
HAL Id: hal-00761578
https://hal.science/hal-00761578

Submitted on 22 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic structure factor of density fluctuations from
direct imaging very near (both above and below) the

critical point of SF6
Ana Oprisan, Sorinel Adrian Oprisan, Brittany Bayley, John Hegseth, Yves

Garrabos, Carole Lecoutre-Chabot, Daniel Beysens

To cite this version:
Ana Oprisan, Sorinel Adrian Oprisan, Brittany Bayley, John Hegseth, Yves Garrabos, et al.. Dynamic
structure factor of density fluctuations from direct imaging very near (both above and below) the
critical point of SF6. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2012, 86
(6), 061501 (7 p.). �10.1103/PhysRevE.86.061501�. �hal-00761578�

https://hal.science/hal-00761578
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 86, 061501 (2012)

Dynamic structure factor of density fluctuations from direct imaging very near
(both above and below) the critical point of SF6

Ana Oprisan, Sorinel A. Oprisan, and Brittany Bayley
Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, South Carolina 29424, USA

John J. Hegseth
Department of Physics, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148, USA

Yves Garrabos and Carole Lecoutre-Chabot
Institut de Chimie de la Matiere Condensee de Bordeaux, University de Bordeax I, Avenue de Dr. Schweitzer, F-33608 Pessac Cedex, France

Daniel Beysens
Institut de Chimie de la Matiere Condensee de Bordeaux, University de Bordeax I, Avenue de Dr. Schweitzer, F-33608 Pessac Cedex, France,

Equipe du Supercritique pour l’Environnement, les Matériaux et l’Espace, Physique et Mécanique des Milieux Hétérogènes, UMR 7636
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Large density fluctuations were observed by illuminating a cylindrical cell filled with sulfur hexafluoride (SF6),
very near its liquid-gas critical point (|T − Tc| < 300 μK) and recorded using a microscope with 3 μm spatial
resolution. Using a dynamic structure factor algorithm, we determined from the recorded images the structure
factor (SF), which measures the spatial distribution of fluctuations at different moments, and the correlation time
of fluctuations. This method authorizes local measurements in contrast to the classical scattering techniques that
average fluctuations over the illuminating beam. We found that during the very early stages of phase separation
the SF scales with the wave vector q according to the Lorentzian q−2, which shows that the liquid and vapor
domains are just emerging. The critical wave number, which is related to the characteristic length of fluctuations,
steadily decreases over time, supporting a sustained increase in the spatial scale of the fluctuating domains. The
scaled evolution of the critical wave number obeys the universal evolution for the interconnected domains at high
volume fraction with an apparent power law exponent of − 0.35 ± 0.02. We also determined the correlation
time of the fluctuations and inferred values for thermal diffusivity coefficient very near the critical point, above
and below. The values were used to pinpoint the crossing of Tc within 13 μK.
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I. INTRODUCTION

There is a lack of data regarding phase separation in pure
fluids in microgravity. Experiments investigating the critical
behavior of pure fluids [1,2] and binary mixtures [3,4] have
been performed with binary liquids near their miscibility
critical point. In density-matched mixtures, gravity effects
cannot be compensated for a long time [5]. The study of
the long time evolution of fluctuations and phase separation
in pure fluids needs gravity-free experiments [6–13]. The
thermodynamic properties of critical fluids are indeed strongly
affected by gravity because, among other properties, the
compressibility of the fluid is very large near the critical
point and the fluid compresses under its own weight [14,15].
Experiments in microgravity eliminate the complication due
to fluid compressibility near the critical point.

Local density fluctuations activated by local thermal fluc-
tuations induce small changes of the refractive index, which,
in turn, induce fluctuations of light intensity passing through
the fluid under investigation [16,17]. Density fluctuations in
fluids near critical point are long ranged, a fact encompassed
by the universal character of the power laws for many physical
quantities [1,18–20].

