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We study a model of bosons in the lowest Landau level in a rotating trap where the confinement
potential is a sum of a quadratic and a quartic term. The quartic term improves the stability of
the system against centrifugal deconfinement and allows to consider rotation frequencies beyond
the frequency of the quadratic part. The interactions between particles are modeled by a Dirac
delta potential. We derive rigorously conditions for ground states of the system to be strongly
correlated in the sense that they are confined to the kernel of the interaction operator, and thus
contain the correlations of the Bose-Laughlin state. Rigorous angular momentum estimates and trial
state arguments indicate a transition from a pure Laughlin state to a state containing in addition a
giant vortex at the center of the trap (Laughlin quasi-hole). There are also indications of a second
transition where the density changes from a flat profile in a disc or an annulus to a radial Gaussian

confined to a thin annulus

PACS numbers: 67.85.d,05.30.Jd,03.75.Hh

I. INTRODUCTION

One of the most striking phenomena in condensed
matter physics is the Fractional Quantum Hall Effect
(FQHE) for charged fermions in strong magnetic fields
that still, after decades of research, poses many challeng-
ing questions |1H3].

The formal similarity between the Hamiltonian of a
rotating Bose gas and that of a 2D electron gas in a
magnetic field suggests the possibility of studying bosonic
analogues of the FQHE in cold quantum gases set in rapid
rotation [4-6]. In particular, strongly correlated phases
analogous to the fermionic Laughlin state |7, 8] are pre-
dicted to occur in rotating boson clouds. More specifi-
cally, a phase transition from a Bose-Einstein condensate
(BEC) with a vortex lattice to a strongly correlated state
should happen at total angular momentum oc N2 (filling
factor of order 1), where N > 1 denotes the particle
number. This phase transition has not been observed
yet because it is extremely difficult to reach such high
angular momenta in the laboratory.

The reasons for this difficulty can be understood as fol-
lows. The usual experimental setup consists of bosonic
atoms in a rotating trap modeled by a harmonic poten-
tial. Once the usual approximations have been made, the
relevant Hamiltonian boils down to

N
H:Zw|xj|2+925(xi—xj) (L.1)
j=1 i<j

operating on wave functions ¥(x1,...,2xy), ¥; € R2, in

the lowest Landau level (LLL) of a two-dimensional mag-
netic Hamiltonian. Here w > 0 is half the difference be-
tween the squares of the frequency of the harmonic trap
and of the rotation velocity, measured in units of the
latter, and g > 0 is the coupling constant of the inter-
action. To obtain correlated states, one wants to favor
the interaction, i.e., consider small values of w/g. Clearly
this corresponds to a singular limit where the gas is no
longer confined against centrifugal forces. This is the
main source of difficulty that has to be overcome to create
the Bose-Laughlin state (see |d] for a more quantitative
discussion and [10, [11] for state of the art experiments in
this direction).

A natural proposal [6,[10,[12] is to add a confining term
that should be stronger than quadratic (i.e., stronger
than the centrifugal force). In the present paper we inves-
tigate asymptotic properties of ground states after such
an addition to the Hamiltonian for large particle num-
bers and when the parameters are tuned to favor strong
correlations. A simple model for the additional term is
> klz; |* with k& > 0, that has already been considered in
the context of rotating BECs [13, [14]. Besides the quest
for the Laughlin state, our motivation is also to explore
new phenomena arising from this modification of (LTJ).

A new problem that has to be tackled is the lack of
commutativity of the anharmonic potential term, pro-
jected onto the lowest Landau level, and the interaction.
This implies that the Laughlin state is not an exact eigen-
state of the modified Hamiltonian as it is for the Hamil-
tonian in a purely harmonic trap. Nevertheless we prove
that Laughlin-like correlations can be achieved asymp-



totically by a suitable choice of the parameters w and k
in dependence of N. Moreover, we argue that the ground
state exhibits a new strongly correlated phase if w is neg-
ative and the ratio |w|/k of order N or larger. In this
phase the density is depleted in a hole around the center
of the trap while it has the features of an incompress-
ible quantum fluid in an annulus around the hole. In
fact, there are clear indications of a further transition at
|w|/k = N? with the density concentrated in a thin an-
nulus of large radius with a Gaussian profile in the radial
variable, while for |w|/k significantly smaller that N2 the
profile in the annulus is essentially flat.

Our analysis relies on the one hand on energy esti-
mates, making use of a representation of the anharmonic
term through angular momentum operators, and on the
other hand on quantitative estimates for the one-particle
density of strongly correlated trial states. These states
have the form of a Laughlin state modified by a factor
corresponding to a vortex of high angular momentum
at the origin (‘Laughlin times giant vortex’ or Laugh-
lin quasi-hole). Mathematically the energy estimates are
much simpler than the second part of the analysis and al-
ready lead to criteria for strong correlations in an asymp-
totic limit and estimates on the angular momentum of
the ground state. The estimates on the density, on the
other hand, are crucial for a physical interpretation of the
two phase transitions indicated by the energy estimates.
Moreover, the density estimates imply an improvement
of the energy estimates.

