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ESTIMATES FOR WEIGHTED BERGMAN PROJECTIONS

ON PSEUDO-CONVEX DOMAINS OF FINITE TYPE IN Cn

P. CHARPENTIER, Y. DUPAIN & M. MOUNKAILA

ABSTRACT. In this paper we investigate the regularity properties of weighted Bergman projections for smoothly bounded pseudo-convex
domains of finite type in Cn. The main result is obtained for weights equal to a non-negative rational power of the absolute value of a
special defining function ρ of the domain: we prove (weighted) Sobolev-Lp and Lipschitz estimates for domains in C2 (or, more generally,
for domains having a Levi form of rank ≥ n− 2 and for “decoupled” domains) and for convex domains. In particular, for these defining
functions, we generalize results obtained by A. Bonami & S. Grellier and D. C. Chang & B. Q. Li. We also obtain a general (weighted)
Sobolev-L2 estimate.

INTRODUCTION

Let Ω be a bounded open set in Cn. Let ω be a non-negative measurable function on Ω and λ be the Lebesgue measure
on Cn. The function ω is called an admissible weight (or simply a weight) for Ω if the set A2 (Ω,ωdλ ) of square integrable
holomorphic functions with respect to the measure ωdλ is a closed subspace of the Hilbert space L2 (Ω,ωdλ ) (see [PW90]). So,
if ω is a weight on Ω, the weighted Bergman projection PΩ

ω , i.e. the orthogonal projection of L2 (Ω,ωdλ ) onto A2 (Ω,ωdλ ), is
well-defined.

The aim of this paper is to investigate Lipschitz and Sobolev Lp regularities of PΩ
ω when Ω is smooth, pseudo-convex and of

finite type.
As far as we know, for general finite type domains, only two results were previously known. First, in [BG95], A. Bonami

& S. Grellier proved Lipschitz and Sobolev Lp estimates for the weighted Bergman projection PΩ
ω of a finite type domain in C2

when the weight ω is a non-negative entire power of the absolute value of a defining function ρ of the domain (i.e. ω = (−ρ)q,
q ∈ N). Secondly, in [CL97], D. C. Chang & B. Q. Li extended these results to “decoupled” domains in Cn.

The main results of the present paper extend, for special defining functions ρ , those estimates of PΩ
ω in two directions. First

we extend the class of weights ω to non-negative rational powers of |ρ | (i.e. ω = (−ρ)r, r ∈Q). Second we extend the class of
domains to include convex domains (of finite type).

Moreover, we obtain weighted L2-Sobolev regularity of PΩ
(−ρ)r for general pseudo-convex domains of finite type in Cn, ρ

being also a special defining function of Ω.

In complex analysis the (weighted or not) Bergman projection plays a fundamental role and its regularity has been extensively
studied.

A fundamental class of weights is the one introduced by L. Hörmander in [Hör65] in order to solve the ∂ -equation. Let ϕ be
a pluri-subharmonic function defined in Ω. Hörmander’s theorem solves the so-called ∂ ϕ -Neumann problem associated to the
weight e−ϕ proving the existence of the Neumann operator Nϕ inverting the complex laplacian �ϕ . Recall that the Bergman

projection PΩ
e−ϕ is closely related to Nϕ by the formula PΩ

e−ϕ = Id− ∂
∗
ϕNϕ∂ ϕ .

For ϕ = 0 many results have been obtained in this direction in various function spaces. In particular, for (L2) Sobolev
regularity there is a very large bibliography essentially based on J. J. Kohn’s work (see [Str10] for a good general presentation).
For other spaces, a lot of sharp results were obtained by several authors, but there are still basic open problems (see for example
[NRSW89, CNS92, BC00, McN94, MS94, Cho96, MS97, Cho03, CD06b, CD06a, CD08] and references therein).

For non-zero functions ϕ , the only general result, due to J. J. Kohn ([Koh73]), gives L2-Sobolev estimates for the ∂ ϕ -Neumann
problem for general smoothly bounded pseudo-convex domains with ϕ = t |z|2, where t is big enough depending on the Sobolev
scale. Recall that there exist smoothly bounded pseudo-convex domains for which the (unweighted) Bergman projection is not
L2-Sobolev regular ([Chr96]). However, if Ω is of finite type, it is not difficult to see that, if ϕ is C ∞ on Ω then the weighted
Bergman projection PΩ

e−ϕ has the same L2-Sobolev regularity than the unweighted one.

For the Bergman projection PΩ
ω with a general (admissible) weight ω , very few results were obtained for finite type domains.

In addition to the results of A. Bonami & S. Grellier and D. C. Chang & B. Q. Li cited before, sharp results were obtained for
strictly pseudo-convex domains. In the case of the unit ball of Cn, for weights equal to a power greater than −1 of 1− |z|2,
the kernels of these operators can be written explicitly (see [Cha80, HP84b, HP84a]) and then it is possible to obtain very
precise estimates. Generalizations of these results to strictly pseudo-convex domains have also been done by several authors (see
[LR86, LR87, LR88, Cum90]).
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Even in dimension 1, Lp estimates for weighted Bergman projections can be true only for p = 2, and, in general, are not easy
to obtain, as shown in [Zey11b, Zey11a, Zeya, Zeyb].

The method used in this paper is completely different than that used in A. Bonami & S. Grellier or D. C. Chang & B. Q. Li
papers. It is inspired by a well-known method introduced by F. Forelli and W. Rudin (see [FR75, Rud80, Lig89]): we look at Ω

as a slice of a pseudo-convex domain Ω̃ of finite type in Cn+m and try to deduce estimates for weighted Bergman projections of
Ω from estimates of the unweighted Bergman projection of Ω̃.

The paper is organized as follows. In the first section we present the main results on weighted Bergman projections. In
Section 2 we define the domain Ω̃ and discuss its fundamental properties. In Section 3 we give the basic relations between the
Bergman projection of Ω̃ and a weighted Bergman projection of Ω and prove the general L2-Sobolev results. In Section 4, we
prove the L

p
s and Lipschitz estimates given in Theorem 1.1 establishing sharp estimates of the kernels of weighted Bergman

projections.

1. MAIN RESULTS AND METHODS

For simplicity, we only state here the main result concerning the Bergman projection for weights equal to a non-negative
rational power of |ρ | where ρ is a particular defining function of Ω. Detailed results for other operators, other weights and for
the Bergman kernel will be given in the next sections.

If k is a positive function on an open set Ω in Cn whose inverse is locally integrable, we denote by Pk = PΩ
k the orthogonal

projection of the Hilbert space L2 (kdλ ) onto the (closed [PW90]) subspace of holomorphic functions (i.e. the Bergman projection
associated to the weight k).

Theorem 1.1. Let Ω be a smoothly bounded pseudo-convex domain of finite type M and ρ a defining function of Ω. We assume

that one of the two following conditions is satisfied:

• Ω is a domain in C2 and ρ is such that there exists s ∈ ]0,1] such that −(−ρ)s
is strictly pluri-subharmonic in Ω

([DF77a]);
• Ω is convex and, if g is a gauge of Ω, then ρ = g4e1−1/g− 1.

Let ω = (−ρ)r
with r a non-negative rational number. Let us denote by PΩ

ω the weighted Bergman projection of Ω associated to

the Hilbert space L2 (ωdλ ), dλ denoting the Lebesgue measure. Let us also denote by δ∂Ω the distance to the boundary of Ω.

(1) Let s ∈ N. Then, for p ∈ ]1,+∞[ and −1 < β < p(r+ 1)− 1, PΩ
ω maps the Sobolev space L

p
s

(
δ

β
∂Ω

)
continuously into

itself.

(2) For α < 1/M, PΩ
ω maps the Lipschitz space Λα continuously into itself.

For L2-Sobolev estimates, we have more general results. For example, for weighted Bergman projections:

Theorem 1.2. Let Ω be any smoothly bounded pseudo-convex domain of finite type in Cn. Let ρ be a smooth defining function

of Ω such that there exists s ∈ ]0,1] such that −(−ρ)s
is strictly pluri-subharmonic in Ω. Let r ∈Q+. Let ω = (−ρ)r

. Then the

weighted Bergman projection PΩ
ω associated to the Hilbert space L2 (ωdλ ) maps the Sobolev space L2

s (ωdλ ) continuously into

itself for all s ∈ N.

The method we use is a modification of a well-known construction of Forelli-Rudin. Such method has been used by several
authors for the same kind of studies (for example E. Ligocka and Y. Zeytuncu [Lig89, Zeyb]). To try to obtain weights which are
not only integer powers of the absolute value of the defining function of Ω, we consider a more general situation investigating
the properties of a domain Ω̃ defined in Cn+m by an equation of the form ρ(z)+ h(w)< 0 where ρ is a defining function of Ω
and h a positive function. These properties are discussed in Section 2.

Remark.

(1) The restriction r ∈ Q+
∗ in our results is due to the method and we do not know if the theorems can be extended to the

natural scale of powers which is ]−1,+∞[.
(2) Recall that the results of A. Bonami & S. Grellier and D. C. Chang & B. Q. Li are valid for any defining function of Ω.

It seems that it is not easy to extend our results to any defining function. We will return to this question in a future paper.
The only thing we can say in general (i.e. without the finite type hypothesis) is that the set of weights for which the

corresponding weighted Bergman projections satisfy a given estimate is, in a certain sense, open. This can be seen using
a special case of [PW90, Theorem 4.2] (which can be easily directly proved): let ω be an admissible weight, h be a real
smooth function such that 0 < c≤ |h| ≤C < 1, and denotes Mh the operator g 7→ hg. Then

PΩ
(1+h)ω = PΩ

ω +
∞

∑
k=1

(−1)k−1
[
PΩ

ω ◦Mh

]k

◦
(

Id−PΩ
ω

)
,

where [...]k is the power for the composition operator, the series converging in the operator norm of L
(
L2 (ωdλ )

)
.

