joints, to 
the cosine of the pressure angle.  

The conditioning index was also proposed [12] for 
characterizing the quality of transmission between the actuators 
and the end-effector. This index is based on the Jacobian matrix 
or its “norm”, which relate the actuator velocities (efforts, resp.) 
to the platform twist (wrench, resp.) by the following relations: 

t Jq  and Tw J τ , where J is the Jacobian matrix, t the 

platform twist, q  the input velocities,  the actuator efforts, and 
w the wrench applied on the platform.  

All these indices have been used in many works for design and 
analysis of parallel mechanisms [14]–[21]. However, it is also 
known that because of the non homogeneity of the terms of the 
Jacobian matrix, the conditioning index is not well appropriated 
for mechanisms having both translational and rotational degrees 
of freedom (DOF) [13]. Moreover, all the previously mentioned 
indices do not take into account the real characteristics of the 
actuators, i.e. the fact that their input efforts are bounded between 

[– max
i , max

i ] [13]. 

In order to solve this problem, in study [22] a numerical 
analysis method has been developed. It has been proposed to 
characterize the force workspace of robots taking into account a 
given fixed wrench applied on the platform and actuator efforts 

comprised in the boundary interval [– max
i , max

i ]. However, this 

workspace depends on the given direction and norm of the 
external force/moment and will change with the variation of the 
applied wrench. Moreover, for many robot applications, the 
external wrench direction is not known, contrary to its norm. 
Therefore, in [23], a way to compute the maximal workspace 
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taking into account the actuator effort limitations for a given norm 
of the external force and moment was proposed. This approach is 
based on the computation of the transmission factors of matrix J–

T, which are obtained geometrically through the mapping of a 
cube by the Jacobian matrix. 

All the previously mentioned approaches analyse the quality of 
the effort transmission by taking into account the input torque 
limitations only. However, there are such positions of parallel 
manipulators for which the limitations of input torques can be 
satisfied and the limitation of reactions in passive joints not at all. 
To have a better understanding of this phenomenon, let us 
consider a simple example via a planar 5R manipulator (Fig. 1). 
Close to such singularity a small effort w applied on the end-
effector of the manipulator will create a large reaction R1 in the 
passive joint B. But in this pose, the actuator torques 1 will stay 
under acceptable values, as it depends only on the small 
component F1 of the reaction R1. Thus, for the mentioned case, 
the transmission indices will have acceptable values but they will 
not give any information about the inadequately high values of 
reactions in passive joints of the mechanism. 

Therefore, the development of criteria for limitation of the 
passive joints’ reactions is also an important consideration in 
effort transmission field. It is a complementary condition to the 
transmission indices for characterizing the quality of effort 
transmission especially in the neighbourhood of singularity.  

This paper focuses on the study of the effort transmission in 
planar parallel mechanisms (PPM) from the above point of view. 
It aims at proposing a new criterion for taking into account the 
passive joint reactions and at finding the relationships between 
this criterion and the previously developed indices, especially the 
transmission angle. 

First, the expressions of the maximal platform joint reactions 
as a function of the parameters of the wrench applied on the 
platform is presented, i.e. the maximal force norm and the 
absolute value of the moment. Then, it is disclosed that the 
maximal values of platform joint reactions depend not only the 
value of the transmission angle but also the position of the 
instantaneous centre of rotation of the platform. Moreover, the 
obtained results allow one to define the ranges for the admissible 
values of the transmission angles and distance to the 
instantaneous centre of rotation that ensure a good effort 
transmission quality. Finally, two illustrative examples and 
simulation results are presented. 

II. A criterion for evaluation of the passive joints reactions 

For any PPM, the reaction forces Ri in the platform passive joints 
(denoted as Bi in Fig. 2, i = 1, …, 3) can be related to the external 
wrench wT = [fT, C]T (f is the external force, and C the scalar 
value of the external moment applied on the platform) applying 
the Newton-Euler equations at any point Q: 

3

1
i

i
 f R  and  

3

1

T
QBi i

i

C


 d R   (1) 

where [ , ]T
QBi QBi QBiy x d , with xQBi and yQBi are the coordinates 

of vector QBi along x and y axes (the position of point Bi may 
vary if the passive joints linked to the platform are prismatic 

 

 
 

Fig. 1. Planar 5R manipulator close to a Type 2 singular pose. 
 