The intuition behind the density estimates is Laugh-
lin’s plasma analogy |7, I8: The trial states are seen
as defining Gibbs measures of a classical 2D Coulomb
gas. The one-body densities appear as combined mean
field/low temperature limits for the Coulomb gas of the
type studied e.g. in [15-18] using compactness arguments.
For quantitative error estimates, a new method for the
study of the mean-field limit is needed. In the present
paper we outline this method but refer to a companion
paper [19] for full details.

In Section [Vl below we state our results on the energy
estimates and their consequences in the form of three
theorems. The energy upper and lower bounds match
to leading order, and the change of optimal trial func-
tions when the parameters are varied indicates a tran-
sition from one type of strongly correlated ground state
(Laughlin type) to another (Laughlin times giant vor-
tex). The precise statements of the results requires some
preliminary discussions in Section [I] of the properties
of the Hamiltonian (L) regarded as an operator on a
Bargmann space of analytic functions. In Section [II] we
introduce the anharmonic addition to the potential as
well as its alternate definition through the square of the
one-particle angular momentum operator in the lowest
Landau level. The theorems stated in Section [V] are
proved in Section [Vl In Section [VI] we discuss the deter-
mination of the one-body density in the strongly corre-
lated trial states considered and its implications for the
interpretation and improvement of the results of Section

[Vl A final Section [VII] summarizes our findings and dis-
cusses their relation to the recent paper [9].

More details on our approach can be found in the com-
panion paper [19].

II. THE STANDARD HAMILTONIAN

It is well known [20, 21] (see also [22, 23] for more
references) that the Hamiltonian (L)) in the LLL can be
regarded as an operator on the Bargmann space By of
symmetric analytic functions F of z1,...,zy with z; € C
such that

/ |F(z1,...,28)|* exp (—Z;V:1|zj|2) dz; -+ dzy < o0.
(CN

(IL.1)
Here dz denotes the Lebesgue measure on R? that is iden-
tified with the complex plane C in the usual way. On By
the angular momentum operator of the i-th particle is
L; = 2;0, and the contact interaction d(z; — z;) is given
by the bounded operator

6ijF(---;Zia---aZj---)
1

:—F(,%(ZZ+Z]),,%(2’14*2’]),)

o (IL.2)

as noted first in [21]. Indeed, using the analyticity of F,
it is easy to see that

(F,0;;F) = /(CN?1 |F(... 2. 2,..) | exp(—2|2|*) dz
><eXP(*Zk;&i,j|Zk|2)Hk¢i,dekv (IL.3)

where (-) is the scalar product on By corresponding to
([LI). Using that 20, < |2|*> — 1 in this scalar product
the operator ([I) can, apart from a constant additive
term Nw, be written as

with
N
Ly=Y z0., In=)» 0 (IL5)

i=1 i<j

We denote by Hy the space of wave functions of the
form W(z1,...,2n) = F(z1,...,2n) exp(— Y0 |2[2/2)
with F € By. This is a subspace of L?(R?") and clearly
isomorphic to By. Note, however, that the angular mo-
mentum operator L; on Hy is z;0,, — Z;0z, rather than
2;0,, as on By. To distinguish these two realizations of
states in the LLL we shall denote functions in By by
roman letters and functions in Hy by greek letters.

We remark that the reduced Hamiltonian ([L4) is ob-
tained by restricting states to the LLL associated with
the rotational frequency (that we fix equal to 1), which
leads to (LI), and then using the substitution zd, <«



|z|> — 1. Another possibility (see |6, 22, 23] and refer-
ences therein) is to restrict states to the LLL associated
with the harmonic trap frequency, which directly leads
to the model ([T4) but with w equal to the difference be-
tween the two frequencies (rather than half the difference
between the squares). Since in the regime of interest the
two frequencies are close, the two approaches are equiva-
lent. Ours has the advantage of better emphasizing what
the residual effective potential is, which is natural when
we consider the additional anharmonic term below.

An essential feature of the Hamiltonian ([I.4]) is that
the operators Ly and Zy commute. The lower bound-
ary of (the convex hull of) their joint spectrum in a plot
with angular momentum as the horizontal axis is called
the yrast curve (see, e.g., |6] and [22] for plots show-
ing its qualitative features). As a function of the eigen-
values L of Ly the yrast curve I(L) is decreasing from
I1(0) = (47)"*N(N —1) to I(N(N — 1)) = 0. The mono-
tonicity follows from the observation that if a simulta-
neous eigenfunction of Ly and Zy is multiplied by the
center of mass, (21 + -+ zn)/N, the interaction is un-
changed while the angular momentum increases by one
unit.

