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ONE-DIMENSIONAL CONSERVATION LAW

WITH BOUNDARY CONDITIONS: GENERAL RESULTS

AND SPATIALLY INHOMOGENEOUS CASE

Boris Andreianov

Laboratoire de Mathématiques CNRS UMR 6623, Université de Franche-Comté, Besançon, France

Abstract. The note presents the results of the recent work [4] of K. Sbihi and
the author on existence and uniqueness of entropy solutions for boundary-value
problem for conservation law ut + ϕ(u)x = 0 (here, we focus on the simplified
one-dimensional setting). Then, using nonlinear semigroup theory, we extend
these well-posedness results to the case of spatially dependent flux ϕ(x, u).

1. Introduction. Consider the general boundary-value problem for one-dimensional
conservation law in Q := (0, T )× Ω where we choose Ω := (−∞, 0):






ut + ϕ(x, u)x = 0 in QT := (0, T )×(−∞, 0)
u|t=0 = u0 in (−∞, 0)
ϕν(u) ∈ β(u) on Σ := (0, T )×{0}.

(Eϕ,β)

Here ϕ is a regular function of (x, u); ϕν(·) will denote ϕ(0, ·); and β is a maximal
monotone graph on R that encodes the boundary condition. The simplest and best
known case is β = {uD} × R, which encodes the Dirichlet condition u = uD on Σ.

The well-posedness theory of the Cauchy problem associated with the conserva-
tion law ut + ϕ(x, u)x = f was achieved in the founding work of Kruzhkov [11].
Taking into account the boundary condition is a delicate matter. Indeed, already
in the Dirichlet case, the classical work of Bardos, LeRoux and Nédélec [6] states
that, for u0 of bounded variation, there exists a unique entropy solution in Q to the
conservation law in (Eϕ,β) which satisfies a relaxed formulation of the boundary
condition; this relaxed formulation is justified, as in [11], by the vanishing viscos-
ity argument. We aim at explaining in which way the general boundary condition
ϕν(u) ∈ β(u) should be relaxed; this is of interest, e.g., for obstacle problems
(β = ∂I[m,M ] where ∂ is the subdifferential and I is the indicator function) and for
the zero-flux boundary condition (β = {0}×R); the latter condition is particularly
important in practice. Notice that our setting provides a nontrivial extension of
the result of Bürger, Frid and Karlsen [7] on the zero-flux problem: we do not as-
sume ϕ(0) = 0 = ϕ(1). Thus the first objective of this note is to point out, in a
simplified setting, the meaning that can be given to the formal boundary condition
“ϕν(u) ∈ β(u) on Σ”. We highlight the ideas and results of the recent work [4]
of K. Sbihi and the author, where the multi-dimensional problem with spatially
homogeneous flux (ϕ = ϕ(u)) but variable graphs

(
β(t,x)

)
(t,x)∈Σ

was explored.
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2 BORIS ANDREIANOV

The second objective of the note is to generalize some of the results of [4]. In-
deed, the assumption of x-independence of the flux played an important role in the
formulation, because it allowed to consider strong traces for u on Σ (see [2, 4] for
details). In the present note, traces need not exist; the construction we use, pro-
posed in [1], is based upon the nonlinear semigroup techniques (see [5]). It strongly
relies on the assumption N = 1 and on the t-independence of both ϕ and β. The
semigroup approach allows to bypass as well the usual technical assumption

for a.e. x ∈ Ω, ϕ(x, ·) is non-affine on any interval [a, b] with a < b. (H1)

What we prove is that there exists an entropy solution in [0, T ]×Ω which verifies
well-chosen up-to-the boundary entropy inequalities (see Definition 2.2) involving
β. We interpret the information contained in these up-to-the-boundary inequalities

as the effective boundary condition “ϕν(u) ∈ B̃(u)”. Here, the maximal monotone

graph B̃ is the projection of β on the graph of the function ϕν , as shown on Fig. 1.

Figure 1. Construction of the projected graph B̃ and of β̃

The main conclusion is: the graph β in the formulation of (Eϕ,β) should be inter-

preted as its projection B̃. Indeed, the solution in the sense of Definition 2.2 can be
attained as the limit of well-established approximation procedures (approximation
of β by a kind of Yosida approximation or by “truncations” βm,n := β+ I[−m,n]; the
vanishing viscosity approximation involving the graph β or its approximates; and
the Euler time-implicit discretization). Following Bardos, LeRoux and Nédélec [6],
we see this facts as a justification of the notion of solution proposed for (Eϕ,β).