For example, if PΩ
ω maps Lp

(
δ

β
∂Ω

)
continuously into itself with norm Kω

p,β , then, a simple calculation shows immediately

that the same is true for PΩ
(1+h)ω if ‖h‖∞ ≤

1(
Kω

p,β
+1
)2 .
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2. A HARTOGS DOMAIN Ω̃ IN Cn+m
BASED ON A DOMAIN Ω IN Cn

For a given smoothly bounded pseudo-convex domain Ω in Cn with a defining function ρ , we consider a smooth non-negative
function h defined in Cm such that

h(w) = 0⇔ w = 0 and lim
|w|→+∞

h(w) = +∞

and we denote by Ω̃ the smooth bounded domain

(2.1) Ω̃ = {(z,w) ∈ Cn×Cm, s. t. r(z,w) = ρ(z)+ h(w)< 0} .

Then, for particular functions h, there are very simple relations between the standard Bergman kernel of Ω̃ and a weighted
Bergman kernel of Ω, and between the unweighted ∂ -Neumann problem on Ω̃ and a weighted ∂ ϕ -Neumann problem on Ω (see

Section 3). The goal of this part is to find what conditions on ρ and h would provide enough properties on Ω̃ so that we can
obtain sharp estimates on the Bergman projection (or on the ∂ -Neumann problem of Ω̃) or sufficiently precise information on the
Bergman kernel of Ω̃ on {w = 0}.

More precisely, in this section we discuss the following questions: suppose ∇h(w) 6= 0 if w 6= 0; under what conditions on ρ

and h the domain Ω̃ is:

• pseudo-convex;
• pseudo-convex of finite type if Ω is of finite type.
• completely geometrically separated, in the sense of [CD08] (at every boundary point or at boundary points near{w = 0})

if Ω is so.

To get these properties, quite strong conditions have to be imposed to ρ and h. To simplify the reading of the paper, we first
state these different conditions.

2.1. A special defining function for Ω

As we will see in Section 2.3, even with the function h(w) = |w|2, w ∈C, and for very simple domains like the unit ball, Ω̃ is
not automatically pseudo-convex: this depends on the choice of the defining function ρ (Remark 2.2).

Fortunately, a good choice can always be done using a celebrated theorem of K. Diederich & J. E. Fornæss ([DF77a, Theorem
1]) which proves that for any smooth bounded pseudo-convex domain Ω there exists sΩ ∈ ]0,1] such that, for s ∈ ]0,sΩ[ there
exists a smooth defining function ρ of Ω such that the function −(−ρ)s is strictly pluri-subharmonic in Ω. Then, to fix the
notations:

Throughout this paper, for s ∈ ]0,sΩ[, we will denote by ρs a defining function such that

(2.2) − (−ρs)
s

is strictly pluri-subharmonic in Ω.

Of course such a function ρs is not unique.

Remark 2.1.

(1) The pluri-subharmonicity of −(−ρs)
s means

i∂∂ ρs ≥ i
1− s

ρs

∂ρs∧∂ρs.

Thus i∂∂ ρs ≥
i

ρs
∂ρs∧∂ ρs, and, as this means that− log(−ρs) is pluri-subharmonic in Ω, and the ∂−r log(−ρs)-Neumann

problem is well-defined for r ≥ 0.
(2) Let U be an open set in Cn. Let ρ be a C ∞ function on U whose gradient does not vanish. Assume there exists z0 ∈U

such that ρ
(
z0
)
= 0. Thus, for ε ∈ R sufficiently small the set

Ξ = {z ∈U such that ρ(z) = ε}

is a non-empty smooth hypersurface. Assume moreover that i∂∂ ρ ≥ i
µ
ρ ∂ρ ∧∂ ρ , µ ∈ R, on U . Then, at every point of

Ξ, the restriction of i∂∂ ρ to the complex tangent space of Ξ is non-negative.

2.2. Hypothesis on the function h

Depending on the properties we want to have for Ω̃, several conditions will be imposed on h. We define now five conditions
that we will use in the following sections.

Let Ω be a bounded smooth pseudo-convex domain in Cn and let h be a smooth real function on Cm.

Condition I:
ρ = ρs is a defining function of Ω satisfying (2.2) (Section 2.1). h is non-negative, h(w) = 0 ⇔ w = 0 (and thus

∇h(0) = 0), ∇h(w) 6= 0 if w 6= 0, lim|w|→+∞ h(w) = +∞ and there exists s′ ∈ [0,s[ such that hs′ is pluri-subharmonic (i.e.

i∂∂h≥ i 1−s′

h
∂h∧∂h which implies that h is strictly pluri-subharmonic at every point w such that ∂h

∂wi
(w) 6= 0 for all i).

Condition II:
h(w) = ∑

p
i=1 hi (wi), w = (w1, . . . ,wp), wi ∈ Cmi , the functions hi being non-negative smooth pluri-subharmonic on Cmi ,

and satisfying:
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(a) for every i, hi (wi) = 0⇔ wi = 0, ∇hi (wi) 6= 0 if wi 6= 0, lim|w|→+∞ hi(w) = +∞;

(b) log(hi) is pluri-subharmonic (i.e. i∂∂hi ≥ i 1
hi

∂hi∧∂hi) and hi is strictly pluri-subharmonic outside the origin;

(c) hi is of finite type 2qi = typ0 (hi) at the origin (in the sense introduced at the beginning of Section 2.4).

Condition III:
h satisfies Condition II with mi = 1 for every i (thus the first part of the second condition of Condition II means △hi ≥
1
hi
|h′i|

2
), and, for each i there exists a function αi, C ∞ in a neighborhood of the origin in C, limwi→0 αi (wi) = 0, such

that ∂hi

∂wi
= αi

∂ 2hi

∂wi∂wi
in that neighborhood.

Condition IV:
Ω is of finite type, h satisfies Condition III, and, for each i, hi (wi) = ki (|wi|), ki(t)≍ t2qi (where f ≍ g means that there

exist two constants c > 0 and C > 0 such that c f ≤ g≤C f ) and 2qi strictly larger than the type of Ω.

Condition V:
Ω is of finite type, h satisfies Condition II with mi = 1 for every i, and, for each i,

∣∣∣ ∂ 2hi

∂w2
i

∣∣∣ ≤△hi, hi (wi) = ki (|wi|) and

ki(t)≍ t2qi and qi strictly larger than the type of Ω.

Condition I is used in Section 2.3 to get the pseudo-convexity of Ω̃. Condition II is used in Section 2.4 to ensure that Ω̃ is of
finite type. In Section 2.5 we use Condition III to obtain that Ω̃ have a Levi form locally diagonalizable (and thus is “completely
geometrically separated” ([CD08])) when Ω is a finite type domain in C2. Finally, Conditions IV and V are used in Sections 4.1
and 4.2 to get pointwise estimates of a weighted Bergman kernel in these two cases.

Example 2.1. Let mi ∈ N∗, 1≤ i≤ p, m = ∑i mi, qi ∈ N∗, 1≤ i≤ p. Then the function

h : w = (w1, . . .wp) ∈∏
i

Cmi = Cm 7→∑
i

|wi|
2qi

satisfies Conditions I (whatever s) and II, and all other conditions if mi = 1 for every i and the qi are large enough.

Proof. Let us denote hi (wi)= |wi|
2qi , 1≤ i≤ p. Then ∂h=∑i ∂ hi, ∂∂ h=∑i ∂∂hi and, a simple calculation and Cauchy-Schwarz

inequality give, for 1≤ i≤ p,

i∂∂hi = iq2
i |wi|

2qi−4

(

∑
j

w
j
i dw

j
i

)
∧

(

∑
j

w
j
i dw

j
i

)
+

+iqi |wi|
2qi−2

(

∑
j

dw
j
i ∧dw

j
i

)
− iqi |wi|

2qi−4

(

∑
j

w
j
i dw

j
i

)
∧

(

∑
j

w
j
i dw

j
i

)

≥ i
1
hi

∂hi∧∂hi.

Then, by Cauchy-Schwarz inequality,

ih
〈

∂∂h;t, t
〉
≥

(

∑
i

hi

)
∑

i
〈

∂hi∧∂hi;ti, ti
〉

hi


≥

(
∑
〈

∂hi∧∂hi;ti, ti
〉1/2
)2

≥ i
〈

∂h∧∂h;t, t
〉

and Condition I is satisfied for any s′ ≥ 0. �

2.3. Pseudo-convexity of Ω̃

In general, even for very simple functions h, the domain Ω̃ is not pseudo-convex. For example, if Ω is the unit ball it is very

easy to write a defining function ρ of Ω such that the domain
{
(z,w) ∈ Cn×C, s. t. ρ(z)+ |w|2 < 0

}
is not pseudo-convex (see

Remark 2.2).
If Ω admits a smooth defining function which is pluri-subharmonic in Ω, it suffices to take h pluri-subharmonic. But this is

not the general case (c.f. [DF77b]), so, we have to choose a convenient defining function for Ω:

Proposition 2.1. Let Z ∈Cn and let U (resp. V ) be an open neighborhood of Z (resp. of the origin in Cm). Let ρ : U →R (resp.

h : V → R+) be a smooth function such that ρ (Z) = 0 and ∇ρ does not vanishes in U (resp ∇h(w) 6= 0 if and only if w 6= 0 and

h(w) 6= 0 if w 6= 0). Assume that there exist s ∈ ]0,1] and s′ ∈ [0,s[ such that−(−ρ)s is strictly pluri-subharmonic in the open set

G = {z ∈U s. t. ρ(z)< 0} and hs′ is pluri-subharmonic in V . Let ∂ G̃ be the set

∂ G̃ = {(z,w) ∈U×V s. t. r(z,w) = ρ(z)+ h(w) = 0} .

Then, if not empty ∂ G̃ is a smooth hypersurface, and, at every point
(
z1,w1

)
∈ ∂ G̃:

(1) The restriction of i∂∂ r to the complex tangent space of ∂ G̃ at
(
z1,w1

)
is non-negative.

(2) If w1 6= 0, the restriction of i∂∂ r to the complex tangent space of ∂ G̃ at
(
z1,w1

)
is positive definite if h is strictly

pluri-subharmonic at w1.
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Proof. Note that, since the gradient of r does not vanishes on U×V , ∂ G̃ is a smooth hypersurface if it is not empty. Moreover,
s′ being ≤ 1, h is pluri-subharmonic on V . The hypothesis on ρ is

(2.3) i∂∂ρ ≥ i
1− s

ρ
∂ρ ∧∂ρ + εi∂∂ |z|2 ,

where ε is a non-negative function, strictly positive in G.
Let
(
z1,w1

)
be a point of ∂ G̃ and t = (tz, tw) ∈ Cn×Cm be a vector of the complex tangent space of ∂ G̃ at

(
z1,w1

)
.

