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Introduction

A reduced order approximation in space for the time operator is proposed when the transport equation is singularly perturbed (i.e. has discontinuous vanishing coefficients). The presented method is inspired from the singular dynamics introduced in [START_REF] Renard | The singular dynamic method for constrained second order hyperbolic equations. Application to dynamic contact problems[END_REF]. For the sake of clarity, a 1-D case is considered with one interval where the coefficient vanishes. The method can be generalized for higher space dimensions and for coefficients vanishing on many parts of the space domain. This projection method, is designed for considering some problems with fast-low dynamics in population dynamics [START_REF] Auger | Impact of spatial heterogeneity on a predator prey system dynamics[END_REF] ; some plants biology problems [START_REF] Bessonov | Dynamic models of plants growth[END_REF] or some problems in neurobiology [START_REF] Dronne | Examples of the influence of the geometry on the propagation of progressives waves[END_REF]. Some dissolution problems with acid in porous media with discontinuous porosity, lead to singular perturbation of the transport equation with discontinuous coefficients for the time operator [START_REF] Golfier | Core-scale description of a porous media dissolutionduring acid injection part 1 theoritical development[END_REF]. It is worth to notice that the numerical solution of the transport equation with vanishing discontinuous coefficients usually presents some local oscillations in a neighborhood of discontinuities of coefficients (see for example the results with a least squares method in [START_REF] Fontvieille | Dcomposition asymptotique et lments finis[END_REF] p. 115) which is not the case for the proposed method. To the knowledge of the authors, there does not exist proof of error estimates in the literature for a projection method in the context of Finite Element with a reduced order when the differential operator degenerates.

Let function

f = f 1 (x, t) 0 < x < 1 2 , f 2 (x) 1 2 < x < 1, (1) 
and u 0 be given, the domain is defined by Ω = (0, 1) × (0, 1), and we consider the following problem: find u solution to:

1 [0, 1 2 ] (x)∂ t u(x, t) + ∂ x u(x, t) + u(x, t) = f (x, t); in Ω, u(x, 0) = u 0 0 < x < 1 2 ; u(0, t) = 0 0 < t < 1.
(2)

Existence of solutions

We denote by ∂Ω -= {(x, t) = {0} × (0, 1) ∪ (0, 1/2) × {0}} the incoming part of the boundary of Ω, then the L 2 (Ω)-unbounded degenerated differential operator A is defined by:

Au = 1 [0, 1 2 ] (x)∂ t u + ∂ x u + u.
The graph-norm of the operator A is given by:

|ϕ | 2 = Aϕ 2 L 2 (Ω) + ϕ 2 L 2 (Ω) .
The space in which the solution is searched is defined by the following closure:

E = {ϕ ∈ D(Ω), ϕ | ∂Ω -= 0.} |• | , where D(Ω) is the set of C ∞ (Ω) functions compactly supported. Taking into account the estimate Ω Avv dt dx ≥ v 2 L 2 (Ω) ,
we have that the operator A is linear continuous with a closed range. For numerical purposes, we need to introduce a variational formulation of the problem.

Let the Sobolev's space H 1 (0, 1) = {ϕ ∈ l 2 (0, 1); dϕ dx ∈ l 2 (0, 1)} the subspace of function belonging to H 1 (0, 1) with value zero at x = 0 is denoted by V .

Let the bilinear forms a(•, •) defined from V × L 2 (0, 1) and b(•, •) defined from V × L 2 (0, 1/2) be such that:

a(v, w) = 1 0 ∂ x v(x)w(x) + v(x)w(x)dx; b(v, ϕ) = 1 2 0 w(x)ϕ(x) dx. (3)
In what follows, the restriction operator is defined.

Lemma 2.1 The operator B : V → L 2 (0, 1/2) associated to the bilinear form b(•, •) is the linear continuous restriction operator to the segment [0, 1/2].
We have ker B = 0 H 1 (1/2, 1) and the range of its adjoint is given by Ra B * = 0 H 1 (0, 1/2) where the left subscript 0 indicates that only functions vanishing at the left end-point of the interval are considered.