For a given ratio w/g the ground state of ([L4) (in
general not unique) is determined by the point(s) on the
yrast curve where a supporting line has slope —w/g.

A. Fully correlated states

For L < N the ground state of ([L4) is explicitly
known (see [24] or [6] and references cited there) while
for large N and L < N? a Gross-Pitaevskii description
with an uncorrelated ground state is asymptotically cor-
rect |23]. Results about the Gross-Pitaevskii functional
with states restricted to the lowest Landau level may be
found in [25-28].

For L = N(N —1) the unique ground state of Zn with
eigenvalue 0 is the bosonic Laughlin state whose wave
function in By is the symmetric polynomial

Frau(z1, ..., 2n5) = const. [ [ (2 — 2)° (I1.6)

or, equivalently, in H

., ZN) = const. 1_[(,2:Z —zj)? exp(=>_, |2 /2).

i<j

Prau(21, - -

(IL.7)
More generally, the null space Ker Zy of the interaction
operator consists of functions of the form

F(Zl, e ,ZN) = G(Z1, .. -;ZN)FLau(Zla .. -7ZN) (118)

where G is a symmetric analytic function such that F' is
square integrable w.r.t. [, exp(—|zx|?)dz,. We shall call
states of this form fully correlated states. Their angular
momentum spectrum is contained in L > N(N —1).

A common interpretation of the form ([L6]) is that each
particle “binds” a vortex of degree 2 (see e.g. [l 16] and

references therein). Indeed, since LLL wave functions are
analytic, putting a zero at each particle in order to cancel
the interaction energy requires a non trivial quantized
phase.

B. Spectral gaps

States with a given eigenvalue L of the total angular
momentum correspond to symmetric, homogeneous poly-
nomials of degree L. This is a finite dimensional space
and for all L it contains states with strictly positive inter-
action energy. (Take for example F' = (const.) ", z1.)
Hence the spectral gap

A(L) = smallest eigenvalue > 0 of Iy |izy=ry (IL9)

is strictly positive for all L. Note that A(L) depends on
N besides L.

The trial state argument proving the monotonic de-
crease of the yrast curve also applies to A(L), and proves
that it is decreasing with L. Numerical studies [29-32]
suggest that A = infy A(L) = A(N(N —-1)—-1) >0
and it is also believed (see the discussion in [22]) that A
stays of order 1 and bounded away from zero as N — oo.
If this spectral gap conjecture is true, the statements of
Theorems [2] and Bl below can be simplified, but to our
knowledge the conjecture has not yet been proved. We
shall therefore not rely on any such assumptions but state
our results in the sequel in terms of A(L).

III. ADDING AN ANHARMONIC POTENTIAL

The limit w — 0 keeping w > 0 is experimentally very
delicate. For stability, but also to study new effects, we
consider now a modification of the Hamiltonian where
one adds a quartic term to the potential:

N
H—H+kY |z

Jj=1

(IIL.1)

with a new parameter £ > 0. The expectation value of
the energy for a normalized ¥ = F -exp(—>_, |2]?/2) €
Hy is given by the functional

E[0] = / Voo n(2)pu(2) + g(F, I F) (111.2)

Vor(2) =wlz|® + k|2* (I11.3)

and py is the one-body density with the normalization

/p\p(z) dz = N. (I11.4)

In particular, the energy is bounded below by N min V,, ;,
that is finite even if w < 0, provided k > 0. For the fully



correlated states (IL8) the second term in ([IL2) van-
ishes and the expectation value of the energy is entirely
determined by the one-particle density.

Using the correspondence 29, < |2|?> —1 and (20,)? <
|2|*—3]2|?+1 the modified Hamiltonian on the Bargmann
space By can be written (up to the additive constant
N(w + 2k) that will be dropped in the following) as

N
Hy = (w+3k)Ln+kY L7 +gIn.

i=1

(IIL.5)

For the original Hamiltonian ([I4]), without the anhar-
monic addition to the potential, the Laughlin state is
an exact eigenstate with L = N(N — 1) and energy
wN (N —1). For k # 0, however, the Laughlin state is not
an eigenstate of H) because Zfil L? does not commute
with Zy. On the other hand Ly still commutes with HY;
and we may consider the ground state energy Eo(L) of
HY, restricted to the subspace where L = L. The unre-
stricted grounds state energy miny, Ey(L) will be denoted
by Ey, a ground state (that might not be unique) by ¥q
and its angular momentum by Lg.

IV. ASYMPTOTIC PROPERTIES OF GROUND
STATES

We now state our main results concerning the angu-
lar momentum Lg, the confinement to the space of fully
correlated states, and the energy of a ground state ¥y
of (IILD) in the limit when N — oo and at the same
time w, k — 0. Note that ¥, can be assumed to have a
definite angular momentum because £y commutes with

(IIL3).