If w1 = 0, as the hypotheses on h imply ∇h(0) = 0, tz is “tangent” to ρ at z1 (i.e. 〈∂ρ , tz〉
(
z1
)
= 0). Thus the inequality (2.3)

and the pluri-subharmonicity of h imply
〈

i∂∂ r;t, t
〉
≥ 0 showing (1).

Suppose now w1 6= 0. Note that, t being tangent to r, we have ∑i
∂ρ
∂ zi

(
z1
)

t i
z = −∑ j

∂h
∂w j

(
w1
)

t
j
w, and ρ

(
z1
)
= −h

(
w1
)
. Then

(2.3) gives

〈
i∂∂ρ

(
z1) ;tz, tz

〉
≥

1− s

−h(w1)

∣∣∣∣∣∑
j

∂h

∂w j

(
w1) t j

w

∣∣∣∣∣

2

+ ε |tz|
2 .

Thus

〈
i∂∂ r

(
z1,w1) ;t, t

〉
≥

1− s

−h(w1)

∣∣∣∣∣∑
j

∂h

∂w j

(
w1) t j

w

∣∣∣∣∣

2

+
〈

i∂∂ h
(
w1) ;tw, tw

〉
+ ε |tz|

2 .

The conclusion comes then from the fact that the hypothesis made on h is

i∂∂ h≥max

{
i
1− s′

h
∂h∧∂h,ε1i∂∂ |w|2

}
,

with 0≤ s′ < s and ε1 a non-negative function, which is positive at w1 if h is strictly pluri-subharmonic at that point: s′ ≤ s gives
immediately (1), and, if h is strictly pluri-subharmonic at w1, then ε

(
z1
)
> 0, ε1

(
w1
)
> 0 and

〈
i∂∂ r

(
z1,w1) ;t, t

〉
≥ ε2 |t|

2 ,

for ε2 > 0 small. �

Proposition 2.2. Let Ω be a bounded pseudo-convex domain, with smooth boundary. Let h be a smooth non-negative function

defined in Cm. Let ρ = ρs be a smooth defining function of Ω satisfying (2.2) as stated in Section 2.1.

(1) Then, if h satisfies Condition I of Section 2.2, Ω̃ is pseudo-convex.

(2) Moreover, for
(
z0,w0

)
∈ ∂ Ω̃, w0 6= 0 if, in addition, h is strictly pluri-subharmonic at w0, Ω̃ is strictly pseudo-convex at(

z0,w0
)
.

Proof. Let
(
z0,w0

)
∈ ∂ Ω̃. If ∂ρ

(
z0
)
6= 0, Ω̃ is pseudo-convex at

(
z0,w0

)
by Proposition 2.1. If ∂ρ

(
z0
)
= 0, then z0 ∈ Ω and

(2.3) shows that ρ is strictly pluri-subharmonic in a neighborhood of z0. Thus r is pluri-subharmonic in a neighborhood of(
z0,w0

)
and strictly pluri-subharmonic if h is strictly pluri-subharmonic at w0. �

Remark 2.2. When m = 1 and h(w) = |w|2, the domain Ω̃ = {ρ(z)+ h(w)< 0} is pseudo-convex at a point
(
z1,w1

)
∈ ∂ Ω̃,

w1 6= 0, if and only if

i∂∂ ρ
(
z1)≥ i

ρ (z1)

(
∂ρ ∧∂ρ

)(
z1) .

For example, if ρ is the signed distance to the boundary of Ω, by Oka’s theorem,
{

ρ(z)+ |w|2 < 0
}

is pseudo-convex.

Example 2.2. With the function h given in Example 2.1, (1) of Proposition 2.2 applies for any pseudo-convex domain Ω. Note
also that, h̃1(w) = h(w)+ |w|2q, q ∈ N∗ satisfies the condition stated in (2) of the proposition.

Proof. As noted in the proof of Example 2.1, i∂∂
(
|w|2q

)
≥ i

|w|2q ∂
(
|w|2q

)
∧∂
(
|w|2q

)
. �

Remark 2.3. For Ω pseudo-convex in Cn, E. Ligocka considered, in [Lig89], the domains

Ω̃N,k =
{
(z,w) ∈ Cn×Cm s. t. ρ(z)+ |w|2Nk < 0

}
,

where k is a sufficiently large integer such that the defining function ρ of Ω satisfies that −(−ρ)
1/k is strictly plurisubharmonic

in Ω and N a positive integer. She showed that if Ω is “weakly regular”, then so is Ω̃N,k.
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2.4. Type finiteness of Ω̃

We now investigate the question concerning the type of the domain Ω̃ defined by equation (2.1) with a defining function ρ of
Ω which does not necessarily satisfy (2.2).

Let us introduce first a notation. If g is a real or complex valued smooth function defined in a neighborhood of the origin in
Rd , we call the order of g at the origin the integer ord0(g) defined by ord0(g) = ∞ if g(α)(0) = 0 for all multi-index α ∈ Nd and

ord0(g) = min
{

k ∈ N such that there exists α ∈ Nd , |α|= ∑αi = k such that g(α)(0) 6= 0
}

otherwise. Moreover if f = ( f1, . . . , fq) is a smooth function defined in a neighborhood of the origin in Rd with values in Rq

the order of f at the origin is ord0( f ) = min{ord0 ( fi) , 1≤ i≤ q}. If h is a smooth function defined in a neighborhood of the
origin in Cm, then, for all function ϕ from the unit disc of the complex plane into Cm such that ϕ(0) = 0, h ◦ϕ is smooth in a

neighborhood of the origin in C. Then we call the type of h at the origin the supremum of ord0(h◦ϕ)

ord0(ϕ)
, taken over all non-zero

holomorphic function ϕ from the unit disc of the complex plane into Cm such that ϕ(0) = 0. If this supremum is finite, we will
say that h is of finite type at the origin and we will denote this supremum by typ0(h). Moreover, if k is a smooth function defined
in a neighborhood of a point z0 ∈C

m, the type typz0
(k) of k at z0 is typ0 (hk) where hk(z) = k (z0 + z) and we say that k is of finite

type at z0 if typz0
(k)<+∞.

Proposition 2.3. Let z0 ∈ Cn and U (resp. V ) be an open neighborhood of z0 (resp. of the origin in Cm). Let ρ : U → R (resp.

h :V→R+) be a smooth function such that ρ (z0)= 0 and ∇ρ does not vanishes in U (resp ∇h(w) 6= 0 if w 6= 0 and h(w) 6= 0 if and

only if w 6= 0). Assume that the restriction of i∂∂ρ to the complex tangent space to the hypersurface ∂G = {z ∈U s. t. ρ(z) = 0}
is non-negative, that ∂G is of finite type τ at the point z0 and that h is of finite type typ0(h) at the origin.

Then the boundary of G̃= {(z,w) ∈U×V s. t. r(z,w) = ρ(z)+ h(w)< 0} is of finite type max(τ, typ0(h)) at the point (z0,0).

Proof. To simplify the notations, we can assume z0 = 0. Let Φ = (ϕ ,ψ) be a non-constant holomorphic function from the unit

disc of the complex plane into U ×V such that Φ(0) = 0. We want to estimate ord0(r◦Φ)

ord0(Φ)
, and therefore we can assume that the

first derivative of r ◦Φ vanishes at the origin. As the gradient of h vanishes at the origin, this implies that the first derivative of
ρ ◦ϕ vanishes at the origin which means that the gradient of ϕ at 0 is “tangent” to ρ at 0 (i.e. ∑

∂ϕi

∂ζ
∂ρ
∂ zi

(0) = 0). Clearly, by the

hypothesis made on ∂G, we can assume that the order of h ◦ψ at the origin is not infinite, and then, by Lemma 8.1 of [CD08]
and the hypothesis made on h, there exists an integer k≥ 1 such that all the derivatives of order < 2k of h◦ψ vanish at the origin
and△k (h ◦ψ)(0)> 0.

As ord0 (Φ) is the minimum of ord0 (ϕ) and ord0 (ψ), to prove the proposition it suffices to prove that

ord0 (r ◦Φ)≤min{ord0 (ρ ◦ϕ) ,ord0 (h ◦ψ)}= min{ord0 (ρ ◦ϕ) ,2k}

(note that this not a trivial consequence of the fact that ρ and h are decoupled).
Note first that, if ord0 (ρ ◦ϕ)< 2k or ord0 (ρ ◦ϕ)> 2k, the inequality is obvious. Thus we can assume ord0 (ρ ◦ϕ) = 2k, and

we have to prove that ord0 (r ◦Φ) = 2k.
Suppose it is not the case: it follows that all the derivatives of r ◦Φ of order ≤ 2k vanish at 0. Consider△k (ρ ◦ϕ)(0). As ϕ

is holomorphic, we have

(2.4) △k (ρ ◦ϕ)(0) =△k−1
(〈

∂∂ρ(ϕ);ϕ ′,ϕ ′
〉)

(0).

As all the derivatives of ρ ◦ϕ of order less or equal than 2k−1 vanish at the origin, we have ρ ◦ϕ (ζ ) = O
(
ζ 2k
)
. For ζ small, let

ξ = ξ (ζ ) be the projection of ϕ(ζ ) on {z ∈U s. t. ρ(z) = 0} so that ϕ(ζ )− ξ = O
(
ζ 2k
)
. By the hypothesis ord0 (ρ ◦ϕ) = 2k,

all the derivatives of 〈∂ρ(ϕ);ϕ ′〉 of order less or equal than 2k− 2 vanish at the origin, which implies that there exists a vector
T = T (ζ ) tangent to {ρ = ρ(ξ )} at the point ξ such that ϕ ′(ζ ) = T +O

(
ζ 2k−1

)
. Then, by hypothesis on the hypersurface ∂G,

we have 〈
i∂∂ ρ(ϕ(ζ ));ϕ ′(ζ ),ϕ ′(ζ )

〉
=
〈

i∂∂ ρ(ξ );T,T
〉
+O

(
ζ 2k−1

)
≥−C |ζ |2k−1 .