In this paper, we applied an image processing technique,
i.e., the dynamic structure factor (DSF) algorithm [21–24],

and determined the structure factor (SF) and the correlation
time of density fluctuations based on direct imaging experi-
ments performed at 300 μK around the critical temperature
(Tc = 318.733 K) of SF6 in microgravity. The structure factor
is the mean-squared amplitude of density fluctuations. We
analyzed image sequences recorded very near the critical point.
One advantage of this DSF technique is that the fluctuation
image is defined as the difference between two normalized
images a certain time interval �t apart. By covering a wide
range of delay time intervals �t we were able to extract not
only the SF, but also the optical background and the correlation
time of density fluctuations. The data for large wave number q

are consistent with a power law behavior SF ∝ q−2, which is
a signature of the scale invariance of fluctuations very near the
critical point. This result shows that very close to the critical
point the SF of fluctuations is of Lorentzian type (q−2 scaling),
since the liquid and vapor domains are just forming. During the
late stages of phase separation, when the liquid-vapor interface
is well developed, the SF evolves according to Porod’s law
(q−4 scaling) [19,25]. We also estimated the thermal diffusivity
coefficient DT from the correlation time [26]. The thermal
diffusivity coefficient was previously estimated by Guenoun
et al. [7] by using turbidity measurements with less accuracy
than the present work.
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FIG. 1. Temperature measured by a thermistor placed inside the
walls of the SCU vs the time stamp marked by Alice 2 instrumentation
on recorded images over 1000 s around Tc (a) and a focused view
only on the time interval very near above and below Tc (b). Phase
separation occurs during this 300 μK thermal quench (a). Based on
the histogram method, the estimated position of critical temperature is
47 μK above the lower plateau (a) [34]. Our current estimation based
on the thermal diffusivity coefficient is between 15 and 42 μK above
the lower plateau (b). For convenience, the origin of time was shifted
to 288 950.00 s. The first pair of vertical dashed lines (b) marks the
duration of recording analyzed for T > Tc, i.e., 0.00 s < t < 8.00 s,
which corresponds to image frames from zero to 200. The second pair
of vertical dashed lines (b) marks the duration of recording analyzed
for T < Tc, i.e., 28.12 s < t < 51.12 s, which corresponds to image
frames from 703 to 1278.

II. EXPERIMENTAL SETUP

A. General

The Alice 2 facility [5,27] used direct imaging of density
fluctuations near the critical point of the pure fluid SF6 in
microgravity conditions. The fluid inside the sample cell
unit (SCU) was prepared at the critical density, i.e., 〈ρ∗〉 =
(〈ρ〉 − ρc)/ρc = ±0.02%, where 〈ρ〉 is the mean density and
ρc is the critical density [28]. The fluid was held at a constant
initial temperature above critical temperature (T > Tc) for
about 40 min. Subsequently, a 300 μK thermal quench quickly
decreased the SCU temperature below Tc and held it constant
for approximately 40 min [Fig. 1(a)]. The experimental obser-
vation of critical opalescence phenomena, which is outside the
scope of this paper, was used to approximately pinpoint the
moment the system crosses Tc. In addition, because the fluid
separated during this 300 μK thermal quench, we concluded
that Tc was located between the initial and the final temperature
plateaus shown in Fig. 1(a) [29].

The Alice 2 instrumentation writes on recorded images a
time stamp, measured from the beginning of the experiment.
This paper only investigates the formation of liquid and vapor

domains during the very early stage of the phase separation
phenomenon that occurs very close to Tc. Above critical
temperature (T > Tc), we only analyzed images starting at
t = 288 950.00 s, which was labeled as image frame zero, up
to t = 288 958.00 s, i.e., image frame number 200 [Fig. 1(b)].
Below critical temperature (T < Tc) we analyzed images
starting at t = 288 978.12 s, i.e., image frame number 703, up
to t = 289 001.12 s, i.e., image frame number 1278 [Fig. 1(b)].
For convenience, 288 950.00 s were subtracted from all time
stamps.