Let introduce a variational formulation for the problem (2):

find u(t) ∈ C 0 ([0, 1], V ); u(0) = u 0 satisfying < B * B u(t), w > V ,V +a(u(t), w) = (f (t), w), ∀w ∈ V, ( 4 
)
where u is the derivative of u with respect to time. If the space V is decomposed as V = ker B ⊕ ker B ⊥ = ker B ⊕ Ra B * . The bilinear form a(•, •) verifies the inf-sup conditions thus it is deduced that the problem (4) is well-posed.

3 Semi-discretized finite element formulation for the problem (4)

Let M = 2m for a given integer m, set h = 1 M , and the interval [0, 1] is split in sub-intervals

I i = (x i-1 , x i ) with x i = ih for 1 ≤ i ≤ M . Let V h ⊂ {ϕ ∈ H 1 (0, 1 
); ϕ(0) = 0} be the sub-space generated by the M hat Lagrange's functions of order one ϕ i , equipped with the H 1 -semi-norm. Let H h ⊂ L 2 (0, 1) be the sub-space generated by the M constant functions ψ i on each sub-interval I i , and let M h ⊂ L 2 (0, 1 2 ) be the sub-space generated by q i the M 2 constant functions on each sub-intervals I i ⊂ (0, 1 2 ). Let P V h : C 0 [0, 1] → V h the Lagrange's interpolate operator and let Π h : L 2 (0, 1) → M h and P H h : L 2 (0, 1) → H h be two L 2 -projectors. Finally introduce the following matrices :

             A - ij = 1 2 0 ∂ x ϕ j (x)ψ i + ϕ j (x)ψ i (x)dx, A + ij = 1 1 2 ∂ x ϕ j (x)ψ i + ϕ j (x)ψ i (x)dx, 1 ≤ i, j ≤ M ; B ij = 1 0 ϕ j (x)q i (x)dx, 1 ≤ i ≤ m; 1 ≤ j ≤ M ; C ij = 1 2 0 q j (x)q i (x)dx; 1 ≤ i, j ≤ m.
(5)

Definition 3.1 For u 0 ∈ V h and F (t) = P H h f (t) given, by denoting by

A = A -+ A + , u h (t) ∈ V h ; v h (t) ∈ M h the solution of the semi-discretized problem verifies:      B t v h (t) + Au h (t) = F (t), Cv h (t) = B uh (t), ∀t ∈ ]0, 1]. u h (0) = u 0 , (6)
Here u h (t) and v h (t) stand for functions of V h or corresponding vectors of degrees of freedom. Theorem 3.2 For u 0 = 0, f ∈ C 1 (Ω) given, and assuming that u ∈ C 1 ([0, 1]; H 2 (0, 1)), there exists C(f ) such that for all h > 0, the following error estimate holds true:

u(t) -u h (t) L 2 (Ω) ≤ C(f )h 0 < t ≤ 1. ( 7 
)
For the proof we need of some a priori estimates.

Lemma 3.3 There exist C 1 ; C 2 such that for all h > 0 the following estimates hold true:

C 1 u h 2 L ∞ (0,1;V h ) + Π h P H h uh 2 L 2 (Ω) + P H h u h 2 L ∞ (0,1;L 2 (0,1)) ≤ C 2 ḟ 2 L 2 (Ω) + f 2 L ∞ (0,1;L 2 (0,1)) ; (I -Π h ) uh 2 L 2 (0,1;L 2 (0,1)) = 0. ( 8 
)
Please note that Π h P H h = Π h . The semi-discretized problem becomes:

( uh (t), Π h w h ) + a(u h (t), w h ) = (f (t), w h ), ∀w h ∈ H h . ( 9 
)
Successively choose w h = ∂ x uh (t) ∈ H h , and w h = P H h uh (t) ∈ H h , adding the two equations and integrate between 0 and t. The term of the first equation

t 0 1 0 u h (t)∂ x uh (t)
dx dt is integrated by parts, the following term

- t 0 1 0 ∂ x u h (t) uh (t) dx dt
will be compensated with the term

t 0 1 0 ∂ x u h (t)P H h uh (t) dx dt
of the second equation since we have ∂ x u h (t) ∈ H h . So the first estimate is deduced. For the second, choose w h = (I -Π h )ψ h for ψ h ∈ H h . We have:

a(u h (t), (I -Π h )ψ h ) = (f (t), (I -Π h )ψ h ).
Take the derivative with respect to t, since f does not depend on time for x > 1 2 , the second equality is obtained. Let us give a sketch of the proof of the theorem 3.2. Let us denote the error by e h (t) = u h (t) -P V h u(t). The error equation is given by:

∀w h ∈ H h ( ėh (t), w h ) + a( ėh (t), w h ) = a((I -P V h )u(t), w h ) + ( uh , (I -Π h )w h ) + ((I -P V h ) u(t), w h ). ( 10 
)
Choose w h = P H h e h (t), integrate the equation (10) between 0 and t and writes this expression as I=II+III+IV. We have:

P H h e h 2 L ∞ (0,1;L 2 (0,1)) ≤ I ( since ∂ x e h ∈ H h ); |II| ≤ ∂ x (I -P V h )u L 2 (Ω) P H h e h L 2 (Ω) ; |III| ≤ (I -Π h ) uh L 2 (Ω) P H h e h L 2 (Ω) ; |IV | ≤ (I -P H h ) u L 2 (Ω) P H h e h L 2 (Ω) . (11)
The classical stability results and estimates for (I -P • ) as function of h for P V h and for P H h and Π h (see [START_REF] Ciarlet | Finite element method for elliptic equation[END_REF] for example) lead to the conclusion since u is enough regular and since the a priori estimates of Lemma 3.3 hold true. Expressing

u -u h = (I -P H h )u + P H h (I -P V h )u + P H h e h + (P H h -I)u h ,
we get the error estimate.

4

Implicit and Explicit Euler's schemes in time

In the problem [START_REF] Dronne | Examples of the influence of the geometry on the propagation of progressives waves[END_REF], eliminate the unknown v, and for K fixed define ∆t = 1 K and the times sequence t k = k∆t; 0 ≤ k ≤ K. For u 0 h given, the implicit Euler's scheme reads:

B t C -1 Bu k+1 h + ∆tAu k+1 h = ∆tF (t k+1 ) + B t C -1 Bu k h . ( 12 
)
Please remark that B t C -1 B + ∆tA is invertible since it is the sum of a semidefinite matrix and of a positive definite matrix. The explicit Euler's scheme reads:

B t C -1 Bu k+1 h + A + u k+1 h = ∆tF -(t k ) + B t C -1 Bu k h -∆tA -u k h + F + (t k+1 ). (13) with F -(t) = P H h 1 [0, 1 2 ] (x)f (t, x); F + (t) = P H h 1 [ 1 2 ,1] (x)f (t, x).
Let us end this note with two convergence curves for the problem (2), when the right end side is given by: f = (x -1/2) 2 t 2 + x 2 0 < x < 1/2 x 2 1/2 < x < 1 ; and u 0 (x) = x 2 , 0 < x < 1/2. In figure 1, L 2 error curves in logarithmic scale for the scheme (13) are presented. These results agree with the announced results. To conclude, please remark that an upwind finite element in space could have been used as in [START_REF] Babuska | Adaptivity and Error Estimation for the Finite Element Method Applied to Convection Diffusion Problems[END_REF]. The presented results can be generalized to diffusion problems with two time scales. Explicit or implicit Euler's schemes can be obtained.
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 1 Figure 1: Space error (left), time error (right).