Singular perturbation with a reduced approximation order in space for the transport equation

Mohammed Belhout, Jérôme Pousin, Yves Renard

- To cite this version:

Mohammed Belhout, Jérôme Pousin, Yves Renard. Singular perturbation with a reduced approximation order in space for the transport equation. International Mathematical Forum, 2012, 7 (27), pp.1309-1315. hal-00761595

HAL Id: hal-00761595

https://hal.science/hal-00761595

Submitted on 8 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Singular perturbation with a reduced approximation order in space for the Transport equation

Mohamed Belhout
Jerome Pousin
Yves Renard
Université de Lyon CNRS
INSA-Lyon ICJ UMR 5208, bat. L. de Vinci, 20 Av. A. Einstein, F-69100 Villeurbanne Cedex France

Abstract

This work is devoted to singular transport phenomena by convection with fast-low time scales, or to transport in porous media with vanishing discontinuous porosities. For $P^{1}-P^{0}$ finite element, by using a reduction of the approximation order for the time differential operator, we propose a numerical method which does not have any oscillations in the neighborhood of the coefficient discontinuity. Error estimates of order one with respect to space are provided. Euler explicit and implicit time schemes are proposed, and by considering a toy problem, the order one of convergence with respect to time and space is checked.

Mathematics Subject Classification: 65M15; 65M60; 35F16
Keywords: singular mass matrix; error estimates; degenerate operator

1 Introduction

A reduced order approximation in space for the time operator is proposed when the transport equation is singularly perturbed (i.e. has discontinuous vanishing coefficients). The presented method is inspired from the singular dynamics introduced in [7]. For the sake of clarity, a 1-D case is considered with one interval where the coefficient vanishes. The method can be generalized for higher space dimensions and for coefficients vanishing on many parts of the space domain. This projection method, is designed for considering some problems with fast-low dynamics in population dynamics [1] ; some plants biology problems [8] or some problems in neurobiology [6]. Some dissolution problems
with acid in porous media with discontinuous porosity, lead to singular perturbation of the transport equation with discontinuous coefficients for the time operator [5]. It is worth to notice that the numerical solution of the transport equation with vanishing discontinuous coefficients usually presents some local oscillations in a neighborhood of discontinuities of coefficients (see for example the results with a least squares method in [4] p. 115) which is not the case for the proposed method. To the knowledge of the authors, there does not exist proof of error estimates in the literature for a projection method in the context of Finite Element with a reduced order when the differential operator degenerates.

Let function

$$
f=\left\{\begin{array}{lc}
f_{1}(x, t) & 0<x<\frac{1}{2} \tag{1}\\
f_{2}(x) & \frac{1}{2}<x<1
\end{array}\right.
$$

and u_{0} be given, the domain is defined by $\Omega=(0,1) \times(0,1)$, and we consider the following problem: find u solution to:

$$
\left\{\begin{array}{l}
1_{\left[0, \frac{1}{2}\right]}(x) \partial_{t} u(x, t)+\partial_{x} u(x, t)+u(x, t)=f(x, t) ; \text { in } \Omega \tag{2}\\
u(x, 0)=u_{0} \quad 0<x<\frac{1}{2} ; \quad u(0, t)=0 \quad 0<t<1
\end{array}\right.
$$

2 Existence of solutions

We denote by $\partial \Omega_{-}=\{(x, t)=\{0\} \times(0,1) \cup(0,1 / 2) \times\{0\}\}$ the incoming part of the boundary of Ω, then the $L^{2}(\Omega)$-unbounded degenerated differential operator A is defined by:

$$
A u=1_{\left[0, \frac{1}{2}\right]}(x) \partial_{t} u+\partial_{x} u+u
$$

The graph-norm of the operator A is given by:

$$
\|\mid \varphi\|\left\|^{2}=\right\| A \varphi\left\|_{L^{2}(\Omega)}^{2}+\right\| \varphi \|_{L^{2}(\Omega)}^{2}
$$

The space in which the solution is searched is defined by the following closure: $E=\overline{\left\{\varphi \in \mathcal{D}(\bar{\Omega}), \varphi_{\mid \partial \Omega_{-}}=0 .\right\}^{\|\cdot\| \|} \text {, where } \mathcal{D}(\bar{\Omega}) \text { is the set of } C^{\infty}(\bar{\Omega}) \text { functions }, ~}$ compactly supported. Taking into account the estimate

$$
\int_{\Omega} A v v d t d x \geq\|v\|_{L^{2}(\Omega)}^{2}
$$

we have that the operator A is linear continuous with a closed range. For numerical purposes, we need to introduce a variational formulation of the problem.
Let the Sobolev's space $H^{1}(0,1)=\left\{\varphi \in l^{2}(0,1) ; \frac{d \varphi}{d x} \in l^{2}(0,1)\right\}$ the subspace of function belonging to $H^{1}(0,1)$ with value zero at $x=0$ is denoted by V.

