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A formulation and implementation of the quadratic response function in the adiabatic
four-component Kohn-Sham approximation is presented. The noninteracting reference state is
time-reversal symmetric and formed from Kramers pair spinors, and the energy density is gradient
corrected. Example calculations are presented for the optical properties of disubstituted
halobenzenes in their meta and ortho conformations. It is demonstrated that correlation and

relativistic effects are not additive, and it is shown that relativity alone reduces the ��̄-response
signal by 62% and 75% for meta- and ortho-bromobenzene, respectively, and enhances the same
response by 17% and 21% for meta- and ortho-iodobenzene, respectively. Of the employed
functionals, CAM-B3LYP shows the best performance and gives hyperpolarizabilities � distinctly
different from B3LYP. © 2008 American Institute of Physics. �DOI: 10.1063/1.2816709�

I. INTRODUCTION

In the presence of external �or internal� perturbing elec-
tromagnetic fields, the molecular polarization �or magnetiza-
tion� can be expressed as a Taylor series in terms of the field
strengths and the coupling parameters relate to spectroscopic
properties �see, for instance, the book by Boyd�.1 Over the
past 20 years, increasingly accurate and efficient computa-
tional methods have been developed to determine the linear
as well as nonlinear molecular response parameters and, to-
day, theoretical calculations are routinely used for the inter-
pretation of experimental spectra as well as for material
functionalization and optimization. If we are concerned with
the correction to the molecular polarization that depends
quadratically on the perturbing electric-field strengths, we
note fundamental nonlinear optical processes, such as the
second-harmonic generation and the electro-optical Pockels
effect, and an important device such as the optical parametric
oscillator. Moreover, static magnetic fields can be used to
induce birefringences in nonchiral systems and, in this con-
text, the quadratic response parameters �or quadratic re-
sponse functions� are pertinent to spectroscopies such as
magnetic circular dichroism and the Faraday effect.

In nonrelativistic quantum chemistry, quadratic response
functions have been formulated and implemented at the elec-
tron uncorrelated level in the so-called time-dependent
Hartree-Fock �HF� approximation2–6—this approximation is
sometimes also referred to as the time-dependent coupled
perturbed Hartree-Fock level or the random phase
approximation—as well as at the electron correlated level

employing second-order Møller-Plesset,7 multiconfiguration
self-consistent field �MCSCF�,2,6 and coupled cluster8–10 ref-
erence states. More recently, the quadratic response function
has also been formulated in the second-order polarization
propagator approach11 and formulated and implemented in
Kohn-Sham density functional theory �DFT�.12,13 Successful
use of these computational techniques has been demonstrated
in numerous publications in the literature and, furthermore, it
has been shown that a residue analysis of the response func-
tions at the electronic transition frequencies of the system
enables the calculation of observables in absorption spec-
troscopies and properties of electronically excited states.2 At
small frequency detunings of the perturbing fields, however,
one must be cautious since the dispersion of the response
functions is severely overestimated in this region due to the
divergences at resonances. This issue has been considered in
a series of publications by Norman et al., and a resonance
convergent formulation of response theory up to second or-
der has been proposed and implemented at the HF, MCSCF,
and DFT levels of theory.14 It stands clear that, in the non-
relativistic realm, there exist sophisticated and highly accu-
rate methodologies and program implementations for the de-
termination of the linear and nonlinear responses in the
electronic density to time-dependent electromagnetic field
perturbations.

In photonics, it is well-known that the use of organome-
tallic compounds can give unprecedented performance in
certain applications,15 but it is clear that, from a theoretical
perspective, the inclusion of one or several heavy atoms calls
for the treatment of relativistic effects in one way or another.
It is possible to consider these effects by perturbation theory
and, in the nonrelativistic framework, to add relativistic cor-a�Electronic mail: panor@ifm.liu.se.
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rections to the perturbation operator that describes the cou-
pling to the external electromagnetic fields. This approach
has been adopted to determine, e.g., phosphorescence,16,17

electron spin resonance,18 and nuclear magnetic resonance
parameters19 but, although these calculations employ qua-
dratic response functions, they are all examples of second-
order molecular properties since one of the perturbation op-
erators in the response functions refers to an intrinsic field. In
order to address a third-order molecular property in a
relativistic-perturbational approach, one would need to
evaluate a cubic response function which is computationally
more complex, and we are not aware of such work. Apart
from the increased computational complexity, a relativistic-
perturbational approach is also limited by the fact that it is
not applicable when relativistic effects are large and, there-
fore, must be included in the zeroth-order Hamiltonian.

There exist a number of ways to include relativistic ef-
fects in the zeroth-order molecular Hamiltonian. One can
replace the core electron densities by effective potentials and
include only the valence electrons in the parametrization of
the wave function.20 The parameters of the effective core
potentials �ECPs� may be optimized against accurate relativ-
istic atomic densities and later used in regular nonrelativistic
calculations. The ECP approach indirectly accounts for sca-
lar relativistic as well as spin-orbit effects in the atomic
cores, and it can be applied to all elements of the Periodic
Table while providing a reasonable accuracy �see Refs.
21–23 for evaluations of this method for third-order molecu-
lar properties�. The obvious limitation is the neglect of direct
�rather than indirect via the core potential� relativistic effects
in the valence electron density. The severity of this approxi-
mation varies strongly for different molecular properties; not
only does it vary with respect to the order of the molecular
property but it also varies substantially for different proper-
ties of the same order. The most striking example when spin-
orbit effects in the valence electron density are of prominent
importance in the calculation of a quadratic response func-
tion is given by the two-photon absorption spectra �which
relate to a first-order residue of the quadratic response func-
tion�. It was demonstrated by Henriksson et al.24 that even
for a light element such as neon, the inclusion of spin-orbit
interactions is necessary to obtain a qualitatively correct two-
photon absorption spectrum.