2. Assumptions, definitions, results.

Definition 2.1. Extend β to a maximal monotone graph from R to R and define
the overshoot set D+ and the undershoot set D− by

D+ :=
{
z ∈ R | supβ(z) ≥ ϕν(z)

}
, D− :=

{
z ∈ R | inf β(z) ≤ ϕν(z)

}
.

Further, define the crossing set D0 := D+∩D−. Finally, define B̃ on R as the closest

to β maximal monotone graph that contains {(z, ϕν(z)) | z ∈ D0}; and define β̃ as

the subgraph that B̃ and the graph Gϕν of the function ϕν have in common.
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The “closest” to β graph B̃ does exist (see [4]). In fact, B̃ is single-valued and
continuous, constituted of upper (respectively, lower) increasing envelopes Gϕν on
connected components of D+ (resp., of D−) as shown in Fig. 1. It contains portions

of Gϕν complemented by horizontal segments over intervals of R \Domβ̃. As to β̃,

it is a maximal monotone subgraph of Gϕν . In the Dirichlet case ([6]), the graph β̃
appeared in the work [10] as a way to express the Bardos-LeRoux-Nédélec condition.

Now, write q±(x, u, k) for sign (u−k)(ϕ(x, u)−ϕ(x, k)) (“semi-Kruzhkov” entropy
fluxes). Following [11] and adapting the boundary approach of Carrillo [8], we set

Definition 2.2. An L∞(Q) function u is called entropy solution of problem (Eϕ,β)
if u(0, ·) = u0

1 and u verifies the following inequalities2:

∀k ∈ R ∀ξ ∈ D((0, T )× Ω), ξ ≥ 0, such that ξ|Σ = 0 if k ∈ D∓

∫ T

0

∫

Ω

(
−(u− k)±ξt − q±(x, u, k) · ∇ξ

)
+

∫ T

0

∫

Ω

sign±(u− k)ϕx(x, k) ξ ≤ 0
(1)

Let us clarify the relation between the formal boundary condition “ϕν(u) ∈ β(u)”
and the condition contained in Definition 2.2. We claim that, up to technical details

ϕν(u) ∈ B̃(u) on Σ (2)

is the boundary relation entailed by inequalities (1).

Proposition 2.3. (see [4, Prop. 3.3]) In the case where u admits a strong boundary
trace γu on Σ, u is an entropy solution in the sense of Definition 2.2 if and only if
it verifies the Kruzhkov inequalities with ξ ∈ D((0, T )× Ω), ξ ≥ 0, and

(γu)(t) ∈ Dom β̃ for a.e. t ∈ (0, T ). (3)

Furthermore, in this situation (3) is equivalent to the property

∀k ∈ D± q±(0, (γu)(t), k) ≥ 0 for a.e. t ∈ (0, T ). (4)

Since β̃ is a subgraph of the graph of ϕν , relation (3) means that ϕν(u) ∈ β̃(u)

(so that ϕν(u) ∈ B̃(u)); therefore we say that (3) (or (2)) is the effective boundary
condition for problem (Eϕ,β). Condition (3) was introduced by K. Sbihi in her

thesis [13] (see also [2, 3]). For details on the graph B̃, on the entropy formulation
(1) and its different reformulations, a detailed study of existence and convergence
of approximate procedures we refer to the recent paper [4] of Sbihi and the author.

The results of [4] for the x-independent flux ϕ ∈ C(R) in space dimension one
can be summarized as follows. Consider the assumption

∃A > 0 ∀z /∈ [−A,A] sign (z)φν(z) ≤ sign z β(z). (H2)

While (H2) is not required for well-posedness, we use it to get L∞ estimate needed
to prove that the vanishing viscosity method converges to the entropy solution in
the sense (1). When (H2) is dropped, in order to justify the advent of β̃ we need an
additional stage of approximation of β by rapidly growing at infinity graphs βm,n.