Theorem 1 (Angular momentum)
In the limit N — oo, w,k — 0 the angular momentum
Lo of a ground state of H} satisfies

o [fw>—-2kN
Lo < 2N? (IV.1)
o Ifw< —2kN but |w|/k < N?
|Lo — Lan| < V3 N2(1+0(1)), (IV.2)
where
Lqn = % (IV.3)
o Ifw < —2kN and |w|/k > N?
Lo — Lan| < VBLYZN(1 + o0(1)). (IV.4)

In particular, Lo/Lqn — 1 in both cases ([N.2) and

The next theorem provides criteria for a ground state
to be asymptotically fully correlated, i.e., in the kernel of
the interaction operator. In the statement the following
gaps in the spectrum enter:

A1 = A2N?), Az =A(Lgn + V3(N?)),

Ay = A(Lgn + V3(LYIN)). (IV.5)

If the spectral gap conjecture holds, all these gaps can
be replaced by the minimal gap A > 0 independent of N
and the parameters.

Theorem 2 (Criteria for full correlation)
Let Pgerzy)+ denote the projector on the orthogonal
complement of the kernel of . We have

HPKer(IN)i\IJO||L2 R2N —0 (IV6>
(R2N)

in the limit N — oo, w,k — 0 if one of the following
conditions holds:

Case 1. w >0 and (g A1)~ (WN? + kN3) — 0. In this
case, for N large enough,

| Picer(zn)s Woll? < (g A1) 71 8kN3(1 + 0(1)).  (IV.7)

Case 2. —2kN <w <0 and (g A1)~ (N (w?/k)+wN2+
EN®) — 0. Again (N.7) holds under this condition for
N large.

Case 3. w < —2kN, |w|/k < N? and (g A3)~ - kN3 —
0. Here

| Picer(zay- oll* < (9 A3) 7" - 3EN?(1 + 0(1)).  (IV.8)

Case 4. w < —2kN, |w|/k > N? and (g A4) ™ - |w|N —
0. Here

. 3
[ Picerza)+ Poll* < (9 Ag) ™" IV (1 +o(1)). (IV.9)

Both Theorems 1 and 2 are consequences of the energy
bounds stated in the following Theorem 3. The “cases”
referred to are the same as in Theorem 2.

Theorem 3 (Energy bounds)
The ground state energy Eq satisfies the following bounds:

Cases 1 and 2

(WN? + kN3)(1 —0(1)) < By < wN? +4kN3. (IV.10)

Case 3
WQN(H (1) < By < w2N+3kN3(1+ (1))
1k T o)
(IV.11)
Case 4
J”QN(H (1)) < E <J”2N+§| IN(1+ o(1))
4k o) =R0s T T ol o)

(IV.12)



V. PROOFS OF THEOREMS 1-3

The proofs of Theorems 1-3 rely on two ingredients:

e A lower bound for the energy at fixed angular mo-
mentum L:

Eo(L) > (w+3k) L+ k— = f(L).  (V.1)

2|

e An upper bound for the energy of suitable trial
functions.

The proof of (.1]) is quite simple: Dropping the non-
negative interaction term in ([ILH)) one has to minimize
(F,((w + 3k)Ly + kXN L2)F) over F € By with
LyF = LF. The bound follows from the operator in-
equality >, L? > + (3", L;)? that holds because L; and
L; commute for any ¢, j.

The upper bounds on Fy can be derived as follows.
As trial functions in the Bargmann space By we take

qfln) = GFLau with FL,, as in (ILG) and

G(Zl, ey (V2)

N
ZN) = CN,m H zm
i=1

with ¢n,m such that F, (;n ) is normalized. One recovers
the pure Laughlin state for m = 0 and the states with
m > 0 are often referred to as ‘Laughlin quasi-holes’ [7].
Note that we will take a large value of m in the sequel,
in which case the denomination ‘Laughlin times giant
vortex’ seems more appropriate.

Since the trial states (V.2)) all have a zero interaction

energy, we only have to estimate their potential energy.
We have

LNESY = (LNG)Fraw + G(LN Fian) =
(Nm+N(N = 1))F5. (V.3)
Moreover, since L;G = mG for any 1,
N N
STE L2EGYY = S (LiFGY, LiFSY) =
i=1 i=1
Nm?+2mN(N — 1) + N(GL1 Fian, GL1 Fian)  (V.4)

where the symmetry of F1,, has been used for the last
term which can be written as

N/|L1FLau| |G|? exp(— Z'Z’ Hdzl

We now note that the monomials 27" are or-
thogonal for different n’s in the L2-scalar product
(., .)¢ on analytic functions defined by the measure
|G|? exp(— Y, |2:]*) [1; dzi because |G|? depends only on