At the all-electron level of theory, spin-free scalar rela-
tivistic corrections may be added to the one-electron Hamil-
tonian and, with the neglect of the picture change in the
perturbation operators, response properties can be deter-
mined without further modifications of the nonrelativistic
code. In this way, the hyperpolarizabilities of a series of
group IIb sulfides were determined25 in the spin-averaged
Douglas-Kroll approximation, as introduced by Hess,26,27

and the same approach has later been benchmarked against
four-component calculations and then showing significant
discrepancies for the hyperpolarizabilities of iodine and tel-
lurium hydrides.21 Full inclusion of scalar relativistic and
spin-orbit effects in the calculation of third-order molecular
properties was accomplished with the implementation of the
quadratic response function �and its first- and second-order
residues� in the time-dependent four-component Hartree-

Fock approximation.24,28,29 While accurate with respect to
relativistic effects, it is expected that the applicability of this
method is severely limited due to the large effects of electron
correlation on nonlinear response properties and since it is
inappropriate to treat relativity and electron correlation sepa-
rately. In the present work, we therefore develop and imple-
ment the quadratic response function in the time-dependent
four-component Kohn-Sham DFT approximation. Our work
should be seen as an extension of the previous mentioned
work in the HF approximation24,28,29 as well as the work on
the linear response function in the DFT approximation.30

In Sec. II A, we give a brief review of the four-
component Kohn-Sham approximation and the derivation of
the quadratic response function but, since these general as-
pects are largely covered in our previous work,29,30 we focus
primarily on a presentation of the details of the implementa-
tion that are unique to the extension made here �see
Sec. II B�. In Sec. III, we illustrate our implementation with
an example calculation of the first-order electric-dipole hy-
perpolarizability for dibromo- and di-iodo-substituted ben-
zene using a set of standard density functionals. We empha-
size that although the implementation is completely general,
we here present results for nonoscillating external perturba-
tions which require functionals of the charge density only.
For dynamic properties, we would like to perform a detailed
investigation of also adding the induced noncollinear magne-
tization as a functional variable, and this work is in progress.

II. THEORY AND METHODOLOGY

A. Time-dependent four-component Kohn-Sham
approximation

In the time-dependent four-component Kohn-Sham DFT
approximation, the noninteracting reference system is de-
scribed by a determinant of spinors �p�r�. The time-reversal
symmetric reference state of the isolated system �0s� is varia-
tionally optimized with the use of an electronic Hamiltonian
for the interacting system in which the kinetic energy is
given by the free-particle Dirac Hamiltonian and the
electron-electron repulsion is approximated by the instanta-
neous Coulomb interaction. This approximate form of the
two-electron part of the relativistic Hamiltonian is improved
on by the inclusion of the Gaunt term, or the full Breit inter-
action, but the introduction of current-current interactions in
DFT requires a general consideration before introduced
here.31 Time-reversal symmetry of �0s� is enforced by the
occupation of Kramers pairs of spinors �corresponding to the
closed-shell state in a nonrelativistic theory�—a pair of
spinors are related by the time-reversal operator,

�p̄�r� = K̂�p�r�, K̂ = �02 − I2

I2 02
�K̂0, �1�

where K̂0 denotes the complex conjugation operator. The ei-
genvalues of the spinors are divided into two sets that are
separated by circa twice the electron rest energy, and spinors
corresponding to the upper and lower sets are sometimes
referred to as electronic and positronic orbitals, respectively
�although they all represent electron wave functions�. The
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reference state includes only electronic orbitals and is opti-
mized in a minmax sense.32

When subjected to an external time-dependent electro-
magnetic field, the reference state becomes time dependent
in a way that is not described by a trivial phase factor but
involves electronic transitions to virtual orbitals. We param-
etrize this time dependence in a nonredundant and unitary
way as follows:2,31

�0̃s�t�� = exp�− �̂�t���0s�, �̂�t� = �aiâa
†âi − �ai

* âi
†âa. �2�

Here and in the following, we have made use of the Einstein
summation convention for repeated indices and
a ,b , . . . , i , j , . . ., and p ,q , . . . are indices of virtual, occupied,
and general molecular orbitals, respectively. In general, the
summation over virtual orbitals in Eq. �2� includes the
positronic orbitals and the corresponding electron transfer
amplitudes are at times denoted by �ai

− �to be distinguished
from rotations among electronic orbitals with amplitudes
�ai

+ �. In calculations of electric-field induced valence proper-
ties, such as the electric-dipole hyperpolarizability, the effect
of redressing of the electronic states due to the inclusion of
the �ai

− parameters in the propagator is small and can be
ignored with the benefit of memory savings.23

For weak, periodic external fields, we can use the
quasienergy formalism to determine the time dependence of
the � parameters33—a technique which was also used for the
derivation and implementation of the linear response func-
tion at this level of theory30 �see, however, Ref. 34 for a
discussion about the validity of this approach�. The relevant
time-averaged Kohn-Sham quasienergy functional can be
written as