 
 

Fig. 2. Determination of the pressure angle for the planar 3-RPR 
robot. 

 
joints). It should be mentioned that in Fig. 2 and the followings, 
the double arrows indicates the direction of the platform reaction 
forces, not their norm. Considering that Ri = Ri ri, where ri is a 
dimensionless unit vector and ||Ri|| = Ri, and applying the 
Newton-Euler equations at point B1, it comes that: 

1 2 1 3
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B B B B
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w
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  (2) 

1
,

i

T T T
i i B B i

   ws r d r  being unit screws corresponding to the 

direction of the platform joint reaction wrenches. 
Matrix A used in equation (2) is defined in [1][3] as the 

parallel Jacobian matrix than can be found through the 
differentiation of the loop closure equations of the robot with 
respect to the platform coordinates. As a result, this matrix is 
always invertible if the robot is not in a Type 2 singularity. 

The reactions R of the passive joints can be found from (2): 
T R A w  (3) 

where matrix A–1 can be expressed in the form [2]: 
1    t1 t2 t3A s s s ,with [ , ]T T

i i its v   (4) 
where sti is a screw corresponding to the direction of the platform 
twist when leg i is disconnected. Moreover, it should be noted 
that: 
- vi is a dimensionless vector parallel to the platform 

translational velocity vector vBi expressed at point Bi, i.e. vBi = 
λvi where λ is a scalar of which dimension is in m/s (Fig. 2); 
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- i is a scalar that is related to the platform rotational velocity 
i by i = λi [7] (Fig. 2). Therefore, the dimension of i is 
in m-1. On Fig. 2, point I1 corresponds to the position of the 
instantaneous centre of rotation of the platform when leg 1 is 
disconnected. 

Without loss of generality, let us consider the norm R1 of the 
reaction force in the joint attaching the leg 1 to the platform 
(located at B1). Developing (3), it comes that: 

   1 1 1 1 1 1( ) ( )T T T T
B P B PR C C         1 1v f d f v d f

. (5)
 

For a given norm f of the external force f and a given value C 
of the external moment, and for any direction of vector f, the 
maximal value R1max of R1 appears when 

 

1max 1
,

2 2
1 1 1 1 1 1

max( )

2 cos

C
R R

f b b C   



   

f

1 1v v
 (6) 

where b1 is the distance between the application point of the 
external wrench, denoted as P, and point B1. 1 is the angle 

between vectors v1 and 1 1B P d  (Fig. 3).  

Generalizing the approach to the other legs (i = 1, 2, 3): 

 2 2
max

,
max( ) 2 cosi i i i i i i i i i

C
R R f b b C       

f
v v . (7) 

Equation (7) characterizes the effort transmission between the 
external wrench applied on the platform and the reaction of the 
platform joint located at Bi. For a given mechanism configuration 
and a given value of Rimax, it is thus possible to find the 
admissible ranges for f and C, i.e. for the parameters of the 
external wrench applied on the platform. Moreover, in order to 
avoid the breakdown of the platform joint located at Bi, 
technological requirements must imply that the admissible value 
of Ri should not be superior to a given value Radm, i.e. 

maxi admR R . 

It is shown in the following section that (7) can be related to 
the value of the pressure angle (the pressure angle is equal to 90 
deg minus the transmission angle) but, also, to the value of the 
distance of the platform instantaneous centre of rotation Ii when 
leg i is disconnected. 

 

III. Relationships between the maximal passive joint reaction 
and the pressure angle 

 

By combining (2) and (4), it comes that 1T T w1 t1 1 1s s r v . 

Moreover, it was shown in [7] that the pressure angle of the leg 1, 
depicted as 1 (see Fig. 2), may be expressed as the acute angle 
between the directions of vectors r1 and v1

 [24]. Therefore, if B1 
does not coincide with I1: 

11 cosT  1 1 1 1r v r v , i.e. 1cos

T

 
1 1

1 1

r v

r v
  (8) 

By definition, r1 is a unit vector. As a result,   1
1cos 1v . 

Moreover, from the definition of a planar displacement for a rigid 
body, 1 1d 1v , where d1 is the distance from the platform 

instantaneous centre of rotation I1 to point B1 (Fig. 2). Introducing 
these expressions into (6), it comes that 

 
 

Fig. 3. Instantaneous system equivalent to the planar 3-RPR robot 
platform. 