(V.5)

the absolute values of the z;’s. Moreover, L;z] = nz¥,
and Fla, is a polynomial of degree 2(IN —1) in z;. Hence
N<GL1FLau; GLlFLau> S 4N(N - 1)2<FLau7 FLau>G
= 4N(N - 1)2<GFLau7 GFLau>
=4N(N —1)? (V.6)

where we has also used the normalization of our trial

state. Inserting Eqs. (V.3)), (V.4)) and (V.6) in the expec-
tation value (Fé;n), HfVF(m)) leads to the upper bound

(FGY HAFSYY < (w+ 3K) (mN + N(N - 1))

qh >
+ E(Nm? + 2N(N — 1)m + 4N3). (V.7)
Optimizing over m gives the value
0if w>—-2kN
= V.8
Mopt {'“' N if w < —2kN. V&)

Strictly speaking mqp¢ must be an integer so we should
take the integer value of the above. Since we are only con-
cerned with orders of magnitudes this does not produce
any change in the final result, and we ignore this detail.
For mgpy = 0 this gives the upper bound in (IV.10).

For mepy = (Jw|/2k) — N > 0 we obtain

2N
Ey < —w4k + (3kN3 + g|w|N> (1+0(1)). (V.9)

The first term in (V.9) is equal to N times the minimum
of the potential w|z|? + k|z|*. The second term ~ kN3
dominates the third term ~ |w|N ~ kN mqp for |w|/k <
N2 while the converse holds for |w|/k > N2. Note also
that Lq, as defined in (IV.3) satisfies Lqn &~ Nmgpt for
lw|/2k > N.

To proceed we note that by (.]) and the definition of
the gap we have

L2
(w+3k) Lo+ k= +9 A(Lo) | Prer(zy) - |I* < Fo. (V.10)

For w > —2kN it follows from (V.I0) and the upper
bound in (IV.10Q) that

(w4 3k)Lo + k;%% < wN? 4 4kN3 (V.11)
which implies
Ly < 2N? (V.12)
and hence
A(Lg) > A(2N?). (V.13)

For w > 0, f(L) = (w + 3k)L + kL?/N is nonnegative.
Hence we see that in this case || Pger(zy): Pol|* — 0 if
{gA@N?)}~

YEN? + wN?) — 0. (V.14)



On the other hand, if [|[Pger(zy)+ Woll*> — 0, then it is
clear that Lo must be > N(N — 1) for N large enough,
and hence f(Lo) > (wN? + kN3)(1 — o(1)) where f is
defined in (V.J)).

Altogether we have, for w > 0 and under the condition

(V.14), the bounds

(WN? + EN®)(1 —0(1)) < By < wN? +4kN3(1+ o(1))
(V.15)
as well as

| Pier(za) - Poll” < 3{g A(2N?)}T'EN?(1 + o(1)).
(V.16)
Consider next the case —2kN < w < 0. As before, Eq.

(V.11)) implies (V.12) and (V.13)). For the analogue of

(V.14) we use that f(L) takes a minimal value at

Loin = —%(w 43K) = Lan(140(1) (VA7)
with
f(Lmin) = —4—]\;@ + 3k)? = —“42\[(1 +o0o(1)). (V.18)

Condition (V.14 for a fully correlated ground state thus
gets replaced by

{gA(2N?)} 7! (kN3 +wN? + N%Q) —0. (V.19

Moreover, (V.I9) implies as before that Lo eventually
becomes > N(N — 1). For —2kN < w < 0, Lpin can
3

take values between 0 and N (N — 35) so we can conclude

that f(Lg) > f(N(N —1)) that leads again to (V.I5) and
(C14)

For the case w < —2kN we use

k
FIE) = (L) + (L Lu)?
and obtain from (V.I0) and (V.I]), up to factors (1 +

(V.20)

k
~ (L0 = Lunin)* + 9 A(Lo) | Picer(zy )+ Pol* < 3kN?,
(V.21)
In particular,
|Lo — Linin| < V3N? (V.22)

and thus A(Lg) > A(Lpin + V/3N?). The condition for
full correlation, analogous to (.14]) and (V.19) becomes

{g A(Lmin + V3NH}1EN3 =0, (V.23)

indeed,

1 _
| Picor(zx)x Pol* < g{g A(Lin + V3N?)} 1k N3,
(V.24)

Since f(Lmin) = —Nw?/4k to leading order, the energy
estimate is

w?N w2N
1—0o(1) < Ey < —
1% ( o(1)) < Ey < 1k

+3kN3(1 4 o(1)).

(V.25)
The condition for kN3 < w?N/k is equivalent to |w|/k >
N, ie., mopt > N. Note also that (V.22) implies

|L0 *th|

<1 V.26
o (V.26)

if Mopt > N.