Q��� = Ts��� + V��� + J��� + Qxc��� + Ss��� , �3�

where the time-dependent electron density is introduced as �
and depends implicitly on the � parameters. The response
functions are defined as derivatives of the quasienergy with
respect to the Fourier amplitudes of the external electromag-
netic field, and the third-order response, or the quadratic re-
sponse function, is given by

		Â;B̂,Ĉ���B,�C
= 
 d3Q

d�A��A�d�B��B�d�C��C�



�=0
. �4�

In evaluating this derivative, we note that the sum of terms in
Eq. �3� excluding Qxc corresponds formally to Hartree-Fock
theory without exchange interaction. We can, therefore, ben-
efit from the implementation of the quadratic response func-
tion reported in Ref. 29 and use it with a mere turnoff of the
exchange interaction �or partial turnoff for hybrid function-
als� together with the addition of the contribution from Qxc.
We will adopt the adiabatic approximation and employ the
time-dependent exchange-correlation functional as a substi-
tute for Qxc,

Qxc��� → Exc��� =� exc��,	�d
 . �5�

The energy density is here assumed to be a function of � and
the square norm of the electron density gradient 	=�� ·��,
and a time averaging is implied here as well. The time aver-

aging will impose that the response function �Eq. �4�� is non-
zero only when �A=−��B+�C�. In the next section, we will
present the detailed expressions needed for the implementa-
tion of the part in Eq. �4� that is due to Exc.

B. Implementation of the exchange-correlation
contribution to the quadratic response function

In the evaluation of the third-order derivative of Exc with
respect to the amplitudes of the external fields, we will use
chain rule differentiation of the energy density e�� ,	�. We
will view the electron density as dependent on the � param-
eters and determine the response of the latter to the external
perturbation from the variational condition �Q���=0. Since
the 2n+1 rule applies in the present case, it will be sufficient
to determine the first-order response in � with respect to
���� in order to determine the quadratic response function.
We note that the details and code implementation concerned
with the determination of this linear response have already
been considered in Ref. 30. The structure of the implemen-
tation of the quadratic response function at the Hartree-Fock
level is such that first, the formation of a generalized elec-
tronic gradient

�

��ai

 d2Exc

d�Bd�C



�=0
�6�

is made and, thereafter, this gradient is contracted with the
response of the �ai parameters with respect to the external
field.29 In order to comply with this structure, we therefore
seek an explicit expression for the quantity in Eq. �6�.

This exchange-correlation contribution will be added to
the generalized gradient as due to the Coulomb interaction
and which is denoted as E�3�NBNC in Ref. 29. Let us now
turn to the differentiation of Exc and first consider the partial
derivatives that will appear. In doing so, we will make use of
the fact that �→0 implies that �→0 and vice versa and,
although partial differentiation is to be made independently
for �ai and �ai

* , we restrict the presentation to include only
one of them.

With the use of the density operator,

�̂ = �pqâp
†âq, �pq = �p

†�r��q�r� , �7�

the electron density can be written as

��r� = 	0̃s��̂�0̃s� = �pq	0s�e�̂âp
†âqe−�̂�0s� . �8�

Expanding the density matrix elements with use of the
Baker-Campbell-Hausdorff expansion yields

� = �
n=0



��n�, ��n� =
�pq

n!
	0s��̂nâp

†âq�0s� , �9�

where the action of the superoperator �̂ is the formation of a

commutator according to �̂Â= ��̂ , Â�. The differentiation of
the density with respect to the external fields gives

�ABC¯
ª 
 �n�

��A��B��C¯



�=0
= �ai

BC¯��ai

��A
, �10�

where we have introduced
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�ai
BC¯

ª

�n��n�

��ai��bj��ck¯

��bj

��B

��ck

��C
¯ . �11�

In order to account for gradient-corrected density function-
als, we also introduce the following partial derivatives of 	
with respect to the external field:

	B
ª 
 �	

��B



�=0
= 2 � � · ��B, �12�

	BC
ª 
 �2	

��B��C



�=0
= 2��� · ��BC + ��B · ��C� . �13�

The numerical grid-integration kernel in the program as-
sumes the integrand to be written on the form

s�pq + v · ��pq,

where the scalar s and vectorial v functions as well as the
atomic orbital density matrix corresponding to �pq are to be
specified for a given property integration. Let us illustrate
how this works for the electronic gradient,


 �Exc

��ai
* 


�=0

=� � �exc

��

 ��

��ai
* 


�=0

+
�exc

�	

 �	

��ai
* 


�=0
�d


= −� fxc;aid
 , �14�

in which appears the exchange-correlation part of the Kohn-
Sham matrix,

fxc;pq = sf�pq + v f · ��pq,

�15�

sf =
�exc

��
, v f =

1

����
�exc

�����
� � .

Continuing to linear response, we get

�

��ai
* 
 �Exc

��B



�=0
= −� �fxc;ai

B + gxc;ai
�B� �d
 , �16�

where the integrand consists of the exchange-correlation part
of the one-index transformed Kohn-Sham matrix,

fxc;pq
B = sf�pq

B + v f · ��pq
B , �17�

and a remainder that equals to

gxc;pq
�B� = sg�pq + vg · ��pq,

sg
�B� =

�2exc

��2 �B +
�2exc

���	
· 2��� · ��B� , �18�

vg
�B� = � �2exc

���	
�B +

�2exc

�	2 · 2��� · ��B�� · 2 � �

+
�exc

�	
· 2 � �B.