 

 2
1 1 1 1 1 1

1max
1

1 / 2cos / /

cos

b d b d f C d
R





  
 , for d1>0 (9a) 

1max 1 1( )R f b C  , for d1=0 (9b) 

Generalizing the approach to the other legs (i = 1, 2, 3): 

max

/

cos
i i

i
i

f C d
R





 , for di > 0 (10a) 

max ( )i i iR f b C  , for di = 0 (10b) 

where  2
1 / 2cos /i i i i i ib d b d    , di is the distance 

between point Bi and the instantaneous centre of rotation of the 
platform when leg i is disconnected, i is the pressure angle of the 
leg i, bi is the distance between P and Bi, and i is the angle 

between vectors vi and i BiP d  (and as a result between vectors 

BiP and BiIi – Fig. 3), BiPd , vi and i being defined at (1) and (4). 

It should be mentioned that the distance between point P and Ii is 
equal to idi. 

Equation (10) shows that, for a given set of external force and 
moment applied on the platform and for di > 0, the reactions in 
passive joints depend not only on the pressure angle but also the 
position of the instantaneous centre of rotation of the platform 
when one of the leg is disconnected. To the best of our 
knowledge, this property has not been rigorously formulated and 
demonstrated before. It allows not only giving a qualitative 
evaluation of the effort transmission in PPM but also disclosing 
the geometrical interpretation of the problem: from the equation 
(10a), it can be shown that the mechanical system under study 
can be instantaneously replaced by a virtual cantilever attached 
to the ground at Ii (Fig. 3) lying on a virtual point contact at Bi, of 
which direction is parallel to the vector Ri. The external force f is 
applied on the point P of the cantilever. 

As i is a criterion used for the kinetostatic design of robots 
[9], [14], [18],[21], it is of interest to find its boundaries with 
respect to the technological requirements that imply that the 
admissible reaction Ri in passive joints should not be superior to a 
given value Radm, i.e. maxi admR R .  
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The following of the paper focused on finding the ranges on i 
and di, di > 0, i.e. the parameters of the equivalent cantilever 
system, for which this inequality maxi admR R  is respected.  

The case di = 0 is discarded as the pressure angle cannot be 
defined. However, it can be shown that the joint reaction stays 
under acceptable value if and only if ( )i i admf b C R   . 

 
Introducing (10a) into the inequality maxi admR R  leads to: 

 2
1 / 2cos / cos /i i i i i adm i if b d b d R C d     . (11) 

Please note that, as by definition, f, cos i, di and Radm have 
positive values, a necessary condition for the existence of (11) is: 

0 cos /adm i iR C d      
cos i

adm i

C
d

R 
 . (12) 

If not, the left term of (11) will always be superior to Radm. Let 
us now square the left and right sides of equation (11) and 

multiply them by 2
id  (from (10a), di > 0): 

   22 2 2 2

2

2cos cos

2 cos

i i i i i i adm i

i adm i

f d b b d d R

C d C R

 



  

 
 (13) 

The obtained expression can be rewritten as:  
0 ( )i ip d ,  (14) 

where,  2( )i i i i i i ip d u d v d w   , 2 2 2cosi adm iu R f  , 

 22 cos cosi adm i i iv C R b f    , 2 2 2
i iw C f b  . 

The inequality (14) has different solutions, depending on the 
vanishing and signs of terms ui, vi and wi. There are three main 
cases ui > 0, ui < 0 and ui = 0. Let us consider these cases. 

 
A.  ui > 0 

ui > 0 implies that cosadm if R  . In this case, the polynomial 

pi has got two roots but only one corresponds to the real 
mechanism, i.e. to a solution of (11). The other root is solution of: 

   22 2 2 2 22cos cos

2 cos

i i i i i i adm i

i adm i

f d b b d d R C

d C R

 



    


 (15) 

In order to obtain a root of (14) with physical values, it is 

necessary that the condition 2 4 0i i iv u w   is respected, i.e 

   2 2 2 2 2

2 2 4 2 2

cos 2 cos cos

sin 0

adm i i adm i i i

i i

R f b C R b f

b f f C

  





  
 (16) 

 
Developing and simplifying, it can be shown that this 

polynomial in cos i has roots with real values if and only if: 
2 2 2 4sin 0adm i i iR b f w  . (17) 

For the analysis of this inequality, two following cases must be 
considered: wi ≤ 0 and wi > 0.   