The temperature is measured by a thermistor inside the
copper SCU wall, and its reading represents only approxi-
mately the actual temperature of the supercritical fluid. Among
other factors, this approximate temperature reading is due to
the fact that when the thermal quench command is issued,
the cooling flux is more efficient on the SCU walls than in the
bulk of the fluid, therefore, inducing a short (a few seconds)
lag. It is also known that, in the supercritical region, the fluid
inside the SCU suffers a fast adiabatic thermalization and
reaches equilibrium on a much shorter time scale compared
to the solid enclosure [30,31]. In addition, in spite of its
low power value (<100 μW), a weak part of the laser beam
power is absorbed in the sapphire windows, inducing a local
weak temperature gradient in the fluid that can affect the
estimation of the moment the fluid crosses Tc [32]. As a
result, the actual times are shifted by about 5.5 s with respect
to marked time. For the above reasons, we assumed that
the actual temperature of the fluid on the lower plateau is
300 μK below the temperature of the well-stabilized upper
plateau [33], despite the spurious short-term wiggling of the
temperature reported by the thermistor inside the SCU wall
[Fig. 1(a)]. A more detailed description of the experiment is
presented elsewhere [28,29,34].

B. Optics

The density fluctuations were visualized through light
transmission normal to the sapphire windows of the SCU using
a He-Ne laser with 632.8 nm wavelength and about 100 μW
maximum power. The laser stability after 1 h was estimated to
be better than 0.3%. An optical microscope of 3 μm resolution
was used to record a small region (less than 1 mm2) of the SCU
with a sampling rate of 25 Hz [35]. Here we analyze about 200
images (8 s of recording) above Tc, respectively, about 575
images (23 s of recording) below Tc. We cropped the largest
possible square area of 190 × 190 pixels out of the original
256 × 256 pixel image of the SCU, which corresponds to a

(a) (b) (c) (d)

100 μm

FIG. 2. Typical cropped image above Tc [(a) and (b)] and below Tc [(c) and (d)]. Images recorded 5 s before (a) and right at the end (b) of
the 40-min-long upper plateau (T > Tc). Images recorded 10 s (c) and 20 s (d) into the lower temperature plateau (T < Tc).
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0.9 mm × 0.9 mm visual field, in order to eliminate some
recording markers written by Alice 2 instruments directly on
images (time elapsed since the beginning of the experiment,
etc.) The entire recording analyzed in this paper covers only
phenomena happening during the very early stages of the phase
separation [see Fig. 1(b)].

The small-scale bright and dark regions in Fig. 2 correspond
to domains of larger and, respectively, smaller values for
refractive index, or density. The large-scale intensity variation
is due to changes in image illumination. Above Tc [Figs. 2(a)
and 2(b)], only fluctuations are visible in recorded images.
Below Tc [Figs. 2(c) and 2(d)], growing phase separated
interconnected domains are clearly visible even during the
early stages after crossing the critical temperature.

III. IMAGE PROCESSING TECHNIQUE

The image processing algorithm is as follows.
(1) Image normalization: In order to reduce the effect of

variable light intensity, each cropped image (see Fig. 2) was
normalized:

i(x, t) = I (x, t)/ 〈I (x, t)〉,
where I (x,t) is the intensity of the two-dimensional image and
〈I (x,t)〉 is the spatial average over all pixel positions in the
image I (x,t).

(2) Fluctuation image: It is the difference between two
normalized images separated by a time delay �t ,

δi(x,t,�t) = i(x,t + �t) − i(x,t).

(3) Time-dependent structure function: This requires first
the computation of the two-dimensional fast Fourier trans-
forms (FFT2) for each fluctuation image

δi(q,t,�t) = FFT2(δi(x,t,�t)),

from which the corresponding power spectrum is computed.
The time-dependent structure function cm(q,�t) is the ensem-
ble, or temporal, average of all power spectra in a set of images
with a fix time delay �t [21–23]:

cm(q,�t) = |δi(q,t,�t)|2t .
We performed ensemble (temporal) averages of power

spectra over sets of 64 successive images.
(4) Radial average of the time-dependent structure function:

Due to the radial symmetry of the power spectrum, cm(q,�t)
was averaged over small ranges of wave vector |q| [23], where
q = |q|:

Cm(q,�t) = cm(q,�t)|q|.