Applying Lemma 8.1 of [CD08] to the positive function
〈

i∂∂ ρ(ϕ(ζ ));ϕ ′(ζ ),ϕ ′(ζ )
〉
+C |ζ |2k−1 ,

by (2.4), we get△k (ρ ◦ϕ)(0)≥ 0 which is impossible since 0 =△k (r ◦Φ) (0) =△k (ρ ◦ϕ)(0)+△k (h ◦ψ)(0)> 0. �

Recall that in Proposition 2.3 we do not assume that ρ necessarily satisfies (2.2).
Applying this proposition to a general pseudo-convex domain, we get:

Corollary 1. Assume that ρ = ρs where ρs satisfy (2.2) as stated in Section 2.1.

(1) Assume that h satisfies Condition I of Section 2.2. Let z0 be a boundary point of Ω. If ∂Ω is of finite type τ at z0 and

if h is of finite type typ0(h) at the origin, then ∂ Ω̃ is of finite type max(τ, typ0(h)) at the point
(
z0,0

)
. Moreover, if h

is strictly pluri-subharmonic in Cn \ {0} then ∂ Ω̃ is strictly pseudo-convex at every boundary point
(
z0,w0

)
such that

w0 6= 0.
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(2) Assume that h satisfy Condition II of Section 2.2. Then Ω̃ is pseudo-convex and, at every point
(
z0,w0

)
∈ ∂ Ω̃, w0 6= 0,

∂ Ω̃ is of finite type maxi s. t. w0
i =0 {typ0 (hi)} if there exists some i such that w0

i = 0 and is strictly pseudo-convex if

w0
i 6= 0 for all i.

Proof. The first part of (1) is a special case of Proposition 2.3, and the second part is stated in Proposition 2.2.
Let us now prove (2). The pseudo-convexity of Ω̃ follows from the results of Section 2.3. If w0

i 6= 0 for all i, as before,
∂ Ω̃ is strictly pseudo-convex at

(
z0,w0

)
. So, assume that there exists some i such that w0

i = 0. Without loss of generality, we
can suppose that w0

k+1 = . . . = w0
p = 0, k < p, and w0

l 6= 0 for 1 ≤ l ≤ k. Let us denote w = (w′,w′′), with w′ = (w1, . . . ,wk),

w′′ =(wk+1, . . . ,wp), and ρ1 (z,w
′) = ρ(z)+∑k

i=1 hi (wi). In a neighborhood of
(
z0,w′0

)
, ∇ρ1 does not vanish, {ρ1 < 0} is strictly

pseudo-convex, and we can apply Proposition 2.3 to the domain ρ1 (z,w
′)+∑

p
i=k+1 hi (wi) < 0 and the function h1 (w

′′) at the
point

(
z0,w′0,0

)
. �

When Ω admits a pluri-subharmonic defining function which is of finite type (in the sense defined at the beginning of the
section) everywhere in Ω, the proposition gives:

Corollary 2. Assume Ω admits a defining function ρ pluri-subharmonic in a neighborhood of Ω and of finite type in Ω. Assume

that h satisfies Condition II of Section 2.2. Then the domain Ω̃, defined with ρ , is pseudo-convex of finite type. More precisely, at

every point
(
z1,w1

)
∈ ∂ Ω̃ the type of ∂ Ω̃ is bounded by max

{
typz1(∂Ω), typ0(hi), 1≤ i≤ p

}
if w1 = 0 and by

max

{
2typz1(ρ), max

i such that wi 6=0
{typ0 (hi)}

}

otherwise.

Proof. Let us first consider the case p = 1. By Proposition 2.3, Ω̃ is of finite type max
{

typz1(∂Ω), typ0(h)
}

at every point(
z1,0

)
∈ ∂ Ω̃, and we have to study the finiteness at points

(
z1,w1

)
∈ ∂ Ω̃ such that w1 6= 0. Let Φ = (ϕ ,ψ) be a non-constant

holomorphic function from the unit disc of the complex plane into a neighborhood of
(
z1,w1

)
such that Φ(0) =

(
z1,w1

)
. We

have to estimate τΦ = ord0(r◦Φ)

ord0(Φ−Φ(0))
, and we can, of course, assume that ord0 (r ◦Φ)≥ 2.

Let k be a positive integer and let us assume that all the derivatives of order ≤ 2k of r ◦Φ vanish at the origin. Then

△(r ◦Φ) (0) =
〈

∂∂ρ ;ϕ ′,ϕ ′
〉
(0)+

〈
∂∂ h;ψ ′,ψ ′

〉
(0) = 0,

and the hypothesis on ρ and h (pluri-subharmonicity of ρ and strict pluri-subharmonicity of h) imply
〈

∂∂ ρ ;ϕ ′,ϕ ′
〉
(0) =

〈
∂∂ h;ψ ′,ψ ′

〉
(0) = 0 and the last equality implies ψ ′(0) = 0. Moreover Lemma 8.1 of [CD08] implies that, for 1 ≤ j ≤ k− 1,

△ j
(〈

∂∂h;ψ ′,ψ ′
〉)

(0) = 0, and, by induction, a simple calculation shows that this implies ψ( j+1)(0) = 0, 1≤ j ≤ k−1. Then

all the derivatives of order ≤ k of h ◦ψ vanish at the origin, and, thus, the same is true for the derivatives of ρ ◦ϕ .
This implies first that the order of r ◦Φ cannot be infinite at 0. Assume it is l, and let k be a positive integer such that

l = 2k+ 1 or l = 2k+ 2. In both cases, the orders of ρ ◦ϕ − ρ
(
z1
)
, h ◦ϕ − h

(
w1
)

and ψ −ψ(0) are ≥ k + 1 and we have
ord0(r◦Φ)

ord0(Φ−Φ(0))
≤

2ord0(ρ◦ϕ−ρ(z1))
ord0(Φ−Φ(0)) which implies τΦ ≤ 2 if ord0 (ϕ−ϕ(0))≥ k+ 1 and τΦ ≤ 2typz1(ρ) if not.

The case p ≥ 2 follows easily. If, for all i, 1 ≤ i ≤ p, w1
i 6= 0 then h is strictly pluri-subharmonic at w1 and the previous

proof applies. Otherwise, to simplify notations, we can assume that w1
i 6= 0 for 1 ≤ i ≤ r < p and w1

i = 0 for r + 1 ≤ i ≤
p. Denoting u = (w1, . . .wr), v = (wr+1, . . . ,wp), ρ1 (z,u) = ρ(z)+∑r

i=1 hi (wi) and h1(v) = ∑
p
i=r+1 hi (wi), the previous case

shows that ρ1 is pluri-subharmonic and the type of ρ1 at
(
z1,u1

)
is bounded by 2typz1(ρ). The conclusion is obtained applying

Proposition 2.3. �

2.5. Geometric separation

If the domain Ω is completely geometrically separated at a boundary point z0 (see [CD08] for definition), we do not know, in
general, if Ω̃ has the same property at the point (z0,0). We can only prove the weaker following result (for which we will not
give a proof because we do not have any application):

Proposition 2.4. Assume that Ω is of finite type at z0 ∈ ∂Ω and that h(w) = ∑ |wi|
2qi , wi ∈ C. Then for all Diederich-Fornæss

defining function ρ of Ω of the form ρ = σe−L|z|2 (see [DF77a]) with L large enough (depending only on Ω), we have:

if there exist a neighborhood V of z0, K > 0 and a finite dimensional vector space E0 of (1,0) vector fields tangent to ρ in

V (i.e. Lρ ≡ 0 for L ∈ E0) such that, at any point of V ∩Ω and for any δ > 0 there exists a (K,δ )-extremal basis for ρ whose

elements belong to E0, then Ω̃ is geometrically separated at (z0,0).

Note that the hypothesis in this proposition is stronger than the simple fact that ∂Ω is geometrically separated at z0: the
existence of extremal basis is assumed not only on the points of ∂Ω∩V but on all Ω∩V (condition which depends not only on
Ω but also on the choice of ρ). Unfortunately, if we add the hypothesis that all the level set of ρ are “completely geometrically
separated” in Ω∩V we can not prove, in general, that Ω̃ has the same property at (z0,0). The only general result we have is when
Ω is in C2 (see Remark 2.4):
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Theorem 2.1. Assume Ω is pseudo-convex of finite type in C2. Assume that ρ = ρs with ρs satisfying (2.2) as stated in Section 2.1

and that h satisfies Condition III of Section 2.2. Then the domain

Ω̃ =

{
(z,w) = (z,w1, . . . ,wm) ∈ C2×Cm s. t. r (z,w) = ρ(z)+

m

∑
i=1

hi (wi)< 0

}

is pseudo-convex of finite type and has a Levi form which is locally diagonalizable at every point of its boundary. In particular

Ω̃ is completely geometrically separated (c.f. [CD08]).

Proof. Let
(
z0,w0

)
be a boundary point of Ω̃. If w0

i 6= 0 for all i, then, by (2) of Corollary 1 following Proposition 2.3, ∂ Ω̃ is
strictly pseudo-convex at

(
z0,w0

)
. Thus we have only two cases to consider:

(1) w0 = 0;
(2) there exist i and j such that w0

i = 0 and w0
j 6= 0.

Let us consider the first case. Denote by L (resp. N) a non-vanishing vector field “complex tangent” (resp. normal) to ρ in
a neighborhood of z0 (i.e. L is of type (1,0) and Lρ ≡ 0). We assume that N is chosen so that Nρ ≡ 1 in that neighborhood.
Without changing the notation, we will consider these vector fields defined in a neighborhood of

(
z0,0

)
so that Lr≡ 0 and Nr≡ 1

in this neighborhood. Let us define m vector fields, Zi, “complex tangent” to r, in a neighborhood of
(
z0,0

)
by

Zi =
∂

∂wi

−
∂hi

∂wi

N,

and then m new vector fields, Wi, also “complex tangent” to r, by

W1 = Z1,

Wk+1 = Zk+1−
k

∑
j=1

a
j
k+1Wj for k ≥ 2.

We now show, by induction over k, that it is possible to choose the coefficients a
j

k so that the coefficient of the Levi form of
r,
[
Wk,Wk′

]
(∂ r), vanishes identically on the neighborhood of

(
z0,0

)
. To simplify notations, in this proof, the character > will

denote a C ∞ function in a neighborhood of the origin.
Suppose that the vector fields Wi, 1≤ i≤ k, have been constructed with coefficients a

j
i , 2≤ i≤ k, 1≤ j ≤ i−1 satisfying the

two following properties:

(1) a
j
i =>

∂hi

∂wi
,

(2)
[
Wi,Wi

]
(∂ r) = γi

∂ 2hi

∂wi∂wi
, where γi is a C ∞ real function in a neighborhood of the origin of modulus greater than 1/2,

and let us prove that Wk+1 can be constructed, so that the coefficients a
j

k+1, 1 ≤ j ≤ k satisfy the above conditions. Note that the
hypotheses made on hi imply first that (2) follows from (1) because (1) implies

[
Wi,Wi

]
(∂ r) =

∂ 2hi

∂wi∂wi

+

∣∣∣∣
∂hi

∂wi

∣∣∣∣
2 [

N,N
]
(∂ρ)+>

∂hi

∂wi

+>
∂hi

∂wi

.

Note also that W1 satisfy trivially (2).
Thus we construct Wk+1 with coefficients a

j
k+1 satisfying (1).

For j ≤ k, by induction, we have

[
Wk+1,Wj

]
(∂ r) =−

∂h j

∂w j

[
N,Wj

]
(∂ r)− a

j

k+1

[
Wj,Wj

]
(∂ r)

with

[
N,Wj

]
(∂ r) = −

∂h j

∂w j

[
N,N

]
(∂ρ)− ∑

1≤l< j

al
j

[
N,Wl

]
(∂ r)

= >
∂h j

∂w j

,

if 2≤ j ≤ k, and
[
N,W1

]
(∂ r) =>

∂h1

∂w1
.

This shows, by Condition III of h, that the a
j

k+1 can be defined satisfying (1) and such that
[
Wk+1,Wj

]
(∂ r) ≡ 0.

To finish the proof of the first case, we modify the vector field L replacing it by L1 = L−∑m
k=1 bkWk choosing the bk so that

the basis (L1,W1, . . . ,Wm) diagonalizes the Levi form of r in a neighborhood of
(
z0,0

)
which means, now,

[
L1,Wi

]
(∂ r) ≡ 0 in
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that neighborhood:

[
L1,Wi

]
(∂ r) =

[
L,Wi

]
(∂ r)− bi

[
Wi,Wi

]
(∂ r)

=

{
− ∂hi

∂wi

[
L,N

]
(∂ r)−∑1≤l<i al

i

[
L,Wi

]
(∂ r)− bi

[
Wi,Wi

]
(∂ r) if i≥ 2

− ∂h1
∂w1

[
L,N

]
(∂ r)− bi

[
Wi,Wi

]
(∂ r) if i = 1

= >
∂hi

∂wi

− bi

[
Wi,Wi

]
(∂ r) ,

and, by (2), bi can be chosen C ∞ in a neighborhood of
(
z0,0

)
.

Let us now consider the second case (2). To simplify the notations, we assume that w0
i 6= 0 for 1≤ i≤m0 < m and w0

i = 0 for
m0 + 1 ≤ i ≤ m. We denote w = (w′,w′′), with w′ =

(
w1, . . . ,wm0

)
, w′′ =

(
wm0+1, . . . ,wm

)
, ρ1 (z,w′) = ρ(z)+∑

m0
i=1 hi (wi) and

h1 (w′′) = ∑m
i=m0+1 hi (wi).

By Proposition 2.1, in a neighborhood of
(
z0,w′0

)
, the hypersurface

{
ρ1 = 0

}
is strictly pseudo-convex. Then, reducing

eventually the neighborhood, there exists a basis of vector fields
(
L1, . . . ,Lm0−1

)
“complex tangent” to ρ1 (i.e. Li

(
ρ1
)
≡ 0)

which diagonalizes the Levi form of ρ1 in that neighborhood. Let us denote by N the complex normal vector field to ρ1 in that
neighborhood such that Nρ1 ≡ 1 (note that, reducing the neighborhood if necessary, we can assume that the gradient of ρ1 does
not vanishes in the neighborhood). We now consider the following m−m0 vector fields (which are “complex tangent” to ρ1 in
the neighborhood)

W1 =
∂

∂wm0+1
−

∂hm0+1

∂wm0+1
N−

m0−1

∑
i=1

ai
1Li,

Wj =
∂

∂wm0+ j

−
∂hm0+ j

∂wm0+ j

N−
m0−1

∑
i=1

ai
jLi−

j−1

∑
l=1

bl
jWl , for j ≥ 2.

To finish the proof of the theorem, we show that it is possible to choose the coefficients ai
j and bl

j C ∞ in a neighborhood of(
z0,w0

)
so that the basis of vector field

(
L1, . . . ,Lm0−1,W1, . . . ,Wm−m0

)
diagonalizes the Levi form of r in that neighborhood. We

do this using an induction argument similar to the one used in the first case: assume that the vector fields Wj, 1≤ j≤ k have been
constructed and that their coefficients satisfy

(1) ai
j and bl

j =>
∂hm0+ j

∂wm0+ j
, where > is a C ∞ function in a neighborhood of

(
z0,w0

)
,

(2)
[
Wj,Wj

]
(∂ r) = γ j

∂ 2hm0+ j

∂wm0+ j∂wm0+ j
, where γ j is a C ∞ real function in a neighborhood of

(
z0,w0

)
greater, in modulus, than

1/2.

As for the first case, note that (2) follows (1). Then, for 1≤ j ≤ m0− 1,

[
Wk+1,L j

]
(∂ r) =−

∂hm0+k+1

∂wm0+k+1

[
N,L j

]
(∂ r)− a

j
k+1

[
L j,L j

]
(∂ r) ,

and, for j ≤ k,

[
Wk+1,Wj

]
(∂ r) =−

∂hm0+k+1

∂wm0+k+1

[
N,Wj

]
(∂ r)− b

j

k+1

[
Wj,Wj

]
(∂ r) ,

and the results follow, noting that
[
L j,L j

]
(∂ r) is bounded from below by a strictly positive constant in a neighborhood of

(
z0,w0

)
, and, as in the first case, that

[
N,Wj

]
(∂ r) =>

∂hm0+ j

∂wm0+ j
, with > is a C ∞ function in a neighborhood of

(
z0,w0

)
. �

Example. If h(w) = ∑hi (wi), wi ∈ C, where each function hi is a positive radial analytic function vanishing at the origin, then
the hypothesis of the theorem are verified.

The proof of the second case, shows that Theorem 2.1 is also valid if Ω is a smooth strictly pseudo-convex domain in Cn (of
any dimension). Moreover, applying first the method of the second case and then the one of the first case, this is also true when
the rank of the Levi form of ρ is ≥ n− 2. Thus:

Theorem 2.2. Assume that ρ = ρs with ρs satisfying (2.2) as stated in Section 2.1 and that h satisfy Condition III of Section 2.2.

If the rank of the Levi form of ρ is ≥ n− 2, then Ω̃ is locally diagonalizable at every point of its boundary.

Remark 2.4. If Ω is a smooth bounded convex domain of finite type in Cn we do not know if it is always possible to choose
a defining function ρ and a function h so that Ω̃ is “completely geometrically separated” at any boundary point (we will see in
Section 4.2 that this is possible near {w = 0}).
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3. RELATIONS BETWEEN OPERATORS RELATED TO Ω̃ AND TO Ω

Assume that Ω is a smooth bounded pseudo-convex domain of finite type in Cn, that ρ = ρs is a defining function of Ω
where ρs satisfies (2.2) as stated in Section 2.1, and that h satisfies, at least, Condition II of Section 2.2. Thus, by Corollary 1 of
Proposition 2.3, the domain

Ω̃ =
{
(z,w) ∈ Cn+m s. t. ρ(z)+ h(w)< 0

}
,

is a smooth bounded pseudoconvex domain of Cn+m of finite type.
In this section we assume that the functions hi defining h are radial (i.e. h(w) = ∑hi (|wi|), and, taking into account the

properties of the ∂ -Neumann problem for Ω̃, we derive properties of solutions of the ∂ -equation and properties of the Bergman
projections related to the weight

(3.1) ω(z) =

∫

{h(w)<−ρ(z)}
dλ (w).

Suppose f = ∑n
i=1 fidzi is a (0,1)-form on Ω. Consider it as a (0,1)-form f̃ in Ω̃. If f is ∂ -closed, then so is f̃ , and if ũ is

a solution of ∂ ũ = f̃ in Ω̃, then ũ is holomorphic in the variable w and the function u defined by u(z) = ũ(z,0) is a solution of

the equation ∂ u = f in Ω. Moreover, for all α ∈ Nn, denoting Dα
z = ∂ |α|

∂ z
α1
1 ...,∂ z

αn
n

, we have Dα
z u(z) = Dα

z ũ(z,0), w 7→ Dα
z ũ(z,w)

is holomorphic, for any p ∈ [1,+∞], w 7→
∣∣Dα

z ũ(z,w)
∣∣p is pluri-subharmonic, and, by the mean value property (the functions hi

being radial),

Dα
z u(z) = (ω(z))−1

∫

{h(w)<−ρ(z)}
Dα

z ũ(z,w)dλ (w),

and ∫

Ω

∣∣Dα
z u(z)

∣∣p ω(z)dλ (z)≤

∫

Ω̃

∣∣Dα
z ũ(z,w)

∣∣p dλ (z,w).

Thus:

Lemma 3.1. With the conditions and notations stated above, for any p ∈ [1,+∞] and any integer t ≥ 0, denote by L
p,t
ω (Ω) the

Sobolev space of functions g (resp. of (0,1)-forms g = ∑n
i=1 gidzi) such that, for all α ∈Nn, |α| ≤ t, Dα

z g belongs to the weighted

Lp space L
p
ω (Ω) = Lp(Ω,ω(z)dλ (z)) (resp. to the weighted space L

p,t
(0,1),ω (Ω) of (0,1)-forms g on Ω whose coefficients gi belong

to L
p,t
ω (Ω)) equipped with the norm ‖g‖

L
p,t
ω (Ω) = ∑|α |≤t

∥∥Dα
z g
∥∥

L
p
ω (Ω)

(resp. ‖g‖
L

p,t
(0,1),ω (Ω) = ∑n

i=1 ∑|α |≤t

∥∥Dα
z gi

∥∥
L

p
ω (Ω)

). Then

(1) f is in L
p,t
(0,1),ω(Ω) if an only if f̃ belongs to L

p,t
(0,1)(Ω̃) and, in this case, ‖ f‖

L
p,t
(0,1),ω (Ω) =

∥∥∥ f̃

∥∥∥
L

p,t
(0,1)(Ω̃)

;

(2) If ũ belongs to Lp,t
(

Ω̃
)

then u belongs to L
p,t
ω (Ω) and ‖u‖

L
p,t
ω (Ω) ≤ ‖ũ‖Lp,t(Ω̃).

Similarly, a function u belongs to L2
ω (Ω) if and only if the function ũ, defined on Ω̃ by ũ(z,w) = u(z), belongs to L2

(
Ω̃
)

.

So, if PΩ̃ denotes the Bergman projection of Ω̃ and PΩ
ω the Bergman projection of Ω with the weight ω , as h(w) = ∑

p
i=1 hi (|wi|),

wi ∈ Cmi , by the mean value property we have PΩ
ω (u)(z) = PΩ̃ (ũ) (z,0). Then:

Lemma 3.2. With the above notations,

(1) We have ‖u‖
L

p,t
ω (Ω) = ‖ũ‖Lp,t(Ω̃);

(2) We have PΩ
ω (u)(z) = PΩ̃ (ũ)(z,0) and

∥∥PΩ
ω (u)

∥∥
L

p,t
ω (Ω)

≤
∥∥∥PΩ̃ (ũ)

∥∥∥
Lp,t(Ω̃)

.

(3) For any ∂ -closed (0,1)-form f ∈ L2
ω(Ω), denoting f̃ (z,w) = f (z), ∂

∗
N

Ω̃

(
f̃

)
(z,0) is the solution of the equation ∂u= f

orthogonal to holomorphic functions in L2
ω(Ω).

(4) If KΩ
B,ω (resp. KΩ̃

B ) denotes the Bergman kernel of Ω associated to the measure ω(z)dλ (z) (resp. of Ω̃ associated to the

Lebesgue measure), we have KΩ
B,ω(z,ζ ) = KΩ̃

B ((z,0),(ζ ,0)).

Now, we will derive from these lemmas some simple weighted estimates on Ω when the corresponding unweighted estimates
are known on Ω̃.

3.1. Sobolev estimates for general pseudo-convex domain

As Ω̃ is of finite type, by the fundamental result of D. Catlin ([Cat87]) the ∂ -Neumann problem of Ω̃ satisfies a subelliptic
estimate. Then, all the associated operators map continuously the L2 Sobolev spaces of Ω̃ into themselves.

To respect traditional notations, denote, for t ∈N, W t
ω(Ω) = L

2,t
ω (Ω) and W t

(0,1),ω (Ω) = L
2,t
(0,1),ω(Ω).

Lemmas 3.2 and 3.1 imply thus:

Theorem 3.1. Let Ω be a smooth bounded pseudo-convex domain of finite type in Cn. Let ρ = ρs be a defining function of Ω
where ρs satisfies (2.2) as stated in Section 2.1. Let h be a smooth function on Cm satisfying Condition II of Section 2.2 the

functions hi being radial. Then, ω being the weight defined by (3.1):
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(1) For any integer t, if f is a ∂ -closed (0,1)-form in W t
(0,1),ω(Ω), then the solution to the equation ∂u = f orthogonal to

holomorphic functions in L2
ω (Ω) satisfies ‖u‖W t

ω (Ω) ≤C‖ f‖W t
(0,1),ω (Ω), the constant C depending on ρ , h and t;

(2) For any integer t, the weighted Bergman projection PΩ
ω maps the Sobolev space W t

ω (Ω) continuously into itself.

Theorem 1.2 is (2) of the following corollary:

Corollary. Let Ω and ρ be as in the theorem. Let r ≥ 0 be a rational number and ϕr be the pluri-subharmonic function

ϕr = −r log(−ρ) (c.f. Remark 2.1). Let us denote by Nϕr the ∂ -Neumann operator for the weight e−ϕr acting on (0,1)-forms

and by ∂
∗
ϕr

N
(0,1)

ϕr
the restriction to the space of ∂ -closed forms in L2

(0,1),(−ρ)r
(Ω) of the operator ∂

∗
ϕr

Nϕr giving the L2
(−ρ)r

minimal solution of the ∂ -equation. Let us denote by Bϕr the Bergman projection of L2
ϕr
(Ω). Then:

(1) For all t ≥ 0, ∂
∗
ϕr

N
(0,1)

ϕr
maps the subspace of ∂ -closed forms of W t

(0,1),(−ρ)r
(Ω) continuously into W t

(−ρ)r
(Ω).

(2) For all real number t, Bϕr maps W t
(−ρ)r(Ω) continuously into itself.

Remark 3.1.

(1) In the corollary, the function h is equal to ∑ |wi|
2qi , wi ∈ C, the integers qi being chosen so that r = ∑ 1

qi
. Ω̃ being of

finite type, there is a gain in the Sobolev scale for the estimates of the ∂ -Neumann problem on Ω̃. This implies a similar

gain for ∂
∗
ϕr

N
(0,1)

ϕr
. But this gain is the inverse on the type of Ω̃ which is given in Corollary 1 of Proposition 2.3 and,

then, can be very small depending on r.
(2) If Ω is a smooth bounded pseudo-convex domain in Cn (not assumed of finite type) admitting a defining function ρ which

is pluri-subharmonic in Ω then:
(a) If h is a positive pluri-subharmonic function satisfying ∇h(w) 6= 0 if w 6= 0, lim|w|→+∞ h(w) = +∞ and h(w) =

∑
p
i=1 hi (|wi|), w = (w1, . . . ,wp), wi ∈ Cmi , then Ω̃ is bounded, admits a pluri-subharmonic defining function and,

applying a theorem of H. Boas & E. Straube ([BS91]), we get that, for all real number t, the weighted Bergman
projection PΩ

ω maps the Sobolev spaces W t
ω(Ω) continuously into themselves.

(b) Moreover, if ρ is of finite type in Ω then Corollary 2 of Proposition 2.3 shows that the results of the theorem and
the corollary are also valid using ρ to define Ω̃ and thus for other weights ω .

3.2. Lipschitz estimates for domains in C2

Here we obtain estimates on weighted Bergman projections of Ω using only properties of the Bergman projection of the
domain Ω̃. For this we need Ω̃ to be “completely geometrically separated” and we assume:

Ω is a domain in C2, or the rank of the Levi form of ∂Ω is ≥ n−2, ρ = ρs with ρs satisfying (2.2) as stated in Section 2.1 and

h satisfies Condition III of Section 2.2. We denote by ω = ωρ ,h the associated weight (equation (3.1)).

Let M be the type of Ω. By [CD06b, CD06a], we know that PΩ̃ maps continuously the Lipschitz space Λα(Ω̃), α ≥ 0, into
itself and that the space of holomorphic functions in Λα(Ω) is continuously embedded in the anisotropic Lipschitz space Γα(Ω)
for α < 1/M. Then Lemma 3.2 gives immediately:

Theorem 3.2. In the conditions stated above for Ω, ρ , h and ω , the weighted Bergman projection PΩ
ω maps the Lipschitz space

Λα(Ω) continuously into itself for all α ≥ 0 and into the anisotropic Lipschitz space Γα(Ω) for α < 1/M.

Remark.

(1) In the next section, using pointwise estimates of the kernel of PΩ
ω we will extend the Lipschitz estimate for PΩ

ω to convex
domains of finite type in Cn but for a smaller class of weights ω .

(2) In the conditions of the preceding theorem, choosing h(w) = ∑i |wi|
qi , wi ∈C, the weight ω is equal to (a constant times)

(−ρ)q, with q = ∑ 1
qi

. Using that the Bergman projection PΩ̃ of Ω̃ maps the Sobolev spaces L
p
s (1 < p < +∞, s ∈ N)

continuously into themselves ([CD06b, CD06a]), we get immediately that the weighted Bergman projections PΩ
ω maps

the (weighted) Sobolev spaces L
p
s ((−ρ)q

dλ ) continuously into themselves and it is easy to extended this to the spaces
L

p
s

(
(−ρ)t dλ

)
for−1 < t− q < p− 1.

In the next section, establishing pointwise estimates of the kernel of PΩ
ω we will get the (better) results stated in Theo-

rem 1.1.

4. SHARP ESTIMATES OF THE WEIGHTED BERGMAN KERNEL AND PROOF OF THEOREM 1.1

The aim of this section is to establish precise pointwise estimates of the kernel of the weighted Bergman projection PΩ
ω in terms

of the geometry of Ω (from which we will deduce Theorem 1.1) using pointwise estimates of the kernel of PΩ̃ and Lemma 3.2.

Hence we need, at least, that the domain Ω̃ is “completely geometrically separated” near the set
{
(z,0) ∈ Ω̃

}
and to have a

precise comparison of the geometries of Ω̃ and Ω. We are able to do this in the two following cases:

• Ω is a finite type domain in C2, ρ = ρs satisfies (2.2) and h satisfies Condition IV of Section 2.2
• Ω is a convex domain of finite type in Cn, ρ = g4e1−1/g− 1 where g is a gauge function of Ω, so that ρ is convex and of

finite type in a neighborhood of ∂Ω, and h satisfies Condition V of Section 2.2
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(the weight ω being given by (3.1)). Recall that for a convex domain containing the origin of Cn, the gauge relative to 0 is defined
by

g(z) = inf{t ≥ 0 such that z ∈ tΩ} .

Then it is easy to see that g is convex, smooth outside the origin and of finite type in a neighborhood of ∂Ω. Thus the defining
function we choose is smooth.

Note that, for the convex case, we are not able, in general, to get complete geometric separation of Ω̃ near ∂Ω×{0} if we use
a Diederich-Fornæss defining function (see Proposition 2.4). This property being indispensable in this section we need to use
another defining function defined using the gauge: doing this, we loose the property of finite type everywhere on ∂ Ω̃ and so the

global properties of the Bergman projection PΩ̃ but local estimates of the kernel of PΩ̃ will suffice for our purpose.

4.1. The case of finite type domains in C2

4.1.1. Precise comparison between the geometries of Ω and Ω̃

We assume that the defining function ρ of Ω is ρ = ρs where ρs satisfies (2.2) as stated in Section 2.1 and that the function h

satisfies Condition IV of Section 2.2 (so that Ω̃ is of finite type and has a Levi form locally diagonalizable at every point of ∂ Ω̃).
We use the notations of the proof of Theorem 2.1 for L, N, L1 and Wk, and let us denote by Ñ the complex normal to the

defining function r of Ω̃ (i.e. Ñ (r) ≡ 1 in a neighborhood of the boundary of Ω̃). Moreover, for the geometries, using the

notation “FΩ (L,z,δ ))” introduced in Section 2 of [CD08], we denote F̃1

(
ζ̃ ,δ

)
= δ−2, F̃2

(
ζ̃ ,δ

)
= F Ω̃

(
L1, ζ̃ ,δ

)
, F̃i

(
ζ̃ ,δ

)
=

F Ω̃
(

Wi−2, ζ̃ ,δ
)

and FL (ζ ,δ ) = FΩ (L,ζ ,δ ).

Let us first compare the weights F̃i

(
ζ̃ ,δ

)
and FL(ζ ,δ ) constructed with the extremal basis defined in Section 2.5.

Lemma 4.1. We have:

(1) L1 = L−∑>Wk = L−∑> ∂
∂wi
−
(

∑>
∂hi

∂wi

)
N, where > are C ∞ functions;

(2) N = β Ñ +∑

(
>

∂hi

∂wi
+∑ j>i>

∣∣∣ ∂h j

∂w j

∣∣∣
2
)

Wi, where β and > are C ∞ functions, β ≃ 1 for |w| small.

Proof. Part (1) is a trivial consequence of the definitions of the vector fields. Let us give some indications for part (2). We have

Ñ =
∇ρ +∇h

|∇ρ |2 + |∇h|2
and N =

∇ρ

|∇ρ |2
.

Thus

N = β Ñ +>∑
∂hi

∂wi

(
Zi +

∂hi

∂wi

N

)
,

and (
1−∑>

∣∣∣∣
∂hi

∂wi

∣∣∣∣
2
)

N = β Ñ +∑

(
>

∂hi

∂wi

+∑
j>i

>

∣∣∣∣
∂h j

∂w j

∣∣∣∣
2
)

Wi.

�

Now we apply this lemma to estimate the weights F̃i

(
ζ̃ ,δ

)
for ζ̃ = (ζ ,0) ∈ ∂ Ω̃.

Denoting c11 =
[
L,L
]
(∂ρ), we have

c̃11 =
[
L1,L1

]
(∂ r)

=

[
L−∑>

∂

∂wi

−

(
∑>

∂hi

∂wi

)
N,L−∑>

∂

∂wi

−

(
∑>

∂hi

∂wi

)
N

]
(∂ r)

= c11 +∑>
∂hi

∂wi

+∑>
∂hi

∂wi

.

Then the order of the functions hi being greater than the type of Ω, it is obvious that F̃1

(
ζ̃ ,δ

)
≃ F1 (ζ ,δ ).

Furthermore, in the proof of Theorem 2.1, we saw that
[
Wk,Wk

]
(∂ r) = αk

∂ 2hk

∂wk∂wk
, αk ∈ C ∞, |αk| ≥ 1/2, then, as Wk =

∂
∂wk

+

>N +∑i<k >
∂

∂wi
and

F̃k+2 = ∑
L∈Lk

(
L
([

Wk,Wk

]
(∂ r)

)

δ

)2/|L |+2

,

it follows clearly that

F̃k+2

(
ζ̃ ,δ

)
≃

(
1
δ

)1/qk

. F̃1

(
ζ̃ ,δ

)
.

Finally, we compare the pseudo-distances in Ω and Ω̃.
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Let γ and γ̃ be the respective pseudo-distances in ∂Ω and ∂ Ω̃ defined by the exponential map of tangent vectors fields
associated to extremal basis (see [CD08] and [CD06b, p. 75 and 100]). Then

Lemma 4.2. With the above notations, γ (z,ζ )≃ γ̃
(

z̃, ζ̃
)

, for z and ζ in ∂Ω.

Proof. We use the notations introduced in [CD06b]: for Ω, Y1 = ℜeN, Y2 = ℑmN, Y3 = ℜeL1, Y4 = ℑmL1 and, for Ω̃,
Ỹ1 = ℜeÑ, Ỹ2 = ℑmÑ, Ỹ3 = ℜeL̃1,Ỹ4 = ℑmL̃1 and Ỹ2k+3 = ℜeWk, Ỹ2k+4 = ℑmWk. Then, following [CD06b, p. 100], there
exists ϕ : [0,1]→C2, piecewise C 1, such that ϕ(0) = z, ϕ(1) = ζ , ϕ ′(t) = ∑ai(t)Yi(ϕ(t)) a.e. with |ai(t)|. Gi (z,γ (z,ζ ))

−1/2,
where G1 =G2 = 1/δ 2 and G3 =G4 = F1(z,δ ). Now, let ϕ̃(t) = (ϕ(t),0) be the same curve considered in C2+m. Then Lemma 4.1
and G1(z,δ ) = G̃1 (z̃,δ ) =

1
δ 2 & F1(z,δ )≃ F̃1 (z̃,δ )& F̃k (z̃,δ ) = G̃2k+1 (z̃,δ ) = G̃2k+2 (z̃,δ ) , k≥ 2) show that ϕ̃ satisfies ϕ̃ ′(t) =

∑bi(t)Ỹi (ϕ̃(t)) with |bi(t)|. G̃i (z̃,γ (z,ζ ))
−1/2. Thus

γ̃
(

z̃, ζ̃
)
. γ (z,ζ ) .

To show the converse inequality, consider a curve ϕ̃ : [0,1]→ C2+m such that ϕ̃(0) = z̃, ϕ̃(1) = ζ̃ , ϕ̃ ′(t) = ∑bi(t)Ỹi (ϕ̃(t))

a.e. with |bi(t)|. G̃i

(
z̃, γ̃
(

z̃, ζ̃
))−1/2

.

First, we consider the component ϕ̃2+i(t) of the curve ϕ̃ . Let us decompose ϕ̃ ′ on the basis L, N, ∂
∂wi

and their conjugates.

Then the coefficient w̃i (ϕ̃
′(t)) of ϕ̃ ′(t) in the directions ∂

∂wi
or ∂

∂wi
is, in modulus, bounded from above by

F1

(
z, γ̃
(

z̃, ζ̃
))−1/2

+ F̃i

(
z̃, γ̃
(

z̃, ζ̃
))−1/2

+ γ̃
(

z̃, ζ̃
)
. F̃i

(
z̃, γ̃
(

z̃, ζ̃
))−1/2

. γ̃
(

z̃, ζ̃
)1/qi

,

and thus, since ϕ̃2+i(0) = 0,

|ϕ̃2+i(t)|. γ̃
(

z̃, ζ̃
)1/qi

.

Now let us denote ϕ(t) = (ϕ̃1(t), ϕ̃2(t)) the projection of ϕ̃ onto C2, and let us write ϕ ′(t) = ∑4
i=1 ci(t)Yi(ϕ(t)). We have to

estimate the contribution of the coefficients b j to the coefficient ci.

Suppose j > 4. The contribution to c3 and c4 is null and to c1 and c2 is bounded by ∂h
∂w j′

F̃j′+2

(
z̃, γ̃
(

z̃, ζ̃
))−1/2

(with an evident

correspondence j′←→ j). As
∣∣∣ ∂h j′

∂w j′

∣∣∣.
∣∣w j′

∣∣2q j′−1
. γ̃

(
z̃, ζ̃
) 2q

j′
−1

2q
j′ , this contribution is bounded by

γ̃
(

z̃, ζ̃
) 2q

j′ −1

2q
j′ γ̃

(
z̃, ζ̃
) 1

2q
j′ = γ̃

(
z̃, ζ̃
)
.

If j = 4 or 3, the contribution to c4 and c3 is bounded by γ̃
(

z̃, ζ̃
)

, and the contribution to c1 and c2 is bounded by

∑
∣∣∣∣

∂hi

∂wi

∣∣∣∣ F̃1

(
z̃, γ̃
(

z̃, ζ̃
))−1/2

. γ̃
(

z̃, ζ̃
)
.

When j = 1 or 2, the contribution is bounded by γ̃
(

z̃, ζ̃
)

.

This proves the lemma. �

4.1.2. Pointwise estimate of the Bergman kernel

Theorem 4.1. Assume that Ω is pseudo-convex of finite type in C2 and that the hypotheses on ρ , h, stated at the beginning of

the section are satisfied. Let L be the complex tangent vector field to ρ defined by L = ∂ρ
∂ z2

∂
∂ z1
− ∂ρ

∂ z1

∂
∂ z2

and N be the normal one

such that Nρ ≡ 1 in a small neighborhood U of ∂Ω. Let L be a list of vector fields belonging to
{

L,L,N,N
}

.

Let us denote by KΩ
ω the Bergman kernel of L2

ω(Ω) for the weight ω . Then for sufficiently close points p1 and p2 in U, we

have the following estimate:

∣∣∣L KΩ
ω (p1, p2)

∣∣∣ ≤ C|L |

(
1

δ (p1, p2)
2

)1+lN/2

F
1+lL/2

L (p1,δ (p1, p2))
m

∏
j=1

(
1

δ (p1, p2)

)1/q j

≃ C|L |

(
1

δ (p1,p2)
2

)lN/2

F
lL/2
L (p1,δ (p1, p2))

Volω (B(p1,δ (p1, p2)))
,

where FL is the weight associated to L, lL (resp. lN) denotes the number of times L or L (resp. N or N) appears in the list

L , δ (p1, p2) = |ρ (p1)|+ |ρ (p2)|+ δΩ (p1, p2), δΩ (p1, p2) = γ (π (p1) ,π (p2)), γ being the pseudo-distance on ∂Ω, and

B(p1,δ (p1, p2)) the associated pseudo-ball, of the geometry describe in [CD06b] and Volω denotes the volume with respect

to the measure ω(z)dλ (z).
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Proof. We use (3) of Lemma 3.2 and the sharp estimates on KΩ̃
B deduced from [CD06b].

Suppose |L |= 0. We have
∣∣∣KΩ̃

B

(
z̃, ζ̃
)∣∣∣. Vol

(
B̃

(
z̃, δ̃
(

z̃, ζ̃
)))−1

, by [CD06b, Main Theorem on the Bergman kernel, part

II, p. 77], with, by Lemma 4.2,

δ̃
(

z̃, ζ̃
)
= |r (z̃)|+

∣∣∣r
(

ζ̃
)∣∣∣+ δ

Ω̃

(
z̃, ζ̃
)
≃ |ρ(z)|+ |ρ(ζ )|+ δΩ(z,ζ ) =: δ ,

and, by [CD06b, Section 3],
∣∣∣KΩ̃

B

(
z̃, ζ̃
)∣∣∣ . Vol

(
B̃
(

π̃(z), δ̃
(

z̃, ζ̃
)))−1

.

The estimates of the functions Fi and F̃i in the proofs of the lemmas show that

Vol
(

B̃

(
π̃(z),δ

))
≃ δ 2F̃1

(
π̃(z),δ

) m

∏
k=1

δ
1/qk ≃ δ 2+∑k 1/qk F1(z,δ ).

To finish the proof, we have to estimate Vol(B(z,δ )) =
∫

B(z,δ )ω(ξ )dV (ξ ):

ω(ξ ) = Vol{w such that h(w)<−ρ(ξ )}

≃ ∏Vol{wi such that hi (wi)< ρ(ξ )} ≃∏(−ρ(ξ ))∑1/qi .

Then, using the fact that ξ ∈ B(z,δ ) and |ρ(z)|. δ imply |ρ(ξ )|. δ (see [CD06b, CD08]), we obtain

Vol(B(z,δ ))≃ δ 2+∑ 1/qiF1(z,δ )
−1,

which finishes the proof when ‖L ‖= 0.

When |L | ≥ 1, the proof is done similarly using Lemmas 4.1 and 4.2 and the inequalities on the derivatives of KΩ̃
B given in

[CD06b]. �

Remark. This proof easily generalizes in higher dimensions n when the Levi form of ρ has a rank ≥ n− 2.

4.2. The case of convex domains of finite type in Cn

Now we assume that the function h satisfies Condition V of Section 2.2 (for example h(w) = ∑ |wi|
2qi , wi ∈ C).

4.2.1. Choice of the defining function and geometry of Ω̃

Because of Remark 2.4, we have to choose a special defining function to obtain useful properties on Ω̃.
Let g be the gauge function for Ω. Then ρ = g4e1−1/g−1 is a smooth convex defining function for Ω which is of finite type in

a neighborhood of ∂Ω. Thus the domain Ω̃ = {(z,w) ∈ Cn×Cm such that ρ(z)+ h(w)< 0} is smooth, convex and of finite type
in a neighborhood of ∂Ω×{0}.

To get a useful estimate of the Bergman kernel of Ω̃, we need a precise comparison between the geometries of ∂Ω and of ∂ Ω̃
near the points of ∂Ω×{0}.

Let P0 ∈ ∂Ω, P̃0 = (P0,0) ∈ ∂ Ω̃ and δ > 0 sufficiently small. We now investigate extremal bases at P0 and P̃0 (in the sense of
[McN94, Hef04]).

Lemma 4.3. Let
(
zδ

1 , . . . ,z
δ
n

)
be a δ -extremal coordinate system at P0. Then it is possible to choose a δ -extremal coordinate

system at P̃0,
(
z̃δ

1 , . . . , z̃
δ
m+n

)
, such that, for 1≤ i≤ n, z̃i

δ =
(
zδ

i ,0
)
.

Proof. Let

H̃δ =
{

P̃ ∈Cn+m such that r
(

P̃
)
= δ

}
.

Let P̃1 ∈ H̃δ such that
∣∣∣P̃1− P̃0

∣∣∣ is the euclidean distance d
(

P̃0, H̃δ

)
from P̃0 to H̃δ . Let Q1 be the projection of P̃1 to Cn so that

P̃1 = (Q1,w). We have
δ −ρ (Q1) = h(w)≍∑ |wi|

2qi ,

and, by the condition on the qi (recall that h satisfies Condition V and then qi > typ(Ω) = τ) we obtain

|w|2 & (δ −ρ (Q1))
2/2τ+2 .

On the other hand, the geometric properties of Ω show that there exists

Q2 ∈ Hδ = {P ∈ Cn such that ρ(P) = δ}

such that the distance d (Q2,Hδ ) from Q2 to Hδ is less than C (δ −ρ (Q1))
1/τ (with a constant C independent of δ ), and, by the

definition of P̃1,

|P1−Q1|
2 + c(δ −ρ (Q1))

2/2τ+2 ≤
(
|P1−Q1|+C (δ −ρ (Q1))

1/τ
)2

which implies, for δ small enough (depending on c, C and τ , i.e. on Ω), ρ (Q1) = δ and we can choose z̃δ
1 =

(
zδ

1 ,0
)
.

Define now H̃2,δ as the intersection of H̃δ with the affine complex space orthogonal to z̃δ
1 passing through P̃0. Let P̃2 be such

that
∣∣∣P̃2− P̃0

∣∣∣ is the euclidean distance from P̃0 to H̃2,δ . Let w0 ∈ ∂Ω and U be a small neighborhood of w0. Arguing as before,

it is easy to show that P̃2 ∈ ∂Ω×{0} and we can choose z̃δ
2 =

(
zδ

2 ,0
)
. The proof is finished by induction. �
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Corollary. Let L1, . . . ,Ln be the δ -extremal basis of vector fields associated to the δ -extremal coordinate system at the point

P0 ∈ ∂Ω∩U defined in Lemma 4.3 (see [CD08]). Then the basis L̃1, . . . , L̃n+m defined by:

(1) for 1≤ i≤ n, Li = L̃i,

(2) for 1≤ j ≤ m, L̃n+ j =
∂

∂w j
−βn+ j

∂
∂Z1

, where Z1 is the complex normal to ∂Ω at the point w0, βn+ j being so that L̃n+ j is

tangent to ∂ Ω̃,

is δ -extremal at P̃0.

Proof. For the point (1), note that, for i≥ 2, Li =
∂

∂ zi
−βi

∂
∂Z1

(see [CD08, Section 7.1]) (recall that L1 = L̃1 =N). For (2), without

loss of generality, we can assume q j+1 ≥ q j, 1≤ j ≤ m− 1, and the result is trivial if hi (wi) = |wi|
2qi and “easy” to prove in the

general case using [CD08]. �

Let Fi and F̃i be the weights defined with the vector fields Li and L̃i. Then

Lemma 4.4. For 1≤ i≤ n, Fi (z,δ ) = F̃i (z̃,δ ) and, for 1≤ j ≤ m, F̃n+ j (z̃,δ )≃
( 1

δ

)1/q j , for z ∈U and z̃ = (z,0).

Proof. The first part is a trivial consequence of the preceding corollary and the second is proved, as in the case of dimension 2,

noting that βn+ j =−
∂ h j(w j)

∂ w j
/ ∂ ρ

∂ Z1
, with ∂ρ

∂Z1
C ∞ and close to 1 for δ small. �

4.2.2. Pointwise estimate of the Bergman kernel

Theorem 4.2. Assume Ω is convex of finite type in Cn and that the hypothesis on ρ , h, and ω stated at the beginning of the

section are satisfied. Let w0 be a boundary point of Ω and U a small neighborhood of w0. Let N be the complex normal to ∂Ω
(i.e. Nρ ≡ 1 in a neighborhood U of ∂Ω). Let p1 and p2 be two points in U and δΩ (p1, p2) as in Theorem 4.1. Let {L2, . . . ,Ln}
be a δ (p1, p2)-extremal basis associated to ρ at the point p1 (with δ (p1, p2) = |ρ (p1)|+ |ρ (p2)|+ δΩ (p1, p2)). Let us denote

L1 = N. Let L be a list of vector fields belonging to
{

L1,L1, . . . ,Ln,Ln,N,N
}

. Let KΩ
ω be the Bergman kernel of L2

ω(Ω) for the

weight ω . Then

∣∣∣L KΩ
ω (p1, p2)

∣∣∣ ≤ C|L |

(
1

δ (p1, p2)
2

)1+lN/2

F
1+L/2 (p1,δ (p1, p2))

m

∏
j=1

(
1

δ (p1, p2)

)1/q j

≃ C|L |

(
1

δ (p1,p2)
2

)lN/2

F
L/2 (p1,δ (p1, p2))

Volω (B(p1,δ (p1, p2)))
,

where lN denotes the number of times N or N appears in the list L , F 1+L/2 (p1,δ (p1, p2)) = ∏n
i=2 F

1+li/2
Li

, li being the number

of times Li or Li appears in the list L and Volω denotes the volume with respect to the measure ω(z)dλ (z).

Proof. The construction made before shows that the estimate is immediate because, the exponential map being a local diffeo-
morphism ([CD06b, p. 75]), the fact that Li = L̃i, 1≤ i≤ n (corollary of Lemma 4.3), implies δΩ (p1, p2) = δ

Ω̃
(p1, p2). �

4.3. Proof of Theorem 1.1

In the two cases we consider here, ∂ Ω̃ is of finite type at every point of the form (z,0). Then, by Catlin’s theorem ([Cat87]), the
results of [KN65] show that the Neumann operator of Ω̃ is pseudolocal at these points, and, the method introduced by N. Kerzman

in [Ker72] proves that the restriction of the Bergman kernel of Ω̃ to
(
Ω×{0}

)2
is C ∞ outside the diagonal of (∂Ω×{0})2. Thus,

the identity KΩ
ω (p1, p2) = KΩ̃ ((p1,0) ,(p2,0)) implies that the estimates of Theorems 4.1 and 4.2 are valid everywhere.

These estimates, the hypothesis on h (i.e. h(w) ≍ ∑ |wi|
2qi), an immediate generalization of Proposition 2.1 of [BCG96]

and a standard application of Hölder inequality imply that PΩ
ω maps Lp (Ω,(−ρ)α dλ ) continuously into itself for −1 < α <

p
(

1+∑ 1
qi

)
− 1.

The Lipschitz estimate is also standard.
Now, choosing the special function h(w) = ∑ |wi|

2qi , wi ∈ C, the weight ω is equal to C(−ρ)∑1/qi , and Theorem 1.1 follows.

Remark. Note that same method gives trivially Theorem 1.1 for pseudo-convex decoupled domains of finite type in Cn.
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