We will reach our desired expression for the quadratic
response by performing a differentiation of Eq. �16� with
respect to the external field. We collect the final result of this
derivation in the form

�

��ai
* 
 d2Exc

d�Bd�C



�=0
= −� �fxc;ai

BC + gxc;ai
�C�B + gxc;ai

�B�C + hxc;ai
�BC��d
 ,

�19�

where we recognize the doubly one-index transformed
exchange-correlation part of the Kohn-Sham matrix fxc;pq

BC as
well as matrices gxc;ai

�C�B and gxc;ai
�B�C which are one-index trans-

formed versions of Eq. �18� with respect to B and C, respec-
tively. The remainder is collected into

hxc;pq
�BC� = sh�pq + vh · ��pq,

sh = � PB,C �3exc

��3 �B�C + 2
�3exc

��2�	
�B · 2��� · ��C�

+
�3exc

���	2 · 2��� · ��B� · 2��� · ��C� +
�2exc

��2 �BC

+
�2exc

���	
· 2���� · ��BC� + ���B · ��C��� , �20�

vh = � PB,C� �3exc

�	3 · 2��� · ��B� · 2��� · ��C�

+ 2
�3exc

���	2�B · 2��� · ��C� +
�3exc

��2�	
�B�C +

�2exc

���	
�BC

+
�2exc

�	2 · 2���� · ��BC� + ���B · ��C��� · 2 � �

+ � �2exc

���	
�C +

�2exc

�	2 · 2��� · ��C�� · 4 � �B

+
�exc

�	
· 2 � �BC� ,

where the operator �PB,C denotes the sum over permutations
between B and C. An implementation of Eq. �19� has been
added to the DIRAC program35 and below, we will present an
example calculation of the electric-dipole hyperpolarizability
which corresponds to a quadratic response function �Eq. �4��
evaluated for electric-dipole operators. The implementation
is general in the sense that it merely assumes the perturba-
tions to be due to one-electron operators and our work is,
therefore, in principle, applicable to a series of electromag-
netic properties. However, the introduction of a magnetic
perturbation breaks the time-reversal symmetry of the system
and requires the consideration of spin polarization in the for-
malism. In fact, even the application of time-dependent elec-
tric fields will induce electronic currents and thereby mag-
netic fields, so also the evaluation of dynamic polarizabilities
should take spin polarization into account. We will return to
this topic in a future work.

III. EXAMPLE CALCULATIONS

A. Computational details

All calculations in the present work were performed for
molecular structures that were optimized at the one-
component Kohn-Sham DFT level of theory using the hybrid
B3LYP exchange-correlation functional;36 for H, C, and Br,
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the 6-31G* basis set was used,37,38 and for iodine, the
Stuttgart ECP was used.39 Structure optimizations were per-
formed in the C2v point group with the GAUSSIAN program.40

The molecules are placed with the z axis as principle axis
and in the yz plane with the heavy atoms along the negative
z direction.

The all-electron property calculations were performed
with a locally modified version of the DIRAC program,35 and
those where an ECP was used for Br or I were performed
with a version of the DALTON program41 to which an imple-
mentation of the Coulomb attenuated B3LYP �Ref. 42�
�CAM-B3LYP� has been added.43 The property calculations
based on single determinant reference states �all-electron as
well as ECP based� were performed with fully uncontracted
basis sets that are based on the exponents from Sadlej’s po-
larization basis set44 with further addition of polarization and
diffuse functions. The basis sets were augmented using the
formula

	N+j = � 	N

	N−1
� j

	N, j � �1,Naug� , �21�

where Naug is the number of augmentation functions added
and 	N and 	N−1 refer to the two most diffuse exponents in
the original basis sets. The only exception to this rule is the
f shell of the iodine basis set, which was not augmented. To
the basis set of bromine, we added four f functions based on
the four most diffuse p exponents in the original basis set.
The sizes of the singly augmented large component basis sets
used in the property calculations were �7s5p�, �11s7p5d�,
�16s13p10d4f�, and �20s16p13d4f� for H, C, Br, and I, re-
spectively, and the small-component basis functions were
generated from those of the large component with the use of
the restricted kinetic-balance condition. In all four-
component calculations, we have ignored the interactions be-
tween the small component densities, i.e., the �SS �SS� inte-
grals. This approximation has virtually no influence on the
presented results, as demonstrated in Ref. 23, and will not be
further discussed here. All DFT functionals were employed
self-consistently and with their proper derivatives to the re-
quired orders in the perturbations.

For comparison, wave function correlated results were
obtained at the coupled cluster level with inclusion of single
and double electron excited configurations �CCSD�. For
these calculations, we adopted the contracted Sadlej basis
set44 for hydrogen and carbon but augmented with the same
diffuse functions as described above. For bromine and io-
dine, we employed the valence basis set of the Stuttgart
ECPs �Ref. 39� but augmented and polarized using the func-
tions from the Sadlej basis set and Eq. �21�. The sizes
of the heavy atom basis sets in the CCSD calcula-
tions were �6s6p5d4f� / �4s4p3d2f� �bromine� and
�6s6p8d2f� / �4s4p3d1f� �iodine�.