Let the bilinear forms $a(\cdot, \cdot)$ defined from $V \times L^{2}(0,1)$ and $b(\cdot, \cdot)$ defined from $V \times L^{2}(0,1 / 2)$ be such that:

$$
\begin{equation*}
a(v, w)=\int_{0}^{1} \partial_{x} v(x) w(x)+v(x) w(x) d x ; \quad b(v, \varphi)=\int_{0}^{\frac{1}{2}} w(x) \varphi(x) d x \tag{3}
\end{equation*}
$$

In what follows, the restriction operator is defined.
Lemma 2.1 The operator $B: V \rightarrow L^{2}(0,1 / 2)^{\prime}$ associated to the bilinear form $b(\cdot, \cdot)$ is the linear continuous restriction operator to the segment $[0,1 / 2]$. We have $\operatorname{ker} B={ }_{0} H^{1}(1 / 2,1)$ and the range of its adjoint is given by $R a B^{*}=$ ${ }_{0} H^{1}(0,1 / 2)$ where the left subscript 0 indicates that only functions vanishing at the left end-point of the interval are considered.

Let introduce a variational formulation for the problem (2):

$$
\left\{\begin{array}{l}
\text { find } u(t) \in C^{0}([0,1], V) ; u(0)=u_{0} \text { satisfying } \tag{4}\\
<B^{*} B \dot{u}(t), w>_{V^{\prime}, V}+a(u(t), w)=(f(t), w), \quad \forall w \in V,
\end{array}\right.
$$

where \dot{u} is the derivative of u with respect to time. If the space V is decomposed as $V=\operatorname{ker} B \oplus \operatorname{ker} B^{\perp}=\operatorname{ker} B \oplus \operatorname{Ra} B^{*}$. The bilinear form $a(\cdot, \cdot)$ verifies the inf-sup conditions thus it is deduced that the problem (4) is well-posed.

3 Semi-discretized finite element formulation for the problem (4)

Let $M=2 m$ for a given integer m, set $h=\frac{1}{M}$, and the interval $[0,1]$ is split in sub-intervals $I_{i}=\left(x_{i-1}, x_{i}\right)$ with $x_{i}=i h$ for $1 \leq i \leq M$. Let $V_{h} \subset\{\varphi \in$ $\left.H^{1}(0,1) ; \varphi(0)=0\right\}$ be the sub-space generated by the M hat Lagrange's functions of order one φ_{i}, equipped with the H^{1}-semi-norm. Let $H_{h} \subset L^{2}(0,1)$ be the sub-space generated by the M constant functions ψ_{i} on each sub-interval I_{i}, and let $M_{h} \subset L^{2}\left(0, \frac{1}{2}\right)$ be the sub-space generated by q_{i} the $\frac{M}{2}$ constant functions on each sub-intervals $I_{i} \subset\left(0, \frac{1}{2}\right)$. Let $P_{V_{h}}: C^{0}[0,1] \rightarrow V_{h}$ the Lagrange's interpolate operator and let $\Pi_{h}: L^{2}(0,1) \rightarrow M_{h}$ and $P_{H_{h}}: L^{2}(0,1) \rightarrow H_{h}$ be two L^{2}-projectors. Finally introduce the following matrices :

$$
\left\{\begin{array}{l}
A_{i j}^{-}=\int_{0}^{\frac{1}{2}} \partial_{x} \varphi_{j}(x) \psi_{i}+\varphi_{j}(x) \psi_{i}(x) d x \tag{5}\\
A_{i j}^{+}=\int_{\frac{1}{1}}^{1} \partial_{x} \varphi_{j}(x) \psi_{i}+\varphi_{j}(x) \psi_{i}(x) d x, 1 \leq i, j \leq M \\
B_{i j}=\int_{0}^{1} \varphi_{j}(x) q_{i}(x) d x, 1 \leq i \leq m ; 1 \leq j \leq M \\
C_{i j}=\int_{0}^{\frac{1}{2}} q_{j}(x) q_{i}(x) d x ; 1 \leq i, j \leq m
\end{array}\right.
$$

Definition 3.1 For $u_{0} \in V_{h}$ and $F(t)=P_{H_{h}} f(t)$ given, by denoting by $A=A^{-}+A^{+}, u_{h}(t) \in V_{h} ; v_{h}(t) \in M_{h}$ the solution of the semi-discretized problem verifies:

$$
\left.\left\{\begin{array}{l}
B^{t} v_{h}(t)+A u_{h}(t)=F(t), \tag{6}\\
C v_{h}(t)=B \dot{u}_{h}(t), \\
u_{h}(0)=u_{0}
\end{array} \quad \forall t \in\right] 0,1\right]
$$

Here $u_{h}(t)$ and $v_{h}(t)$ stand for functions of V_{h} or corresponding vectors of degrees of freedom.