If —w/k > N? as in Case 4, the error term 3kN3 in
(Z9) is small compared to 3|w|N ~ kN mgp; and we
have

WwIN
Fy < —
0=""4k

Thus (V.21)) gets replaced by (as always, up to (1+0(1))

k 3
7 (Lo = Lumin)* + g A(Lo) || Peer(zy )+ Wol|* < SIwIN.

N
(V.28)

- g|w|N(1 +o(1)). (V.27)

and (V.22)) by

1/2

o (V.29)

which implies (IV.4]) and (V.28)) for mep > N2.
The analogues of (V.23)), (V.24)) and (V.25) for mept >

N? are

{9 A(Lunin + VBNLY2 N1 w|N = 0,

min

(V.30)

{9 A(Lmin + VBNLY2)} LN,
(V.31)

| Pier(zy)- Wol|* <

N W

and
w2N
4k

w?N
4k

(I1-o(1)) < Ep < —

+ §|w|]\7(1 +o(1)).
(V.32)

VI. THE ONE-PARTICLE DENSITY OF FULLY
CORRELATED TRIAL STATES

The main conclusions that can be drawn from the pre-
vious sections may be summarized as follows:

e The energy estimates are consistent with the pic-
ture that the Laughlin state is an approximate
ground state for positive w in Case 1, and also for
negative w in Case 2, as long as |w|/k < N. The
angular momentum remains O(N?) in these cases.

e When w < 0 and |w|/kN becomes large (Cases
3 and 4) the angular momentum is approximately
Lgn = O(N|w|/k) > N2, much larger than for the
Laughlin state.



e A transition between Cases 3 and 4 at |w|/k ~ N?
is manifest through the change of the subleading
contribution to the energy of the trial functions.
Its order of magnitude changes from O(kN3) to
O(Jw|N) at the transition.

We now want to substantiate this picture further by
investigating the one-particle densities of our trial states,
This will both clarify the physical meaning of the two
transitions at |w|/k ~ N and |w|/k ~ N? that are indi-
cated by the energy considerations above, and also allow
improvements of the energy estimates. The latter rely
on the representation ([IL2)) of the energy and requires
detailed estimates of the one-particle density. We note
that the representation (IIL2)) holds also for more general
potentials than w|z|?+k|z|* (e.g., anisotropic potentials),
where the approach via angular momentum presented in
Section V would not apply. We shall here present the
main results of the analysis of the density but refer to
[19] for details of the proofs.

Already Laughlin’s paper of 1983 [7] contains the im-
portant idea that the determination of the probability
density |¥|? in his and related states for large N is equiv-
alent to a 2D electrostatic problem. We make use of this
idea for our trial states whose wave functions in Hy are

N
\Ilgl?)(zlv SRR ZN) = CN,m H Z;n
j=1
-2 12172
X H (2 — e~ si=11% (VL1)
i<j
where ¢y, is a normalization constant. We denote

(21,...,2nN) by Z for short and consider the scaled prob-
ability density
2
un(2) = NV ‘wg’}?)(\/NZ)‘ : (VL2)

Then we can write

N
Nmexp Z

un(2) = (=N |52 + 2m1og] )
j=1
7421Og|2’1 — Zj|
1<J
1
=23 exp (iHN(Z)) (VL3)
with T = N~! and
N
i (2)= Y (15 - St iosll) - 4 Llogla - 2l
j=1 7/<J
(VL4)

The normalization factor (partition function) is

Zy = /exp (%HN(Z)> 4z

where dZ = dz; ...dzyIn the sequel we discuss the prop-
erties of the density pun(Z) in the N — oo limit.

A. Mean field limit

The Hamiltonian (VL4) describes a classical 2D
Coulomb gas in a uniform background of opposite charge
and a point charge of strength 2m/N at the origin, cor-
responding respectively to the |2;|? and the —27 log |2;|
terms. The probability measure py(Z) minimizes the
free energy F(T,N,m) = —Tlog Zy for this Hamilto-
nian at 7= N %

The N — oo limit is in this interpretation a mean field
limit at small temperature 7" — 0. Thus, it is reasonable
to expect that in the limit px factorizes, uy ~ p®V,
where the probability measure p on R? minimizes an
appropriate mean field energy functional. In fact, us-
ing compactness arguments, rigorous results of this type
have been obtained in [16-18] for related models. The
computation of the energy via Equation ([IL2]), however,
requires quantitative estimates of the errors in the ap-
proximations that can only be obtained by a different
method. A more elaborate analysis is developed in [33]
to describe the next order fluctuations around p®V, how-
ever it does not provide estimates in the form that we
need here (cf. [19, Section 3] for more details).