B. Results and discussion

With a molecular dipole moment aligned with the z axis,
the relevant experimental observable for second-harmonic

generation is ��̄,45 where

�̄�− 2�;�,�� =
1

5 �
�=x,y,z

��z�� + 2��z�� . �22�

In previous studies, we have shown that relativistic effects in
heavy atom substituted �-conjugated systems are pro-
nounced for the dipole moment as well as the first-order
hyperpolarizability �but not for the linear polarizability�;22,23

for bromobenzene, the effects are predominantly scalar rela-
tivistic in nature but for iodobenzene, scalar relativistic and
spin-orbit effects are about equally important.23 Whereas
changes due to relativity in the dipole moment can be attrib-
uted to changes in the chemical bond polarities, the effects
on the hyperpolarizabilities are not as easily interpreted. The
sum-over-states expression for �, which reads as

�����− ��;�1,�2�

= �−2 � P−�,1,2�
k,l

�
	0��̂��k�	k��̄̂��l�	l��̂��0�

��k − �����l − �2�
, �23�

reveals an intricate dependence of the hyperpolarizability on
interexcited state transition moments and excited-to-ground
state dipole moment differences, in addition to a dependence
on the linear absorption spectrum via the ground-to-excited
state transition dipole moments and excitation energies. The
permutation operator introduced in Eq. �23� permutes the
pairs of dipole moment operators and optical frequencies

��̂� ,−���, ��̂� ,�1�, and ��̂� ,�2�, and �̄̂ denotes the electric-
dipole fluctuation operator. One thing that becomes clear
from the sum-over-states expression is the separation be-
tween scalar relativistic and spin-orbit effects, since the latter
can be attributed to the coupling between states in the singlet
and triplet manifolds. The nonrelativistic and relativistic lin-
ear absorption spectra presented in Ref. 23 show significant
spin-forbidden absorption only for the iodobenzenes, and
scalar relativistic and spin-orbit effects on � are also of com-
parable magnitude in this case, whereas the spin-orbit effects
are small on the same property for the bromobenzenes.

The same argumentation can be made for the linear po-
larizability. In fact, � depends only on the observables in the
linear absorption spectrum, namely, transition energies and
intensities. The absence of relativistic effects that are seen in
Tables I and II for this property is, therefore, puzzling but
has been previously noted also for the thiophene homologs
which serve as important building blocks in optical
materials.22

In the present work, we focus at a formulation of the
quadratic response function at the electron correlated four-
component level of theory. We give here a presentation of the
response function which is quite different from the sum-
over-states expression in Eq. �23� but is rather seen as energy
derivatives. Since the correlation energy depends on the elec-
tron density, its value per electron will basically be larger, the
heavier the atom. What makes property calculations at the
Hartree-Fock level at all reasonable for heavy atoms are the
facts that the molecular property is a measure of the energy
difference with respect to external fields and that the induced
fluctuations in the core electron densities are very small—in
the valence region, where density fluctuations are larger, the
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effects of electron correlation are smaller. As a rule of thumb
for the polarizability of molecules containing first- and
second-row elements, the isotropic value is typically under-
estimated by some 5% at the Hartree-Fock level of theory,
whereas anisotropies suffer from larger errors.46 For the hy-
perpolarizabilities, on the other hand, the effects of electron
correlation are known to be both large and unsystematic.

In Tables I and II, we present the optical properties of
disubstituted bromobenzene and iodobenzene, respectively,
in their meta and ortho conformations. We employ a series of
four standard density functionals in the correlated four-
component calculations, namely, local-density approximation
�LDA�, BLYP, B3LYP, and CAM-B3LYP, and the ordering
of functionals in the tables reflects the consensus of increas-
ing accuracy as due to gradient and exact exchange correc-

tions. An apparent consequence of the use of the more so-
phisticated density functionals is the improved quality of the
orbital energies and, since the difference in orbital energies
between virtual and occupied orbitals appears on the diago-
nal of the electronic Hessian, it will correspond to improved
excitation energies in the response function approach as well.
In Ref. 47, it was also well illustrated how the inclusion of
exact exchange in the density functional affects linear re-
sponse calculation of excitation energies. It is the exact ex-
change that provides the Coulomb attraction between the
hole and the electron in these calculations, and the more
spatially separated the hole and electron orbitals are, the
greater the need for exact exchange in the functional is. The
present systems are by no means extreme charge-transfer
systems but, at the same time, it is clear that the halogen

TABLE I. Optical properties for disubstituted bromobenzenes at the Hartree-Fock, Kohn-Sham, and post-HF
levels of theory. Different exchange-correlation functionals are considered for the inclusion of electron corre-
lation effects. All quantities are given in a.u.

Method �z �xx �yy �zz �zxx �zyy �zzz

meta-dibromobenzene
LDA NR 0.6149 72.79 166.1 124.2 26.13 −168.8 32.79

ECP 0.5728 73.93 168.2 125.5 32.10 −167.4 44.76
4C 0.5903 73.00 166.5 124.5 29.04 −163.4 41.00

BLYP NR 0.6105 73.62 167.2 125.1 29.96 −155.6 44.22
ECP 0.5902 73.60 167.0 125.0 30.82 −147.1 47.97
4C 0.5864 73.85 167.6 125.3 33.13 −149.8 53.01

B3LYP NR 0.6435 71.86 161.2 121.7 21.16 −117.7 36.31
ECP 0.6203 72.01 161.4 121.8 22.92 −112.6 40.95
4C 0.6186 72.03 161.5 121.9 23.63 −112.6 43.41

CAM-B3LYP NR 0.6626 70.85 156.5 119.4 17.76 −88.99 34.92
ECP 0.6333 71.22 157.1 119.7 20.07 −85.60 40.32
4C 0.6361 71.00 156.8 119.6 19.81 −84.30 41.08