Theorem 3.2 For $u_{0}=0, f \in C^{1}(\Omega)$ given, and assuming that $u \in$ $C^{1}\left([0,1] ; H^{2}(0,1)\right)$, there exists $C(f)$ such that for all $h>0$, the following error estimate holds true:

$$
\begin{equation*}
\left\|u(t)-u_{h}(t)\right\|_{L^{2}(\Omega)} \leq C(f) h \quad 0<t \leq 1 \tag{7}
\end{equation*}
$$

For the proof we need of some a priori estimates.

Lemma 3.3 There exist $C_{1} ; C_{2}$ such that for all $h>0$ the following estimates hold true:

$$
\begin{align*}
& C_{1}\left\|u_{h}\right\|_{L^{\infty}\left(0,1 ; V_{h}\right)}^{2}+\left\|\Pi_{h} P_{H_{h}} \dot{u}_{h}\right\|_{L^{2}(\Omega)}^{2}+\left\|P_{H_{h}} u_{h}\right\|_{L^{\infty}\left(0,1 ; L^{2}(0,1)\right)}^{2} \leq \\
& C_{2}\left(\|\dot{f}\|_{L^{2}(\Omega)}^{2}+\|f\|_{L^{\infty}\left(0,1 ; L^{2}(0,1)\right)}^{2}\right) \tag{8}\\
& \left\|\left(I-\Pi_{h}\right) \dot{u}_{h}\right\|_{L^{2}\left(0,1 ; L^{2}(0,1)\right)}^{2}=0
\end{align*}
$$

Please note that $\Pi_{h} P_{H_{h}}=\Pi_{h}$. The semi-discretized problem becomes:

$$
\begin{equation*}
\left(\dot{u}_{h}(t), \Pi_{h} w_{h}\right)+a\left(u_{h}(t), w_{h}\right)=\left(f(t), w_{h}\right), \quad \forall w_{h} \in H_{h} \tag{9}
\end{equation*}
$$

Successively choose $w_{h}=\partial_{x} \dot{u}_{h}(t) \in H_{h}$, and $w_{h}=P_{H_{h}} \dot{u}_{h}(t) \in H_{h}$, adding the two equations and integrate between 0 and t. The term of the first equation $\int_{0}^{t} \int_{0}^{1} u_{h}(t) \partial_{x} \dot{u}_{h}(t) d x d t$ is integrated by parts, the following term

$$
-\int_{0}^{t} \int_{0}^{1} \partial_{x} u_{h}(t) \dot{u}_{h}(t) d x d t
$$

will be compensated with the term

$$
\int_{0}^{t} \int_{0}^{1} \partial_{x} u_{h}(t) P_{H_{h}} \dot{u}_{h}(t) d x d t
$$

of the second equation since we have $\partial_{x} u_{h}(t) \in H_{h}$. So the first estimate is deduced. For the second, choose $w_{h}=\left(I-\Pi_{h}\right) \psi_{h}$ for $\psi_{h} \in H_{h}$. We have:

$$
a\left(u_{h}(t),\left(I-\Pi_{h}\right) \psi_{h}\right)=\left(f(t),\left(I-\Pi_{h}\right) \psi_{h}\right)
$$

Take the derivative with respect to t, since f does not depend on time for $x>\frac{1}{2}$, the second equality is obtained.
Let us give a sketch of the proof of the theorem 3.2. Let us denote the error by $e_{h}(t)=u_{h}(t)-P_{V_{h}} u(t)$. The error equation is given by: $\forall w_{h} \in H_{h}$

$$
\begin{align*}
& \left(\dot{e}_{h}(t), w_{h}\right)+a\left(\dot{e}_{h}(t), w_{h}\right)= \\
& a\left(\left(I-P_{V_{h}}\right) u(t), w_{h}\right)+\left(\dot{u}_{h},\left(I-\Pi_{h}\right) w_{h}\right)+\left(\left(I-P_{V_{h}}\right) \dot{u}(t), w_{h}\right) . \tag{10}
\end{align*}
$$

Choose $w_{h}=P_{H_{h}} e_{h}(t)$, integrate the equation (10) between 0 and t and writes this expression as $\mathrm{I}=\mathrm{II}+\mathrm{III}+\mathrm{IV}$. We have:

$$
\begin{align*}
& \left\|P_{H_{h}} e_{h}\right\|_{L^{\infty}\left(0,1 ; L^{2}(0,1)\right)}^{2} \leq I \quad\left(\text { since } \quad \partial_{x} e_{h} \in H_{h}\right) ; \\
& |I I| \leq\left\|\partial_{x}\left(I-P_{V_{h}}\right) u\right\|_{L^{2}(\Omega)}\left\|P_{H_{h}} e_{h}\right\|_{L^{2}(\Omega)} ; \tag{11}\\
& |I I I| \leq\left\|\left(I-\Pi_{h}\right) \dot{u}_{h}\right\|_{L^{2}(\Omega)}\left\|P_{H_{h}} e_{h}\right\|_{L^{2}(\Omega)} ; \\
& |I V| \leq\left\|\left(I-P_{H_{h}}\right) \dot{u}\right\|_{L^{2}(\Omega)}\left\|P_{H_{h}} e_{h}\right\|_{L^{2}(\Omega)} .
\end{align*}
$$