Theorem 2.4. (compilation of different results of [4], the one-dimensional case)
(i) (uniqueness, comparison, contraction) If u, û are solutions of (Eϕ,β) in the sense
of Definition 2.2 with initial data u0, û0 respectively, then for a.e. t ∈ (0, T )

∫

Ω

(u− û)+(·, t) ≤

∫

Ω

(u0 − û0)
+. (5)

1We have u ∈ C(0, T ;L1

loc
(Ω)) since by (1), u is a Kruzhkov solution inside Q (see, e.g., [4]).

2Note that admissible test functions ξ in (1) are different for the “+” sign and for the “−” sign.
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(ii) (existence, construction of solution) Assume (H1). Then for all L∞ datum u0

there exists a (unique) solution u of (Eϕ,β) in the sense of Definition 2.2.
If (H2) holds, then u = limε→0 u

ε; here uε is a weak solution to problem (Eϕ,β)
regularized by the vanishing viscosity term εuxx (with “ϕν(u) − εux ∈ β(u)” as
boundary condition). And, if (H2) does not hold, then u = limn,m→∞ um,n where
um,n is the vanishing viscosity limit for the boundary graph βm,n = β + I[−m,n].

A crucial point of the uniqueness proof is that strong boundary traces γu, γû on Σ
exist (see [2]). Generalization of the uniqueness result to the multi-dimensional case
and space-time dependent graphs β is straightforward, but the boundary condition
cannot always be formulated using (1) (e.g., (3) can be used instead). Existence re-
sults for this general case involve technical assumptions which main goal is to ensure
uniform L∞ estimates on the approximate solutions. The assumption on nonlinear-
ity of ϕ can be relaxed if ϕ is Lipschitz continuous (see [4, Th. 7.1]). Truncations
βm,n can be replaced by a two-parameter Yosida approximation (see [4, Ex. 6.14]).

Now, let us look at the case where ϕ = ϕ(x, u). Because we focus on understand-
ing the boundary condition, we consider a single boundary point x = 0 and we avoid
a few technical difficulties by taking the following (rather artificial) assumption:

ϕ(x, ·) ≡ 0 for x ≤ −1. (H3)

We also assume

both ϕ and ϕx are Lipschitz continuous on [−1, 0]× R, (H4)

Φ : z 7→ maxx∈[−1,1]ϕx(x, z) is Lipschitz continuous on [−1, 0]× R. (H5)

Assumptions (H4),(H5) can be relaxed; in particular, the role of (H5) is to ensure
an L∞ estimate on solutions in the situation where (H2) holds.

For x-dependent flux ϕ, existence of strong boundary traces for Kruzhkov entropy
solutions of ut + ϕ(x, u)x = 0 in Q is yet not proved. Despite this obstacle, we will
prove the following, which is the main new result of this note.

Theorem 2.5. Assume (H3),(H4),(H5) hold. Assume u0 ∈ L1(−∞, 0)∩L∞(−∞, 0).
Then there exists a unique entropy solution of (Eϕ,β) in the sense of Definition 2.2.

As in Theorem 2.4, the existence proof justifies the notion of solution (see Re-
mark 1). The key ingredient for the proof of Theorem 2.5 is the stationary problem

{
û+ ϕ(x, û)x = f in (−∞, 0)
ϕν(û(0)) ∈ β(û(0)).

(Sϕ,β)

Problem (Sϕ,β) is used as a building brick in construction of a solution of (Eϕ,β)
via the time-implicit discretization, and it is essential for the uniqueness proof. To
state a notion of solution, consider that û is an entropy solution of (Sϕ,β) if it is a
time-independent solution of (Eϕ,β) with additional source term f = g − û.

3. Uniqueness, L1 contraction and comparison proof: the ideas. Using the
Kruzhkov doubling of variables inside [0, T ]× Ω, one gets3 the Kato inequality

∫

Ω

ξ(u− û)+(·, t) ≤

∫

Ω

ξ(u0 − û0)
+ −

∫ t

0

∫

Ω

∇ξ · q+(x, u, û) (6)

with ξ ∈ D′(Ω), ξ ≥ 0, and for a.e. t. Here, we wish to let ξ → 1 on Ω. If strong
traces γu, γû on Σ exist, the last term passes to the limit and it yields the integral of

3If ϕ is x-dependent, this result is not entirely contained in [11]: see [1, Th. 5.1] for the full
argument that relies on the fact that a local entropy solution is a vanishing viscosity limit.
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sign+(γu−γû)
(
ϕν(γu)−ϕν(γû)

)
over a part of Σ. Then, due to the characterization

(3) and the monotonicity of β̃, this term can be dropped and inequality (5) follows.