HF NR 0.7482 69.78 150.5 115.8 3.57 −48.97 27.85
ECP 0.7291 69.9 150.8 116.0 4.91 −47.30 31.27
4C 0.7218 69.81 150.8 115.9 4.55 −45.50 31.64

CCSD ECP 0.6344 72.18 156.6 120.3 12.87 −82.70 33.06
ortho-dibromobenzene

LDA NR 0.8925 71.93 131.4 150.9 41.73 −62.10 −164.4
ECP 0.8208 73.00 132.9 152.3 50.83 −55.44 −152.1
4C 0.8513 72.14 131.6 151.0 46.44 −56.28 −152.8

BLYP NR 0.8814 72.71 132.1 151.6 47.09 −52.58 −148.8
ECP 0.8479 72.70 132.0 151.5 48.14 −46.90 −138.6
4C 0.8409 72.94 132.4 151.9 52.40 −46.22 −136.6

B3LYP NR 0.9395 71.01 128.3 147.1 33.37 −39.78 −113.5
ECP 0.9008 71.16 128.4 147.2 35.71 −35.25 −105.3
4C 0.8977 71.18 128.5 147.2 37.29 −34.45 −103.3

CAM-B3LYP NR 0.9739 70.03 125.5 143.5 27.66 −28.81 −80.26
ECP 0.9248 70.37 125.9 143.9 30.96 −24.62 −72.58
4C 0.9296 70.17 125.7 143.7 31.01 −23.97 −71.05

HF NR 1.1147 69.10 121.4 138.8 6.72 −9.99 −35.62
ECP 1.0826 69.21 121.6 138.9 8.45 −7.56 −31.41
4C 1.0709 69.13 121.5 138.9 8.30 −6.61 −29.79

CCSD ECP 0.9310 71.34 126.5 144.1 20.50 −28.65 −82.57
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atoms will play the role of donors in excitations to the �*

orbitals. We, therefore, anticipate that the use of the CAM-
B3LYP can have an impact on results, and we would argue
that these results are the best ones at the four-component
level of theory. We would also like to draw attention to the
systematic decrease in � when comparing results obtained
with the series of functionals BLYP, B3LYP, and CAM-
B3LYP. This trend is directly coupled to an increasing por-
tion of exact exchange and thereby increased excitation en-
ergies of the system.

When measured against the four-component CAM-
B3LYP results, the correlation contributions to �zxx, �zyy, and
�zzz of meta-bromobenzene amount to 15.3, −38.8, and
9.4 a.u., respectively, and for meta-iodobenzene, the corre-
sponding values are 15.7, −46.4, and 8.5 a.u. In both cases,

there is thus a strong error cancellation for the Hartree-Fock

values of the observable �̄ since electron correlation lowers
the value of the zyy component but increases the values of
the other two components. This illustrates how unsystematic
correlation effects can be for the first-order hyperpolarizabil-
ity. On the other hand, we note that the correlation effects on
the hyperpolarizabilities of the two meta systems are close in
magnitude. That again indicates that it is the correlation en-
ergy in the valence region that matters for this property, and
that this energy is almost the same in the two systems. If we
make the same comparison for the two ortho systems, we see
correlation contributions of 22.7, −17.4, and −41.3 a.u. for
the three nonzero � components of bromobenzene and 24.1,
−27.6, −46.9 a.u. for the three components of iodobenzene.

TABLE II. Optical properties for disubstituted iodobenzenes at the Hartree-Fock, Kohn-Sham, and post-hF
levels of theory. Different exchange-correlation functionals are considered for the inclusion of electron corre-
lation effects. All quantities are given in a.u.

Method �z �xx �yy �zz �zxx �zyy �zzz

meta-di-iodobenzene
LDA NR 0.6337 94.24 214.0 149.1 85.17 −175.1 140.6

ECP 0.5674 95.86 216.1 150.6 96.74 −166.0 167.0
4C 0.5661 94.61 215.1 149.5 96.78 −151.2 171.4

BLYP NR 0.6240 95.86 216.0 150.5 95.56 −150.4 166.4
ECP 0.5885 95.16 214.3 149.7 96.71 −128.2 174.8
4C 0.5575 96.32 217.4 151.1 108.7 −125.6 200.3

B3LYP NR 0.6501 93.55 208.1 146.5 79.16 −88.74 151.1
ECP 0.6076 93.30 207.4 146.2 82.61 −73.72 162.0
4C 0.5806 93.79 209.9 146.9 89.19 −64.85 179.0

CAM-B3LYP NR 0.6618 91.88 201.2 143.4 68.39 −37.66 141.1
ECP 0.6057 92.17 201.6 143.7 73.46 −25.95 155.5
4C 0.5867 91.99 202.2 143.7 76.96 −15.23 165.7

HF NR 0.7537 91.23 196.1 140.5 56.17 12.08 140.0
ECP 0.7074 91.14 196.5 140.5 59.36 22.27 150.5
4C 0.6793 90.91 197.2 140.5 61.26 31.21 157.2