 
A1. wi > 0  
The condition wi > 0 implies that C  > f bi. Here, (16) has no 

real roots, i.e. (16) is true for any value of i. Thus, the condition 
for (11) to be true is that  

    1
max , / cosi i adm id d C R  . (18) 

where    2
1

4 2i i i i i id v v u w u     is the root of (14) 

solution of (11).  
 

A2. wi ≤ 0  
The condition wi ≤ 0 implies that C  ≤ f bi . (16) is true if its 

roots are bounded by 
2 2 2cos sin

cos i i i
i

adm i

C f b C

R b

 


 
   (19a) 

or  
2 2 2cos sin

cos i i i
i

adm i

C f b C

R b

 


 
   (19b) 

After mathematical simplifications, it can be proven that if 
(19b) is true, then, 

cos i
adm i adm

C f

R b R
   . (20) 

which is in contradiction with ui > 0. Therefore, the only 
condition for (16) to be true is that 

2 2 2cos sin
cos max ,i i i

i
adm i adm

C f b C f

R b R

 


   
 
 

 (21) 

However, it can be demonstrated, by studying the sign of the 

function 2 2 2cos sini i i ig C f b C fb     ,  that 

2 2 2cos sini i i

adm i adm

C f b C f

R b R

  
 , for ui > 0 and wi ≤ 0. (22) 

Thus (21) implies that ui > 0, which is true. Then, (16) is always 
true is this section. As a result, the only condition for (11) to be 
true is (18). 

 
B. ui < 0 

ui < 0 implies that cosadm if R  . Introducing this into (11) 

leads to 0 ≤ i ≤ 1, i.e. the cantilever allows decreasing the applied 
force f. Here also, two cases of coming from the analysis of (17) 
should be studied, i.e.: wi ≤ 0 and wi > 0.  

 
B1. wi > 0  
If wi > 0, i.e. C  > f bi, from (12) it can be shown that: 

 

cos cos
i

i
adm i adm i

Cfb
d

R R 
  . (23) 

As in section II.B ui < 0, which is equivalent to Radm cos i < f, 
from (23) it comes 

cos
i

i
adm i

fb
b

R 
 , thus i ib d . (24) 

If (24) is true, the expression of i at (10a) is bounded by 

0i i i i
i

i i

b d d b

d d


 
   . (25) 

Introducing (25) into (11), and as C  > f bi, it comes that: 
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   
cosi ii i i

adm i
i i

f d b Cf d b fb
f R

d d


  
   . (26) 

Thus, 
cosadm if R  , or equivalently ui > 0, (27) 

which is impossible in section B. 
 

B2. wi ≤ 0  
If wi ≤ 0, i.e. C  ≤ f bi, it could be shown after several 

mathematical simplifications and looking at the results of section 
A2 that (16) is true if and only if 

2 2 2cos sin
cos i i i

i
adm adm i

C f b Cf

R R b

 


 
  . (28) 

Once this condition is achieved, the condition for (11) to be 
true is that  

 2
max ,

cos 2cos
i

i i
adm i i

C b
d d

R  
 

   
 

. (29) 

where    2
2

4 2i i i i i id v v u w u     is the root of (14) 

solution of (11). 
 

C. ui = 0 
We have to analyze one last case: ui = 0, i.e. cos /i admf R  . 

Here also, this condition leads to 0 ≤ i ≤ 1, i.e. the cantilever 
allows decreasing the applied force f. In such a case, the solution 

of (14) is solution of 0 i i iv d w   with  2 cosi i iv f b f C   

and 2 2 2
i iw C f b  . 

Three cases will appear: vi > 0, vi < 0 and vi = 0.  
 

C1. vi > 0  
In this case, maxi admR R  can be satisfied if and only if 

 
2 2 2

2 cos
i i

i
i i i

w f b C
d

v f b f C
 

 


. (30) 

 
C2. vi < 0  
In this case, maxi admR R  can be satisfied if and only if 

 
2 2 2

0
2 cos

i i
i

i i i

w f b C
d

v f b f C
 

  


. (31) 

 
As in section II.B1, the condition wi > 0 is not compatible with 

the fact that ui = 0. For wi ≤ 0: 

 
2 2 2

0
2 cos

i

i i

f b C

f b f C





. (32) 

Therefore, if vi < 0, the only condition is that (12) should be 
respected. 

 
C3. vi = 0  
Condition (14) can be satisfied if and only if wi ≥ 0. But, as 

previously, wi > 0 is not compatible with the fact that ui = 0. 
Therefore, it exist only one possible case, wi = 0, i.e. ifb C . 