The dynamic structure factor algorithm for image pro-
cessing is based on the definition of the fluctuating image
δi(x,t,�t), whose spatial power spectrum average gives the
time-dependent structure function cm(q,�t). This approach
has been previously used to remove the effect of slow drifts in
the recorded signal [36]. This method is appropriate in our case
since we investigate the density fluctuations due to a significant
jump in temperature (300 μK) very near the critical point
[Fig. 1(b)]. The time-dependent structure function cm(q,�t)
is the result of calculating the structure factor of a difference
signal rather than of the signal itself. The radial average of

the time-dependent structure function cm(q,�t), which was
calculated over rings of unit width in the discrete Fourier
space, is related to the structure factor S(q) and the normalized
correlation function g(q,�t) as follows [21,22]:

Cm(q,�t) = 2[[S(q)T (q)][1 − g(q,�t)] + B(q)], (1)

where T (q) is the transfer, or sensitivity, function of the
optical method employed and B(q) is a background term. The
normalized correlation function is

g(q,�t) = exp[−�t/τ (q)], (2)

where τ (q) is the lifetime of density fluctuations. For a
small time delay, �t → 0, the normalized correlation function
g(q,�t) should became unity and decrease to zero for large
time delays. By fitting the radial average of the time-dependent
structure function Cm(q,�t) to Eqs. (1) and (2), we determined
the product S(q)T (q), τ (q), and B(q). In general, the power
spectrum of the resultant images includes both the SF, S(q),
which measures the spatial distribution of the fluctuations,
and the characteristic transfer function T (q) of the optical
method employed. Unfortunately, the two signals, S(q) and
T (q), cannot be separated using image processing. However,
the slope of the structure factor S(q) at large values of the
wave vector is seemingly the same as the slope of the product
S(q)T (q) (see the Appendix).

Since we used N = 190 pixels and the CCD resolution
was �x ≈ 3 μm, the minimum wave vector is of the order of
qmin = 1/(190 × 3.1 μm) ≈ 17 cm−1. Throughout this paper,
all power spectra are given with the reduced wave vector
q∗ = q/qmin in arbitrary units (arb. units). The qmin = 17 cm−1

factor can be used to find the wave vector q = q∗qmin in cm−1

units. Since there were only N = 190 pixels in the cropped
image (1 < q∗ < 190), it results that the wave vector q in our
experiment covered the range 17–2285 cm−1. Furthermore,
the power spectra for very small wave vectors (q∗ � 100 arb.
units) are affected by significant errors because the small radius
|q| determines a poor ensemble statistical average. For large
wave vectors, the number of pixels (independent samples) in
a single ring of the radial average of the power spectrum
increases as nπ , in which n is the number of the channel
varying from 1 to N/

√
2. For example, at the maximum

wave vector for our experiments, n is about 190/
√

2 ≈ 135,
resulting in over 400 statistically independent samples for a
single wave vector, which is a reasonably good statistics.

IV. RESULTS

We computed the radial average of the time-dependent
structure function Cm(q,�t) for different delay times �t which
were multiples of the 1/25 s sampling rate. The saturation of
structure function Cm(q,�t) is determined by a significant
decrease of correlation between images that are too far apart.
The structure functions Cm(q,�t) were fitted with Eqs. (1) and
(2) in order to extract the SF, the background noise, and the
correlation time of fluctuations.

Very close to the critical point, the SF, which is the
mean-squared amplitude of density fluctuations, is analytically
captured by a Lorentzian

S(q) = S0/[1 + (q/qc)2], (3)
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FIG. 3. (Color online) Log-log plot of the theoretical Lorentzian
(a), and the log-log plot of the theoretical correlation time (b). For
small wave vectors (q/qc � 1), the SF has a very small slope. For
large wave vectors (q/qc > 1), the power law with an exponent of
−2 indicates a Lorentzian behavior.

where S0 is a constant and qc is the critical value of the wave
number. Figure 3(a) shows a log-log plot of the theoretical SF
with S0 = 1 arbitrary units. The correlation time represents
the lifetime of the fluctuation [21]. For wave vectors q > qc,
the correlation time is well approximated by 1/(DT q2), where
DT is the thermal diffusivity constant (see Sec. IV A).