The mean field free energy functional is obtained by
taking a trial state p®V in the N-body free energy, which
yields

o) = [ W2 [
R2 ]RZX]RQ

—|—N_1/ plogp (VL5)
R2

z)log |z — 2'|p(z")

with

Wim(2) = |2[* = 25 log 2|

It has a unique minimizer o™¥ among probability mea-
sures on R?. The basic result concerning its relation to
the scaled single-particle probability density

u%)(z) :/ un(z,z2,...,2n)dze...dzy  (VIL.6)
R2(N-1)

is as follows:

Theorem 4 (Plasma analogy for QH trial states)
There ezists a constant C > 0 such that for large enough
N and any smooth function V on R?

L, (06 - 87 ) v

< CN~Y21og N||[VV | p2m2) + CN Y2 VV || oo g2y
(VLT7)

if m < N2, and

L (0@ -"@) v
<ONV2m= VYV poomey (VL)

if m > N2.



The different form of the estimates (VL7)) and (VL8]
are due to different methods of proofs in the two differ-
ent regimes and already hint at the fact that something
special happens in the regime m oc N2, as we discuss in
more details in Section [VIBl below.

Essential ingredients in the proof of Theorem [l are

e 2D versions of two classical electrostatic results:
Onsager’s lemma, and an estimate of the change
in electrostatic energy when charges are smeared
out (see e.g. |34], Ch. 6).

e the variational equation associated to (VLA and
the positivity of relative entropies.

These put together give precise estimates on the N-body
free energy functional. Using also the Cszizar-Kullback-
Pinsker inequality and a new refinement of Onsager’s
lemma one eventually deduces estimates on the one-body
density. We refer to [19] for more details.

Of course, in order to apply the theorem to estimate
the energy in a potential like V,, 1 (2) = w|z|* +k|z[*, that
increases at infinity it is necessary to study also the de-
crease of the mean field density at infinity to compensate
for the growth of V,, j.

B. Properties of the mean field density

Dropping the last term in (VLH) (the entropy term)
one obtains a simplified functional

el = [ W2 [ o)logl=21o=) - (VL9)

that can be minimized explicitly. In fact, using the
variational equation of the minimization problem and
electrostatic arguments, in particular Newton’s theorem,
it is not difficult to prove that the minimizer, denoted
by ¢°, takes the constant value 1/(27) in an annu-
lus with inner radius R~ = /m/N and outer radius

Rt = /24 (m/N), and is zero outside the annulus. In
particular, for m = 0 the support is a disc with radius
V2. Note that the length scales here refer to scaled vari-
ables, cf. (VL2). In the original variables the lengths
have to be multiplied by v/N and the density by N~!.

The reason for the label “el” in (VL9) is that the func-
tional and the shape of the minimizer ¢° is entirely de-
termined by the electrostatic terms in the free energy
functional. This minimizer can be shown to approximate
oMF in the metric that is defined by the inverse of the 2D
Laplacian: Define for real valued functions (or measures)
fand g

D(f,g) = —//]R2 i, f(2)log|z — 2'|g(z") dzdz".

(VL.10)
Then D(f, f) > 01if [ f = 0 with equality only if f = 0.
The approximation result for o™ in terms of ¢° is

D(o™MF — o MF — oy < ONL. (VL.11)

An analogous estimate of the difference between u%) and

oM¥ lies behind (VLT). Combining these two estimates
one sees that (VLT) holds with o™F replaced by ¢°!.

From the formulas for the inner and outer radii R*
it is clear that the shape of ¢ depends essentially on
the ratio m/N. As long as m < N the support is a
disc of radius O(1) with a small hole around the center.
As the ratio increases the hole becomes larger and for
m > N the support is an annulus of mean radius R ~
/m/N > 1 and thickness R™ — R~ ~ v/N/m <« 1. The
exponential decrease of oM¥ for large distances r from the
origin sets in for r — R > max{R* — R=, N~!} (again
we are stating the results in terms of scaled variables, cf.
VL2).

The length scale N~! is the coefficient in the entropic
term of the free energy functional and it becomes larger
than the length scale R — R~ when m > N2. In fact,
under this condition it is better to approximate oMF by
dropping the interaction term D(p, p) from the energy
functional, defining

EMpl = /R pWrm+N"! . plogp (VI.12)

where ‘th’ stands for ‘thermal’. The minimizer of this
simplified functional, denoted o', can be computed ex-
plicitly and is given by the density of the one-particle
state (mm!)~Y2z™ exp(—|z|?/2), i.e.,

oM (2) = (mm!) 722 exp(—|2[?). (VL.13)
In the radial variable r = |z| and for large m this density
is approximately Gaussian around r = /m with width
1/y/m.