Now, in the situation where γû exists but γu may not exist, we are still able to
make the above arguments work. We use the following hint. Provided the strong
trace γû exists, the weak trace γwq

±(·, u(·), û(·)) on Σ (see [9]) verifies
(
γwq

±(·, u(·), û(·))
)
(t) =

(
γwq

±(·, u(·), k)
)
(t)|k=(γû)(t), for a.e. t ∈ (0, T ). (7)

Furthermore, for a.e. t, k = (γû)(t) ∈ Dom β̃ by Proposition 2.3. We also have

Lemma 3.1. Assume u is an entropy solution of (Eϕ,β) in the sense of Defini-
tion 2.2. Then for all k ∈ D±, we have (respectively)

(γwq
±(·, u(·), k))(t) ≥ 0 for a.e. t ∈ (0, T ), (8)

where γw denotes the weak boundary trace in the sense of Chen and Frid [9].

Furthermore, the two inequalities in (8) hold simultaneously for all k ∈ Dom β̃.

Proof. The first claim is straightforward. For the second one consider, e.g., k ∈

D+∩Dom β̃. Then it is enough to prove γwq
−(·, u)·), k) ≥ 0. To this end, take k0 ∈

[−∞, k] such that k0 is the closest to k point in D−. By definition of D±, we have
ϕν(κ) ≤ ϕν(k) for all κ ∈ [k0, k]; hence ϕ(x, κ) ≤ ϕν(k) + ox→0(1). Developing the
formula for q(x, u(x), k), writing sign−(u(x)−k) = 1l[u(x)≤k0]+1l[k0<u(x)<k], we find

q−(x, u(x), k) ≥ q−(x, u(x), k0) + ox→0(1). Hence we can apply (8) with k0 ∈ D−

and deduce that γwq
−(·, u(·), k) ≥ 0. Details can be found in [4, Prop. 7.4(i)].

Finally, combining (7) and Lemma 3.1, we can pass to the limit as ξ → 1 in the
Kato inequality (6) and deduce the desired result (5) whenever γû exists.

In order to put ourselves in the situation where γû exists, we will consider û =
û(x) entropy solution of (Sϕ,β). Actually, in the preceding argument we only need

that the trace of the function V ϕν(û) exist, where V ϕν : z 7→
∫ z

0 |ϕ′
ν(s)| ds is the

variation function of ϕν (also known as the singular mapping). We refer to [2, 4]
for the use of V ϕν within the arguments involving the traces of q±(·, u(·), û(·)).
Existence of traces for solutions of (Sϕ,β) follows, roughly speaking, from the fact
that q(·, û(·), k) ∈ W 1,1(−∞, 0) for all k ∈ R. We refer to [1, Lemma 3.1] for the
proof in the case where ϕν has finitely many extrema; the general case is similar.

Fortunately, comparison results concerning two solutions u and û of (Eϕ,β) can
be deduced from those concerning one solution u ∈ L1(Q)∩L∞(Q) and all possible
stationary solutions v ∈ L1(Ω) ∩ L∞(Ω): to do this, one exploits the theory of
nonlinear semigroups governed by m-accretive operators. Roughly speaking, the
above arguments prove that an entropy solution u of (Eϕ,β) is an integral solution
of the abstract evolution problem

d

dt
u+Au ∋ 0, u(0) = u0 (9)

where A is the operator associated with the formal expression u(·) 7→ ϕ(·, u(·))x in
the entropy sense, as defined in (11) below. Then we apply the general result of
uniqueness of an integral solution (see [5] and Theorem 4.2 below).

4. Study of the stationary problem and use of the semigroup theory.

In the space L1 = L1((−∞, 0)), consider the following definitions.
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Definition 4.1 (elements of the nonlinear semigroup theory, see [5]).
• The bracket on L1 is given by

[
v , w

]
=

∫
w sign v +

∫
w 1l[x | v(x)=0].

• A multi-valued nonlinear operator A on L1 is accretive if for all (v, w), (v̂, ŵ) ∈ A
one has

[
v − v̂, w − ŵ

]
L1

≥ 0. It is called m-accretive if, in addition, the domain

Dom(I + λA)−1 of the resolvent of A equals L1 for all sufficiently small λ > 0.
• A function u ∈ C([0, T ];L1) is an integral solution of problem (9) if

∀(v, w) ∈ A
d

dt
‖u(t)− v‖L1 ≤

[
u(t)− v, 0− w

]
L1

in D′((0, T )). (10)

The main result associated with these notions is the following (see, e.g., [5]).