A. Estimation of SF and the correlation time of fluctuations
above critical temperature

Dynamic structure factor algorithm allows SF to be esti-
mated without prior measurements of the optical background
by fitting the time-dependent structure function Cm(q,�t) [see
Figs. 4(a) and 5(a)] with Eq. (1). Furthermore, the optical
background is also obtained with this dynamic structure factor
algorithm. We used the ratio of the SF against the background
to determine the acceptable range of the wave vector for which
the signal-to-noise ratio is high enough. We found that the
amplitude of the background noise was at least one order
of magnitude smaller than the SF, except for very low wave
vectors (q∗ < 10 arb. units).

Typical SF fitting results above critical temperature
(T > Tc) are shown in Fig. 4(b). The image frames for
T > Tc are numbered from zero (at t = 288 950.00 s) up
to 200 [Fig. 4(b)]. The dynamic structure factor algorithm [see
Eqs. (1) and (2)] also allowed us to compute the correlation
time [see Fig. 4(c)] based on fluctuating images (Fig. 2).

The log-log plots of the SFs versus the wave vector q show
two regions of interest [Fig. 4(b)]. For small wave vectors

(q∗ < 100 arb. units) we found that the SF is almost flat and
presents a significant error due to very poor statistics over a
very small number of wave numbers. For large wave numbers
(q∗ > 100 arb. units) we found that the SF has a larger negative
slope of −2.19 ± 0.02 (image set 104–168, solid squares),
respectively −2.33 ± 0.02 (image set 136–200, solid circles)
[Fig. 4(b)]. As seen in Fig. 3(a), a truly Lorentzian structure
factor should be almost q independent for q � qc and shows
a power-law-like behavior for q 
 qc with an exponent that
asymptotically approaches − 2 [15,19,37].

Estimating the thermal diffusivity coefficient of homo-
geneous systems from the correlation time: The typical
correlation time for fluctuations should obey the Kawasaki
theory [26],

τ−1 ∝ DT q2, (4)

if qξ− � 1 (hydrodynamic regime), where DT is the thermal
diffusivity coefficient. On the other hand, for qξ− 
 1 (critical
regime), the correlation time should scale as τ−1 ∝ Aq3.068,
where A is a constant [38]. For the temperature quench of
�T = T − Tc ≈ 300 μK, the estimated average correlation
length is ξ− ≈ 1.95 × 10−4 cm [34]. Since in our experiment
17 cm−1 < q < 2285 cm−1, the product qξ− is in the range
3.3 × 10−2 < qξ− < 0.4, which is definitely not qξ− 
 1 as it
is required for the critical regime. As a result, our experimental
data fall in the hydrodynamic regime where the correlation
time should scale according to Eq. (4). We used a Levenberg-
Marquardt least-squares fitting algorithm to estimate DT . For
the homogeneous system above critical temperature, we found
that DT is in the range (2.1–2.6) × 10−8 cm2/s.

Estimation of the critical temperature from thermal diffu-
sivity coefficient: As proposed by Luettmer-Strathmann et al.
[39], and validated by Wilkinson et al. [40] for SF6, the thermal
diffusivity DT scaling law is

DT = D0b�τγ + D0c�τν+xη , (5)

where �τ = |(T − Tc)/Tc| is the reduced temperature. For
T > Tc, the coefficients are D+