This transition from an essentially electrostatic to an
essentially thermal behavior of the minimizer of the
mean-field functional (VLA) and thus, via Theorem [4]
of the one-body density of Laughlin’s quasi-hole when
m > N2 does not seem to have been noticed before.
Indeed, as far as we know, the usual approximations in
the literature have been based on purely electrostatic ar-
guments, that is, implicitly, on the simplified functional
(VI3). Our analysis shows rigorously that this approxi-
mation is correct as long as m < N2, but breaks down
in the opposite case where one should rather consider

Physically, the reason for this is that to minimize
(VIL3H), the density has to be squeezed as tightly as pos-
sible around the potential well of Wy ,,. There are two
limiting effects for the squeezing, one associated with the
electrostatic term in (VL3 and the other with the en-
tropy term. Each term comes with its own length scale
and the true density is spread over the larger of the two,
which is the ‘electrostatic’ length \/N/m for m < N?
and the ‘thermal’ length 1/\/m for m > N?| indicating
a transition in the regime m oc N2.

Computing the potential energy with the density o°!
and optimizing over m leads to the same optimal value
Mopt as in (.8). In particular, the Laughlin state, i.e.,



m = 0, leading to a full disc instead of an annulus, is
favored for w > —2kN. Moreover, together with the
estimates on the decay of oMY away from the support of
0°!, the energy upper bound ([[V.10) is improved to

4
Fy < wN? + §k]\73 (V1.14)

and (V1) to

wIN
Fy < —
0=""4%

L (%kNaJr;wW) (1+o0(1)) (VL15)

at least for |w|/k < N7/5InN. (This limitation is due
to the fact that the the current estimates of the decay
of oMF are less than optimal.) Corresponding improve-
ments hold for the angular momentum estimates: Eq.

(M) is replaced by

Lo < (4/3)'/2N? (VI.16)
and the /3 in Eqs. ([V.2) and ([\.4) can be replaced by
1/4/3.

Similar improvements of the angular momentum and
energy estimates can be provided in the thermal regime
using the density o", but again due to lack of precision
of the decay estimates, they can only be proved with our
method when |w|/k > N19/3. We refer to [19] for details.

VII. DISCUSSION

We have studied a rotating Bose gas in a quadratic plus
quartic trap where the rotational frequency can exceed
the frequency of the quadratic part of the trap. Through
the analysis of trial states for energy upper bounds and
simple lower bounds we have obtained criteria for the
ground state to be strongly correlated in an asymptotic
limit. The lower bounds, although not sharp, are of
the same order of magnitude as the upper bounds. The
optimal trial state changes from a pure Laughlin state,
with essentially constant density in a disc, to a modi-
fied Laughlin state with a ‘hole’ in the density around
the center when w is negative and |w|/2k exceeds N. As
|w|/k increases the density becomes concentrated in an
annulus of much smaller width than its radius. Within
the annulus the density profile is still approximately flat
until another transition occurs for |w|/k of the order N2
when the density profile becomes approximately Gaus-
sian in the radial variable.

We believe that these results are sharp in the sense
that our trial states, the Laughlin quasi-holes, are good
approximations to the true ground states of ([ILH) in

the fully correlated regimes described in Theorem [2I We
have no proof of this for the moment: Rigorous lower
bounds to the energy that would match our upper esti-
mates would require a better understanding of the prop-
erties of general fully correlated states.

Finally we discuss the connection between our ap-
proach and the experimental proposal of [9]. There it
is argued that a convenient way of creating the Laugh-
lin state in a cold Bose gas would be via a dynamical
procedure. As in our approach an anharmonic trap is
used, but this only in a first step. The main idea of [9]
is to first use a “Mexican hat” anharmonic potential to
create a rotating BEC with a large angular momentum
concentrated in a giant vortex at the center of the trap.
In a second step one would then stop the rotation and
change adiabatically the trap from Mexican hat like to
purely harmonic. With a careful tuning of parameters,
one then ends up with a gas where interactions dominate
the physics and thus strongly correlated states should
emerge. Since the angular momentum is conserved dur-
ing the adiabatic evolution, if one manages to first create
a condensate with momentum N (N —1), the final evolved
state should be the Laughlin state, and [9] mostly empha-
sizes this case. If one instead starts from a BEC with a
larger momentum N(N — 1) + mN it is likely that the
final evolved state will be the corresponding Laughlin
quasi-hole (VLI).

Indeed, as explained in Section [T'Al an interpretation
of the Laughlin state is that vortices are bound to par-
ticles in order to decrease the interaction energy. In this
perspective, one may interpret the adiabatic evolution
proposed in [9] as redistributing the vortices, all located
at the center of the trap in the initial BEC state. During
the evolution, vortices are bound to particles until the
interaction energy is zero. If one starts with more vor-
tices than necessary to achieve this, i.e. with a momen-
tum strictly larger than N (N — 1), probably the ‘excess’
vortices will have a tendency to stay at the center of the
trap, to conserve rotational invariance, which leads to the
form (VL) as a guess for the final evolved state. A pos-
sible way to further enhance this effect and stabilize the
quasi-hole could be not to completely turn off the anhar-
monic trap, so that the final trap also has some Mexican
hat shape that would help pin the excess vortices at the
origin.
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