Theorem 4.2. Assume that A is accretive and its closure, m-accretive; assume
DomA = L1. Then for all u0 ∈ L1 there exists a unique integral solution to (9);
further, two solutions with different data verify (5). Moreover, the integral solution
is obtained by time-explicit discretization method (the Crandall-Liggett formula).

Now, we apply the result to the operator A defined by its graph:

A := {(û, g) ∈ L1 × L1 | û is an entropy solution of (Sϕ,β) with f = û+ g,

in particular, V ϕν(û(·)) is continuous at x = 0−}. (11)

Proposition 4.3 (properties of the stationary problem (Sϕ,β)).
(i) The operator A is accretive on L1, moreover, its closure is m-accretive on L1.
(ii) The domain DomA is dense in L1.

Proof. The accretivity in (i) follows by rewriting the arguments of the beginning of
this section for stationary solutions with strong traces (to be precise, with those of
V ϕν(u)). In the place of (5) we find the refined contraction property

‖u− û‖L1 ≤

∫

Ω

sign (u− û)(f − f̂) +

∫

Ω

1l[x |u(x)=û(x)]|f − f̂ | (12)

which, together with the definition of A, implies its accretivity in L1.

Further, the m-accretivity of the closure of A is an existence claim for (Sϕ,β)
(with flux λϕ and λ small enough) for some L1-dense set of specific data. E.g., it
is enough to prove that the set C1

c of compactly supported in (−∞, 0] functions of
class C1 is included in the domain Dom(I + λA)−1 of the resolvent of A, for all
λ > 0 small enough. This claim is proved using vanishing viscosity approximation.

First, we solve uε + λϕ(x, uε)x = εuε
xx + f subject to the boundary condition

ϕν(u
ε)+εuε

x ∈ β(uε) at x = 0. Existence of a weak (variational) solution uε follows
by adapting classical arguments (β can be regularized, then the problem is reduced
to a coercive nonlinear elliptic problem in H1(−∞, 0) for which a solution can be
constructed by a Leray-Schauder argument). Following Carrillo [8], we can get the
comparison result analogous to (5), with ε > 0.

Then compactness of the sequence (uε)ε should be obtained, and for this we
need firstly a uniform L∞ estimate on the solution. This estimate follows from the
comparison of uε with constant functions. To see this, observe that k ∈ R

+ is a
solution of k + λϕ(x, k)x = k + λϕx(x, k) ≥ 0 = εkxx for λ small enough (here,
assumption (H5) is used). Thus the constant k is a super-solution of the equation
inside (−∞, 0); the delicate point is to ensure that k is a super-solution of our
viscosity regularized boundary-value problem with graph β. This is true for k > A
provided assumption (H2) holds; thus we temporarily assume (H2). In a similar
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way, we prove that k < −A is a sub-solution, and by the comparison argument we
find a uniform in ε bound in L∞ on uε in terms of A and the right-hand side f .

Following [6], let us get a uniform BV estimate on (uε)ε. For vε := uε
x we have

(1 + λϕxu(x, u
ε))vε + (λϕu(x, u

ε)vε − εvεx)x = fx − λϕxx(x, u
ε). (13)

By (H3) and because f is compactly supported, uε − εuε
xx = 0 for x < −1; since

‖uε‖∞ ≤ const, we get |uε(x)| ≤ const e−|x| for all x. Now, the flux of (13) is

F ε := λϕu(·, u
ε)vε − εvεx; it verifies F ε(0) = λϕx(0, u

ε(0))−
∫ 0

−∞
(f − uε)(y) dy. By

(H4), |F ε(0)| ≤ const is bounded. Further, 1 + λϕxu(·, u
ε(·)) ≥ 1

2 for small enough
λ, due to (H4). Now we take a Lipschitz approximation of sign vε as a test function;

a uniform estimate of
∫ 0

−∞ |vε| = ‖uε
x‖L1 follows. Due to the exponential decay of

uε at −∞, we see that (uε)ε admits an accumulation point u ∈ L1.
Now, it remains to write entropy inequalities for uε and pass to the limit. From

the weak formulation, using Lipschitz approximations of sign±(uε−k) as test func-
tions (see, e.g., [8] and [1, Appendix]), for all k ∈ R we get