In table 1 are summarized all conditions for obtaining 

maxi admR R , for di > 0 (for di = 0, the solution is directly given 

at (9b)). It should be mentioned that for planar parallel robots, the 
reactions in the other joints that are not linked to the platform can 
be found using linear relationships with respect to Rimax (Table 
21).  

Let us now consider two illustrative examples. 
 

IV. Illustrative examples 

 
Let us now consider, for given external wrenches, the 

evolution of the maximal joint reactions within the workspace of 
two given planar robots: the DexTAR robot, which is a planar 
five-bar mechanism developed at the ETS [25], and a 3-RPR 
robot, which is the planar model of the PAMINSA manipulator 
developed at the INSA of Rennes [26]. 
A. The DexTAR robot 

The DexTAR is a five-bar mechanism [27] (Fig. 4) of which 
dimensions are: 

- lAB = lDE = lAB = lDE = 0.23 m 
 

                                                            
1 In this table, the joints depicted in grey correspond to the actuated ones. 

Table 1. Conditions for limiting the maximal values of the revolute joint linked to the platform, for di > 0. 
 

 iC fb  iC fb  iC fb  

cos i
adm

f

R
   1max ,

cosi i
adm i

C
d d

R 
 

   
 

 

cos i
adm

f

R
  N/A 

2 2 2cos sin
cos i i i

i
adm i

C f b C

R b

 


 
 ,  2

max ,
cos 2cos
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i i

adm i i

C b
d d

R  
 

   
 

 

cos i
adm

f

R
  N/A 

vi > 0 vi < 0 vi = 0 vi > 0 vi < 0 vi = 0 

max ,
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i
i
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C w
d

R v
 

   
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 N/A N/A 
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adm i

C
d

R 
  N/A 
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0i   

 



 6  
 

 

Table 2. Norm of the reaction effort inside of the leg joints of planar parallel robots. 
 

Type of legs Joint reactions Type of legs Joint reactions 

RPR T
Aiw  = [ T

Aif ,]T,  
T
Ciw  = [ T

Cif , CCi]
T  

with 

Ai Ci iR f f ,  

i iR  ,  

Ci i iC l R  

RPR T
Aiw  = [ T

Aif ,]T,  
T
Ciw  = [ T

Cif , 0]T  

with 

Ai Ci iR  f f  

 

RRR T
Aiw  = [ T

Aif ,]T,  RRR T
Aiw  = [ T

Aif , 0]T,  

T
Ciw  = [ T

Cif ,]T  

with 

Ai Ci iR f f ,  

2 sini i il R   

 

T
Ciw  = [ T

Cif , 0]T  

with 

Ai Ci iR f f ,  

1 cosi i il R   

PRR T
Aiw  = [ T

Aif ,CAi]
T,  

T
Ciw  = [ T

Cif , 0]T  

with 

Ai Ci iR f f ,  

1 sinAi i i iC l R   

cosi iR   

PRR T
Aiw  = [ T

Aif , 0]T,  

T
Ciw  = [ T

Cif ,]T  

with 

Ai Ci iR f f ,  

2 sini i il R   

PPR T
Aiw  = [ T

Aif ,CAi]
T,  

T
Ciw  = [ T

Cif , CCi]
T  

with 

Ai Ci iR f f ,  

1 cosAi i i i iC R l  

2Ci i iC R l , 

sini iR   

PPR T
Aiw  = [ T

Aif ,CAi]
T,  

T
Ciw  = [ T

Cif , CCi]
T  

with 

Ai Ci iR f f ,  

1 cosAi i i i iC R l   

2 cosCi i i iC R l  , 

sini iR   

PRP T
Aiw  = [ T

Aif ,CAi]
T,  

T
Ciw  = [ T

Cif , CCi]
T  

with 

Ai Ci iR f f ,  

1 sinAi i i iC R l  ,

Ci i iC R  , 

RRP T
Aiw  = [ T

Aif ,]T,  

T
Ciw  = [ T

Cif , CCi]
T
  

with 

Ai Ci iR f f ,  

Ci i iC R  , 

1 sini i iR l   
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Fig. 4. Kinematic chain of the planar five-bar robot. 

 
- a = 0.1375 m 
In the following of the paper, it is considered that the leg 1 is 

composed of the segments AB and BP and that leg 2 is composed 
of segments ED and DP. The active joints are located at points A 
and E.For five-bar mechanisms, it can be shown that the matrix 
AT of (2) is equal to [1]: 

1 2

1 2

cos cos

sin sin
T  

 
 

     
 

1 2A r r . (33) 

Moreover, disconnecting leg 1 (2, resp.) from the end-effector, for 
a fixed position of the actuator 2 (1, resp.), the direction v1 (v2, 
resp.) of the translational velocity vector of the end-point of leg 2 
(1, resp.) is orthogonal to the direction of the segment DP (BP, 
resp.) (Fig. 4). Therefore, 

2

2

sin

cos




 
  
 

1v . (34) 

As a result, 

  

 

1 1
1 2 1

1 1
2

cos cos sin

cos sin cos

T

T

  

 

 

 

 
    

 
 

     
 

1 1

1 1

2 2

2 2

r v

r v

r v

r v

. (35) 

where  is the angle between segments BP and DP (Fig. 4). Please 
note that: 

-  is denoted as the transmission angle of the robot [9]; 
- fixing angle  is equivalent to fixing the shape of the 

triangle BPD and the robot can be shown as a 1-DOF 
planar four-bar mechanism (Fig. 5).  

Taking only into account the each revolute joint can admit a 
maximal force Radm, and as for such mechanisms no moments are 
applied on the controlled point, the only condition for non 
breakdown of the mechanism under a force f applied at P is given 

by cosadmf R  . Knowing f and Radm, this remains to fixing the 

maximal value max of . 

For a fixed angle max, four possible values of  are possible 
(Fig. 5):  

 
(a) assembly mode 1,  1

1 sin cos   

 
(b) assembly mode 2, 2 1     

 
(c) assembly mode 3, 3 1    

 
(d) assembly mode 4, 4 1      

Fig. 5. The four equivalent 4-bars mechanisms, for a fixed value 
of max. 

 

 1
1 maxsin cos  , 2 1    , 3 1   , 4 1     . (36) 

Therefore, four four-bar mechanisms can be studied, 
depending on the assembly mode of the five-bar robot (Fig. 5). 
Therefore, the constant pressure angle loci, and as a result, the 
constant joint reaction loci, can be found algebraically by 
studying the displacement of points P of the four-bar 
mechanisms. These borders are portions of sextic curves [1].  
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The variations of the joint reaction within the workspace of 
the DexTAR robot, on which is applied a force equal to 100 N, 
are presented in Fig. 6 for the four working modes of the robot. 
On this picture, the dotted black lines correspond to the Type 1 
singularities and the full black lines to the Type 2 singularities 
[4], i.e. the maximal workspace boundaries. It can be shown that, 
the closer the robot from Type 2 singular configurations, the 
higher the joint reactions. 

In [25], it is shown that the DexTAR is able to pass through 
Type 1 singularities [4]. For one given assembly mode, a position 
of the end-effector is able to be attained by two working modes. 
Taking this result into account, the borders of the force workspace 

for a given assembly mode are computed. As previously, these 
borders can also be found algebraically, by studying the 
displacement of points P of the four-bar mechanisms. For one 
given assembly mode, a point of the sextic curves will belong to 
the border of the force workspace if the pressure angle of the 
mechanism at this end-effector position is always superior or 

equal to max for any of the working modes. If not, this point can 
be reached by at least one of the working modes, i.e. it is not a 
workspace boundary. Some examples of the force workspace, for 

several values of , are presented in Fig. 7. Obviously, the 

smaller max, the smaller the workspace. When max is large, the 

(a) Working mode 1 (b) Working mode 2 

(c) Working mode 3 (d) Working mode 4 
 

Fig. 6. Variation of the robot joint reaction (in Newton) within the workspace for f = 100 N. 
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workspace has only one aspect. For max small, several aspects 
will appear. 