The classical stability results and estimates for $\left(I-P_{\bullet}\right)$ as function of h for $P_{V_{h}}$ and for $P_{H_{h}}$ and Π_{h} (see [3] for example) lead to the conclusion since u is enough regular and since the a priori estimates of Lemma 3.3 hold true. Expressing

$$
u-u_{h}=\left(I-P_{H_{h}}\right) u+P_{H_{h}}\left(I-P_{V_{h}}\right) u+P_{H_{h}} e_{h}+\left(P_{H_{h}}-I\right) u_{h},
$$

we get the error estimate.

4 Implicit and Explicit Euler's schemes in time

In the problem (6), eliminate the unknown v, and for K fixed define $\Delta t=\frac{1}{K}$ and the times sequence $t_{k}=k \Delta t ; 0 \leq k \leq K$. For u_{h}^{0} given, the implicit Euler's scheme reads:

$$
\begin{equation*}
B^{t} C^{-1} B u_{h}^{k+1}+\Delta t A u_{h}^{k+1}=\Delta t F\left(t_{k+1}\right)+B^{t} C^{-1} B u_{h}^{k} . \tag{12}
\end{equation*}
$$

Please remark that $B^{t} C^{-1} B+\Delta t A$ is invertible since it is the sum of a semidefinite matrix and of a positive definite matrix. The explicit Euler's scheme reads:

$$
\begin{equation*}
B^{t} C^{-1} B u_{h}^{k+1}+A^{+} u_{h}^{k+1}=\Delta t F^{-}\left(t_{k}\right)+B^{t} C^{-1} B u_{h}^{k}-\Delta t A^{-} u_{h}^{k}+F^{+}\left(t_{k+1}\right) \tag{13}
\end{equation*}
$$

with $F^{-}(t)=P_{H_{h}} 1_{\left[0, \frac{1}{2}\right]}(x) f(t, x) ; F^{+}(t)=P_{H_{h}} 1_{\left[\frac{1}{2}, 1\right]}(x) f(t, x)$.
Let us end this note with two convergence curves for the problem (2), when the right end side is given by: $f=\left\{\begin{array}{c}(x-1 / 2)^{2} t^{2}+x^{2} \quad 0<x<1 / 2 \\ x^{2} \quad 1 / 2<x<1\end{array}\right.$; and

Figure 1: Space error (left), time error (right).
$u_{0}(x)=x^{2}, 0<x<1 / 2$. In figure $1, L^{2}$ error curves in logarithmic scale for the scheme (13) are presented. These results agree with the announced results. To conclude, please remark that an upwind finite element in space could have been used as in [2].
The presented results can be generalized to diffusion problems with two time scales. Explicit or implicit Euler's schemes can be obtained.

References

[1] P. Auger, G. Poggiale, Impact of spatial heterogeneity on a predator prey system dynamics, C. R. Biologies, 327, 1058-1063 (2004).
[2] I. Babuska, W. G. Szymczak , Adaptivity and Error Estimation for the Finite Element Method Applied to Convection Diffusion Problems, SIAM J. Numer. Anal. Volume 21, Issue 5, pp. 910-954 (1984).
[3] P.G. Ciarlet, Finite element method for elliptic equation, Studies in Mathematics and its applications North Holland (1979).
[4] Franck Fontvieille, Dcomposition asymptotique et lments finis, Mathmatiques et Informatique fondamentale de Lyon 2004 http://docinsa.insalyon.fr/these/pont.php?id=fontvieille.
[5] Golfier M., Bazin B., Lenormand R. and Quintard M., Core-scale description of a porous media dissolutionduring acid injection part 1 theoritical development, Computational and applied Mathematics 23 (2004) 179-194.
[6] M.A. Dronne, S. Descombes E. Grenier, H. Gilquin, Examples of the influence of the geometry on the propagation of progressives waves, Mathematical and Computer Modelling EPU 49 (2009) 2138-2144.
[7] Y. Renard. The singular dynamic method for constrained second order hyperbolic equations. Application to dynamic contact problems. J. Comput. Appl. Math., 234(3):906-923 (2010).
[8] N. Bessonov, V. Volpert, Dynamic models of plants growth, Mathematics and Mathematical modelling EPU Edition Publibook Universit (2006).