∫

Ω

(
(uε − k)±ξ − q±(x, uε, k) · ∇ξ

)
+

∫

Ω

sign±(uε − k)ϕx(x, k)ξ

≤

∫

Ω

ε|uε − k|xξx − sign±(uε(0)− k)(bε − ϕν(k))ξ(0)
(14)

where bε ∈ β(uε(0)) (the last term is a boundary term). Convergence of uε and
the classical uniform estimate of ‖ε(uε

x)
2‖L1 permit to pass to the limit in all terms

except for the last one, which we will bound from above. Consider, e.g., k ∈ D+.
In the “sign+” inequality (14), the monotonicity of β and the choice of k yield

− sign+(uε(0)− k)(bε − ϕν(k)) ≤ (b(k)− ϕν(k))
− = 0. (15)

Further, we simply impose ξ(0) = 0 in the “sign−” inequality (14) and the boundary
term vanishes. Thus we arrive to the stationary analogue of inequalities (1) with
the adequate choice of ξ. This proves that u is an entropy solution of (Sϕ,β).

It remains to bypass (H2). This is done by working firstly with truncated graphs
βm,n that do satisfy (H2). Convergence of the associated solutions um,n to a limit
u is ensured by monotonicity (see [3, 4]). Then, as in [3], one observes that the

boundary conditions for graphs β̃m,n pass to the limit (e.g., if ϕν is monotone near

±∞, then B̃m,n coincide with B̃ for large enough n,m). To be specific, if k ∈ D±;n,m

(the overshoot or undershoot set defined for graph βm,n) then k ∈ D± for n,m large
enough. Thus entropy inequalities for um,n yield analogous inequalities for u.

As to the claim (ii), it can be proved by showing that as λ → 0, the solution of
u+ λA = f converges to f in L1; see [1] for details corresponding to our case.

With Theorem 4.2 and Prop. 4.3, we get the uniqueness claim of Theorem 2.5:

Proposition 4.4. An entropy solution of (Eϕ,β) is an integral solution of (9) with
A defined by (11). In particular, there exists at most one entropy solution for given
datum, and we have (5) for entropy solutions u, û with data u0, û0.

5. Existence of solution, justification of the effective boundary condition.

In order to prove existence of an entropy solution, we can restrict our attention to
L1 ∩ L∞ data due to assumptions (H3),(H4). Let us give two arguments.

Under the genuine nonlinearity assumption (H1) on ϕ(x, ·), one can follow closely
the existence proof of Proposition 4.3(i), substituting the stationary problem by the
evolution problem. Indeed, (H5) (along with (H2)) allows to construct super- and
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sub-solutions of (Eϕ,β) under the form û(t, x) = k(t). The uniform L∞ bound along
with assumption (H1) ensures compactness of (uε)ε in L1

loc (see Panov [12]). In this
argument, we do not need Lipschitz regularity of ϕx in (H4).

In general we do not assume (H1); we exploit the existence result for (Sϕ,β)
and the construction mentioned in Theorem 4.2(ii). Indeed, in this case the time
compactness comes for gratis; one only has to show that the integral solution (also
known as the mild solution) coming from Crandall-Liggett formula is also an entropy
solution (cf. [5]). This itinerary was taken in the work of K. Sbihi ([13], see also
[2]). In the setting of the present note, the proof is much simpler than in [13, 2]
since the stability of the entropy formulation (1) by L1 convergence is evident.

Thus we achieve the following result and complete the proof of Theorem 2.5:

Proposition 5.1. For all u0 ∈ L1((−∞, 0))∩L∞((−∞, 0)) there exists the integral
solution to (9) which is also the unique entropy solution of (Eϕ,β). For general L∞

datum u0, there exists a unique entropy solution of (Eϕ,β) obtained as the L1
loc(Q)

limit of solutions un with L1 ∩ L∞ data u0,n(·) := u0(·)1l[−n,0](·).

Remark 1. To conclude the note, let us stress that the entropy formulation (1)

and the projected graph B̃ naturally appeared from the vanishing viscosity approx-
imation of (Eϕ,β) or (Sϕ,β): the main arguments here are (14), (15), and Prop. 2.3.
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