 
B. The 3-RPR robot 
The PAMINSA (Fig. 8) is a parallel manipulator with 4 DOF 

(Schoenflies motions) of which translation along the vertical axis 
is decoupled from the displacement in the horizontal plane. When 
the vertical translational motion is locked up, the PAMINSA is 
fully equivalent to a 3-RPR manipulator (Fig. 8b) with equilateral 
platform and base triangles, of which circumcircles have the 
following radii: 

- for the base, Rb = 0.35 m 
- for the platform, Rp = 0.1 m 
For 3-RPR robots, it can be shown that the matrix AT of (2) 

expressed at point Bi is equal to [26]: 

1 2 3

T

C C C

 
     

 

1 2 3
w1 w2 w3

r r r
A s s s . (37) 

with sin cosT
i i iq q   r  

and  

1 0C  , 2

sin
3

cos

T

pC R



 
  

 
2r , 

 
 3

sin / 3
3

cos / 3

T

pC R
 
 

  
  

  
3r , if Bi = B1 (38a) 

 
 1

sin
3

cos

T

pC R
 
 

  
  

  
1r , 2 0C  ,  

 

(a) max = 20° (b) max = 40° 

(c) max = 60° (d) max = 80° 
 

Fig. 7. Workspace shape as a function of the maximal pressure angle max. 
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(a) PAMINSA prototype 

(b) equivalent model of the planar displacements 
Fig. 8. Kinematics of the PAMINSA. 

 

 
 3

sin 2 / 3
3

cos 2 / 3

T

pC R
 
 

  
  

  
3r , if Bi = B2 (38b) 

 
 1

sin 4 / 3
3

cos 4 / 3

T

pC R
 
 

  
  

  
1r , 

 
 2

sin / 3
3

cos / 3

T

pC R
 
 

   
  

   
2r , 3 0C  , if Bi = B3 (38c) 

For this mechanism, the way to compute the pressure angle 
and the distance between the observed joint and the platform 
instantaneous centre of rotation is explained in [7]. 

The variations of the joint reaction at point B1 within the 

workspace for several platform orientations  are presented in 
Fig. 9 for f = 100 N and C = 5 Nm. The dotted lines correspond to 
the Type 2 singularities that appear if [26]: 

- for a given orientation  of the platform, the point P is 
located on a circle C() centred in O, of radius equal to 

2 2 2 cosb p b pR R R R    

- for orientations 1cos ( / )p bR R   , the robot is in 

singular configuration for any position of P. 
It can be observed that, the closer from Type 2 singularities, 

the higher the joint reaction. Moreover, the lowest values of the 
joint reactions appear in the centre of the workspace. 

Let us analyze the force workspace of the robot. On the 
contrary of the DexTAR for which the obtained expressions are 
symbolic, and the force workspace boundaries can be obtained 
algebraically, for this robot, a numerical method has to be used. 
The method consists in discretising the workspace using polar 

coordinates (r, ). For one given angle , the algorithm tests for 
all rising values of r that the manipulator can support the applied 
wrench (see tables 1 and 2). In the case where the manipulator 
cannot support the applied wrench, the boundary of the force 
workspace is defined by the previous computational point. 

In the remainder of this example, we take only into account 
the maximal admissible value Radm of the reactions of the revolute 
joints located at Bi. It is applied on the platform a force of norm f 
= 100 N, and a moment of norm C = 5 Nm. The shape of the force 
workspace, for one given assembly mode and for several values 

of Rmax and platform orientation  is shown in Fig. 10.  

It can be observed that, the greater the value of , i.e. the 
closer from the orientation for which the robot is in singular 
configuration for any position of the platform centre, the smaller 
the workspace. 

V. Conclusions  

This paper extends the previous works on the quality of the 
effort transmission in iso-static planar closed-loop mechanisms. 
The traditional transmission indices only show the ratio between 
input and output powers but they don’t show an unacceptable 
high increase of the reactions in the passive joints. In this study, it 
is disclosed that the increase of reactions in passive joints depends 
not only on the transmission angle but also the position of the 
instantaneous centre of rotation of the platform. This is the first 
time that such a kinetostatic property is rigorously formulated and 
clearly demonstrated. The obtained results allow expanding the 
knowledge about the effort transmission quality. They are 
complementary conditions to the traditional transmission indices 
and allow avoiding a breakdown close to the singularity. In this 
aim, the boundaries for the admissible values of the transmission 
angle and of the distance to the instantaneous centre of rotation 
are computed. The Dextar and the 3-RPR robot have been studied 
as illustrative examples. The effort transmission in these 
manipulators has been studied as well as their reachable 
workspaces taking into account the limitation of the efforts in 
passive joints.  

Finally, it should be noted that in this paper, the disclosed 
properties have been only devoted to the study of planar parallel 
mechanisms. It is quite possible that such a concise and accurate 
criterion can be also obtained for spatial case.  In our future work 
we will try to extend this approach to spatial parallel mechanisms, 
but it is a real challenge. 
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