CCSD ECP 0.5822 96.54 205.1 147.6 80.97 −46.26 180.7

ortho-di-iodobenzene
LDA NR 0.8877 92.07 166.3 182.7 125.0 −42.42 −46.42

ECP 0.7777 93.59 167.9 184.0 142.3 −26.39 −16.02
4C 0.7766 92.45 166.6 182.9 143.9 −19.06 −2.32

BLYP NR 0.8639 93.49 167.7 183.9 136.7 −24.59 −16.73
ECP 0.8071 92.87 166.1 182.7 138.2 −8.59 5.99
4C 0.7544 93.94 168.1 184.2 157.9 1.05 29.70

B3LYP NR 0.9103 91.31 162.4 178.6 113.4 1.21 25.32
ECP 0.8411 91.11 161.6 178.0 118.1 14.86 45.94
4C 0.7962 91.57 162.7 178.8 129.7 25.04 67.06

CAM-B3LYP NR 0.9336 89.74 158.1 174.1 97.05 22.97 66.22
ECP 0.8415 90.03 158.2 174.2 104.6 36.07 86.91
4C 0.8105 89.88 158.3 174.3 110.4 45.22 104.3

HF NR 1.0740 89.19 154.3 170.2 78.37 53.66 123.4
ECP 0.9973 89.13 154.2 170.1 82.94 65.23 139.0
4C 0.9519 88.93 154.3 170.4 86.26 72.80 151.2

CCSD ECP 0.8023 94.14 162.7 177.7 117.3 23.97 89.22
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We have argued that the ordering of DFT results in the
tables reflects the quality. In order to get a more objective
measure of the performance of the various functionals, we
have also determined the optical properties using a nonrela-
tivistic wave function correlated approach in conjunction
with the Stuttgart relativistic ECPs. Due to the computational
cost associated with the CCSD method, we are forced to
employ a reduced basis set and, given the fact that the basis
set requirements are stronger in wave function than in den-
sity functional approaches, we cannot use the CCSD results
as benchmarks. Furthermore, the lack of inclusion of relativ-
istic effects in the valence region will make the results based
on ECPs error prone for the iodobenzenes. For the �-tensor
elements of bromobenzenes, the largest discrepancy between
ECP and four-component results at the CAM-B3LYP level is
as small as 1.5 a.u. �or 2%�, whereas for the iodobenzenes,
this error bar is 17.4 a.u. It is, therefore, reasonable to use the
bromobenzene CCSD results for the evaluation of the vari-
ous density functionals. For each individual � component of
the bromobenzenes, the best agreement with the CCSD re-
sults is obtained with use of the CAM-B3LYP functional but,
at the same time, it is clear that discrepancies between the
correlated results can be as large as 10 a.u. �see the zzz com-
ponent of ortho-bromobenzene�.

The calculations of the hyperpolarizabilities of the ha-
lobenzenes amply demonstrate that electron correlation ef-
fects can be very large for this property. Of greater concern
to the present work, however, is the fact that relativistic ef-
fects on the hyperpolarizability are substantial for the bro-
mobenzenes and large for the iodobenzenes. The develop-
ment of electron correlated propagator methods with proper
inclusion of relativity is particular important since the two
effects are not additive. Without exception for the � tensor,
the relativistic effects at the correlated level of theory exceed
those at the uncorrelated level of theory, e.g., the relativistic
effects for �zxx, �zyy, and �zzz at the CAM-B3LYP level
amount to 13.3, 22.2, and 38.1 a.u., respectively, whereas at
the Hartree-Fock level, the corresponding values are 7.9,
19.2, and 27.8 a.u. The relativistic corrections are without

exception positive, thereby increasing the value of �̄.

IV. CONCLUSIONS

A derivation and implementation of the quadratic re-
sponse function at the four-component density functional
level of theory has been presented. The adiabatic, Kramers-
restricted Kohn-Sham approximation has been adopted with
consideration made of gradient-corrected functionals. We ex-
emplify the significance of this work with calculations of the
optical properties of disubstituted halobenzenes and thereby
illustrate internal heavy atom effects on the hyperpolariz-
abilities in �-conjugated systems. Our best results are ob-
tained with the use of the Coulomb attenuated B3LYP
functional,42 which here provides notably different hyperpo-
larizability values from B3LYP. It is shown that correlation
as well as relativistic effects on � are large for the systems
under investigation. Relativity alone reduces the

��̄-response signals by 62% and 75% for meta- and ortho-
bromobenzene, respectively, and enhances the same response

by 17% and 21% for meta- and ortho-iodobenzene, respec-
tively �these values are based on the CAM-B3LYP results�.
The results in the present work also demonstrates the well-
known fact that correlation and relativistic effects are not
additive and that our work is called for.

ACKNOWLEDGMENTS

We acknowledge the use of computational resources at
the National Supercomputer Centre �NSC� in Linköping,
Sweden.

1 R. W. Boyd, Nonlinear Optics, 2nd ed. �Academic, New York, 2003�.
2 J. Olsen and P. Jørgensen, J. Chem. Phys. 82, 3235 �1985�.
3 H. Sekino and R. Bartlett, J. Chem. Phys. 85, 976 �1986�.
4 S. Karna and M. Dupuis, J. Comput. Chem. 12, 487 �1991�.
5 J. Rice, R. Amos, S. Colwell, N. Handy, and J. Sanz, J. Chem. Phys. 93,
8828 �1990�.

6 H. Hettema, H. Jensen, P. Jørgensen, and J. Olsen, J. Chem. Phys. 97,
1174 �1992�.

7 J. Rice and N. Handy, Int. J. Quantum Chem. 43, 91 �1992�.
8 C. Hättig, O. Christiansen, H. Koch, and P. Jørgensen, Chem. Phys. Lett.