0b = 1.32 × 10−2 cm2/s, D+
0c =

(4.05 ± 0.24) × 10−4 cm2/s, Tc = 318.733 K, ν = 0.63 is the
critical exponent of the correlation length, xη = 0.04 is the
critical exponent of the shear viscosity, and γ = 1.24 [41]. We
used the above estimations of DT to infer the reduced tempera-
ture �τ = |(T − Tc)/Tc| from Eq. (5). Our current estimations
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FIG. 4. (Color online) Time-dependent structure functions (a) saturate for large time delays �t . Log-log plots of the experimental structure
factors (b) and correlation times (c) above critical temperature. For small wave vectors (q � qc), the SF has a very small slope. For large
wave vectors (q > qc), a power law emerges with an exponent (−2) close to the theoretically predicted Lorentzian. Ensemble averages were
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trend. For large wave vectors (q > qc), a power law emerges with an exponent slightly larger than −2 (a).

based on the dynamic structure factor algorithm place the
critical point somewhere between 15 and 42 μK above the
lower temperature plateau. This value is in agreement with
our previous estimation obtained with a different method [34]
for the same set of experiments. Based on the histogram
method [34], Tc was found between 36 and 67 μK (with the
average at 47 μK) above the lower temperature plateau.

B. Estimation of SF and the correlation time of fluctuations
below critical temperature

Using the same dynamic structure factor algorithm as in
the previous section, we fitted the time-dependent structure
function Cm(q,�t) [see Fig. 5(a)] with Eqs. (1) and (2) in order
to calculate the structure factor [Fig. 5(b)] and correlation time
[Fig. 5(c)] for temperatures below Tc. Ensemble (temporal)
averages were computed over sets of 64 power spectra and
for T < Tc we analyzed image frames from 703 (at t =
288 978.12 s) up to 1278 (Fig. 5).

Below Tc and for small wave numbers (q∗ < 100 arb. units)
the DSF is flat, whereas for large wave numbers (q∗ > 100 arb.
units) the exponents are −2.36 ± 0.02 (image set 766–834,
solid squares), respectively, −2.21 ± 0.02 (image set 1150–
1214, solid circles) [Fig. 5(b)]. The slope of the structure factor
[Fig. 5(b)] for q 
 qc is slightly larger than the Lorenzian
characteristic exponent of − 2 [15,19,37]. At the same time,
the exponent is not large enough to match the value of − 4,
which is characteristic for domains with a well-developed
liquid-vapor interface [19,25]. Therefore, we concluded that
our data capture a region where liquid and vapor domains are
just forming.

Below critical temperature (T < Tc), the structure factor
and the correlation time allowed us to investigate the univer-
sality class of phase separation processes (Sec. IV C).

C. Universal power law exponents for the scaled wave vector
versus time during the early stages of phase separation

Using SF data, we estimated the position of the critical,
or crossover, wave vector qc between the (almost) flat and
the power law regions [Fig. 3(a)]. For T < Tc, the position
of qc shifts over time toward smaller wave vector values,
showing that the characteristic length of the interconnected
clusters increased due to phase separation. In order to uncover
possible universal growth laws for the interconnected clusters
during the very early stages of phase separation, we plotted in
Fig. 6 the normalized crossover wave vector k∗ = qcξ− versus

the normalized time t∗ = t/tξ [34]. The correlation length is
computed according to [18,19,42]

ξ = ξ0−((Tc − T )/Tc)−ν (6a)

and

tξ = 6πηξ 3
−/kBTc = 1.714 42 × 1 017ξ 3

−, (6b)

where ξ0− = 1.926/2 × 10−10 m, Tc = 318.733 K, ν =
− 0.6304, η is the shear viscosity [15,20,28,43], and kB is
Boltzmann’s constant. Based on a different image processing
technique (histogram method), we previously estimated for
the same set of images that Tc is about 47 μK above the lower
temperature plateau shown in Fig. 1 [34]. Based on data in
Fig. 1, the absolute time, measured from the beginning of
the recordings from which we subtracted the reference time
288 950 s [see Fig. 1(b)] when the system crossed Tc was
t0 = 23.5 s. For each set of 64 images below Tc we determined
a SF and estimated qc (Fig. 6). The time stamp assigned to
each set of 64 images below Tc is the difference between the
absolute time marked on the first image of the set and t0.

The temperature difference Tc − T necessary for ξ− com-
putation was defined the same way as the elapsed time.
Depending on the growing domain volume fraction with
respect to a “critical” value of ≈30%, two phase separation
mechanisms are dominant [44–46]: (i) Bubble growth by
coalescence induced by Brownian collisions. In the scaled
graph of Fig. 6 (dashed line) it shows at all times a power law

-1 -1/3

k*

t*

.

FIG. 6. (Color online) Log-log plot of the normalized crossover
wave vector k∗ = qcξ vs the normalized elapsed time t∗ = t/tξ below
critical temperature. Depending on the phase separation mechanism,
two universal curves are present: (i) bubble growth (dashed line) with
a slope of −1/3 at all times, and (ii) interconnected domain growth
(solid line) with a slope of −1 at all times (adapted after Ref. [13]).
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with a slope of −1/3. (ii) Interconnected domain growth (solid
line) with a slope of −1 at all times. Our data are concerned
with the interconnected domain growth (see Fig. 2) and indeed
obey the evolution (ii) (Fig. 6). When fitted to a power law, the
data show an apparent power law exponent − 0.35 ± 0.02.
The scaling law was obtained assuming that Tc was 47 μK
above the lower plateau in Fig. 1(a) and the time when the
system crossed Tc was t0 = 288 973.5 s (after Refs. [34,47]).

V. CONCLUSIONS

We used direct observation images recorded in microgravity
for SF6 very close to Tc in order to determine the SF of density
fluctuations and the correlation time τ (q). The SFs fit well
to the theoretical Lorentzian type structure factor Eq. (3) and
give us the crossover wave number qc which determines the
correlation length ξ− of fluctuations. The q−2 scaling of the
SF during the very early stages of phase separation shows that
the liquid and vapor domains just formed. When scaled with
ξ−, [Eq. (6a)] and time normalized by the critical fluctuation
lifetime tξ [Eq. (6b)], the scaled wave vector k∗ = qcξ− obeys
the universal scaled growth for interconnected, high volume
fraction, liquid-vapor domains.

The thermal diffusivity coefficient DT was determined
from the correlation time of density fluctuations so close to
the critical point (a few tens of μK). Furthermore, using
theoretical scaling laws for SF6 near Tc [39,40], we found
estimations of the critical point position that are consistent with
previous results obtained using the histogram method [34].
It is interesting to note that the employ of direct imaging
techniques [17], as used in this study, which take advantage
of local measurements, gives accuracies comparable to the
classical scattering techniques where fluctuations are averaged
over the illuminating beam.
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APPENDIX

The transfer or sensitivity function, T (q) is determined by
the transmission function of the mask placed in the focal
plane of the optical setup. For example, in the case of the
shadowgraph technique, no spatial filtering is used on the
light beam and the corresponding transfer function is T (q) =
4 sin2[q2z/(2k)], where k is the wave number for incident light,
z is the distance between the sample and the plane imaged
onto the sensor, and θ is the scattering angle. In the case
of the schlieren technique, the intensity mask in the Fourier
plane is typically a sharp blade covering half of the focal
plane [17,21]. The blade blocks half of the main beam and one
of the two symmetrically scattered beams at opposite angles.
The interference at the visualization plane is determined only
by the interference of half the transmitted beam and one out of
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FIG. 7. (Color online) Experimentally determined product
S(q)T (q) based on the dynamic structure factor algorithm (solid
circles). Assuming that the transfer function of the direct imaging
method is T (q) = 4 sin2[q2z/(2k)], the structure factor S(q) was
determined (solid squares). The zeros q∗

n of the transfer function T (q)
are closer and closer such that for q∗ > 10 arbitrary units the distance
between successive zeros is below the experimental resolution. For
large wave vectors, q∗ > 100 arbitrary units, the slope of S(q) is
seemingly identical to the slope of S(q)T (q).

the two symmetrically scattered beams. Therefore, the transfer
function of the schlieren method is T (q) = 1.

In the case of no spatial filtering on the beam (direct imaging
or shadowgraph) the dynamic structure factor algorithm (1)
computes only the product of the structure factor S(q) and
T (q) = 4 sin2[q2z/(2k)]. The actual structure factor S(q) can
be readily computed for known T (q). However, significant
uncertainty occurs during S(q) estimation when T (q) = 0, i.e.,
for q2z/(2k) = nπ, with n = 1,2,3, . . .. The corresponding
values of the wave number at which T (q) vanishes and,
therefore, leads to high uncertainty on the structure factor esti-
mations are qn ≈ 2π

√
n/(zλ). For our experimental setup, λ =

628.3 nm and z ≈ 1 m, which leads to qn ≈ 79.27
√

n cm−1.
Given that qc = 17 cm−1, it means that the dimensionless
wave number is q∗

n ≈ 4.66
√

n arbitrary units. While the integer
index n increases, the wave numbers q∗

n at which T (q) vanishes
are closer and closer. The distance between two successive
zeros of T (q) is �q∗

n+1,n ≈ 4.66(
√

n + 1 − √
n), which falls

below the resolution threshold of our method when �q∗
n+l,n <

1 arbitrary units, i.e., for all values of n > 5. As a result, for
all wave vectors above q∗ ≈ 4.66

√
5 ≈ 10 arbitrary units the

distance between two successive zeros of T (q) is smaller than
the experimental resolution. Therefore, for q∗ > 10 arbitrary
units, T (q) oscillates so fast that only its average contributes
to the product S(q)T (q). Furthermore, since we only need
to estimate the slope of the structure factor for large wave
numbers, i.e., q∗ > 100 arbitrary units, it is safe to approximate

T (q) by its average value, i.e., 1
2π

√
zλ
n

∫ 2π
√

n/zλ

0 [sin( zλq2

4π
)]2dq.

The above integral converges very fast for large values of n

to its n → ∞ limit, which is 1
2 . As a result, the transfer

function T (q) does not alter the slope of the dynamic structure
factor S(q) for all measurements above q∗ > 100 arbitrary
units (see Fig. 7). This is the reason we estimated the slope of
the structure factor for large values of the wave vector directly
from the product S(q)T (q).

061501-6



DYNAMIC STRUCTURE FACTOR OF DENSITY . . . PHYSICAL REVIEW E 86, 061501 (2012)

[1] D. S. Cannell, Phys. Rev. A 12, 225 (1975).
[2] D. Beysens, in Materials Sciences in Space, A Contribution to the

Scientific Basis of Space Processing, edited by B. Feuerbacher,
H. Hamacher, and R. J. Naumann (Springer, Berlin, 1986),
p. 191.

[3] E. D. Siggia, Phys. Rev. A 20, 595 (1979).
[4] P. Guenoun, F. Perrot, and D. Beysens, Phys. Rev. Lett. 63, 1152

(1989).
[5] D. Beysens, P. Guenoun, and F. Perrot, J. Phys.: Condens. Matter

2, SA127 (1990).
[6] Y. Garrabos, B. Le Neindre, P. Guenoun, B. Khalil, and

D. Beysens, Europhys. Lett. 19, 491 (1992).
[7] P. Guenoun, B. Khalil, D. Beysens, Y. Garrabos, F. Kammoun,

B. Le Neindre, and B. Zappoli, Phys. Rev. E 47, 1531 (1993).
[8] P. Guenoun, D. Beysens, F. Perrot, Y. Garrabos, and A. Kumar,

J. Phys.: Condens. Matter 6, A199 (1994).
[9] M. Barmatz, I. Hahn, J. A. Lipa, and R. V. Duncan, Rev. Mod.

Phys. 79, 1 (2007).
[10] C. Bartscher and J. Straub, Int. J. Thermophys. 23, 77 (2002).
[11] B. Zappoli, R. Kuhl, J. Robey, and A. Ivanov, Acta Astronaut.

53, 963 (2003).
[12] F. Perrot, D. Beysens, Y. Garrabos, T. Fröhlich, P. Guenoun, M.
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