269, 428 �1997�.
9 J. Gauss, O. Christiansen, and J. Stanton, Chem. Phys. Lett. 296, 117
�1998�.

10 P. Rozyczko and R. Bartlett, J. Chem. Phys. 107, 10823 �1997�.
11 J. Olsen, P. Jørgensen, T. Helgaker, and J. Oddershede, J. Phys. Chem. A

109, 11618 �2005�.
12 S. van Gisbergen, J. Snijders, and E. Baerends, J. Chem. Phys. 109,

10644 �1998�; 111, 6652�E� �1999�.
13 P. Salek, O. Vahtras, T. Helgaker, and H. Ågren, J. Chem. Phys. 117,

9630 �2002�.
14 P. Norman, D. M. Bishop, H. J. Aa. Jensen, and J. Oddershede, J. Chem.

Phys. 123, 194103 �2005�.
15 D. Roberto, R. Ugo, E. Tessore, F. Lucenti, S. Quici, S. Vezza, P. Fan-

tucci, I. Invernizzi, S. Bruni, I. Ledoux-Rak, and J. Zyss, Organometallics
21, 161 �2002�.

16 O. Vahtras, H. Ågren, P. Jørgensen, H. J. Aa. Jensen, T. Helgaker, and J.
Olsen, J. Chem. Phys. 97, 9178 �1992�.

17 I. Tunell, Z. Rinkevicius, O. Vahtras, P. Salek, T. Helgaker, and H. Ågren,
J. Chem. Phys. 119, 11024 �2003�.

18 M. Engström, O. Vahtras, and H. Ågren, Chem. Phys. Lett. 328, 483
�2000�.

19 P. Manninen, K. Ruud, P. Lantto, and J. Vaara, J. Chem. Phys. 122,
114107 �2005�.

20 L. R. Kahn, P. Baybutt, and D. G. Truhlar, J. Chem. Phys. 65, 3826
�1976�.

21 P. Norman, B. Schimmelpfennig, K. Ruud, H. J. Aa. Jensen, and H.
Ågren, J. Chem. Phys. 116, 6914 �2002�.

22 B. Jansik, B. Schimmelpfennig, P. Norman, H. Ågren, and K. Ohta, J.
Mol. Struct.: THEOCHEM 633, 237 �2003�.

23 J. Henriksson, U. Ekström, and P. Norman, J. Chem. Phys. 124, 214311
�2006�.

24 J. Henriksson, P. Norman, and H. J. Aa. Jensen, J. Chem. Phys. 122,
114106 �2005�.

25 S. Raptis, M. Papadopoulos, and A. Sadlej, J. Chem. Phys. 111, 7904
�1999�.

26 M. Douglas and N. Kroll, Ann. Phys. �N.Y.� 82, 89 �1974�.
27 G. Jansen and B. Hess, Phys. Rev. A 39, 6016 �1989�.
28 E. Tellgren, J. Henriksson, and P. Norman, J. Chem. Phys. 126, 064313

�2007�.
29 P. Norman and H. J. Aa. Jensen, J. Chem. Phys. 121, 6145 �2004�.
30 P. Salek, T. Helgaker, and T. Saue, Chem. Phys. 311, 187 �2005�.
31 T. Saue and T. Helgaker, J. Comput. Chem. 23, 814 �2002�.
32 T. Saue, K. Fægri, T. Helgaker, and O. Gropen, Mol. Phys. 91, 937

�1997�.
33 O. Christiansen, P. Jørgensen, and C. Hättig, Int. J. Quantum Chem. 68,

1 �1998�.
34 N. T. Maitra and K. Burke, Chem. Phys. Lett. 441, 167 �2007�.
35 H. J. Aa. Jensen, T. Saue, L. Visscher, V. Bakken, E. Eliav, T. Enevold-

sen, T. Fleig, O. Fossgaard, T. Helgaker, J. Laerdahl et al., DIRAC, a
relativistic ab initio electronic structure program, release as DIRAC4.0,

024105-8 Henriksson, Saue, and Norman J. Chem. Phys. 128, 024105 �2008�



2004.
36 A. D. Becke, J. Chem. Phys. 98, 5648 �1993�.
37 W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257

�1972�.
38 V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus, J. Chem.

Phys. 109, 1223 �1998�.
39 M. Kaupp, P. Schleyer, H. Stoll, and H. Preuss, J. Am. Chem. Soc. 113,

6012 �1991�.
40 M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 03, revision

B05, Gaussian, Inc., Pittsburgh, PA, 2003.

41
DALTON, a molecular electronic structure program, release 2.0, 2005 �see
http://www.kjemi.uio.no/software/dalton/dalton.html�.

42 T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 �2004�.
43 M. J. G. Peach, T. Helgaker, P. Salek, T. W. Keal, O. B. Lutnæs, D. J.

Tozer, and N. C. Handy, Phys. Chem. Chem. Phys. 8, 558 �2006�.
44 A. J. Sadlej, Collect. Czech. Chem. Commun. 53, 1995 �1988�.
45 D. Shelton and J. Rice, Chem. Rev. �Washington, D.C.� 94, 3 �1994�.
46 S. A. C. McDowell, R. D. Amos, and N. C. Handy, Chem. Phys. Lett.

235, 1 �1995�.
47 A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 �2004�.

024105-9 The relativistic four-component Kohn-Sham approximation J. Chem. Phys. 128, 024105 �2008�


