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ABSTRACT
The colorful Carathéodory theorem [Bár82] states that given d + 1
sets of points in R

d, the convex hull of each containing the origin,
there exists a simplex (called a ‘rainbow simplex’) with at most one
point from each point set, which also contains the origin. Equiv-
alently, either there is a hyperplane separating one of these d + 1
sets of points from the origin, or there exists a rainbow simplex
containing the origin. One of our results is the following exten-
sion of the colorful Carathéodory theorem: given ⌊d/2⌋ + 1 sets
of points in R

d, and a convex object C, then either one set can
be separated from C by a constant (depending only on d) number
of hyperplanes, or there is a ⌊d/2⌋-dimensional rainbow simplex
intersecting C.

Categories and Subject Descriptors
G.2 [Combinatorics]: Discrete Geometry

General Terms
Algorithms, Theory

Keywords
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1. INTRODUCTION
The goal of this paper is to study the behavior of low-dimensional

simplices with respect to convex sets in R
d. We examine a number

of classical theorems in discrete geometry – Radon’s theorem [Rad47],
Carathéodory’s theorem [Mat02], colorful Carathéodory theorem
[Bár82] – and prove extensions that demonstrate the phenomenon
of low-dimensional intersections.

Three classical theorems.
One of the starting theorems in discrete geometry is the follow-

ing result. For a set P ⊂ R
d, let conv(P ) denote the convex hull

of P .
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THEOREM 1 (RADON’S THEOREM). Given any set P of d+
2 points in R

d, one can partition P into two sets P1 and P2 such

that conv(P1) ∩ conv(P2) 6= ∅.

Note here that one of the two sets P1 and P2 can be large, e.g., P1

can consist of d + 1 points. So only the trivial bound |P1|, |P2| ≤
d + 1 holds. Therefore one cannot get a better upper bound on the
dimension of the simplices conv(P1) or conv(P2).

We say a point p can be separated from a convex set C if there
exists a hyperplane h with C and p in the interior of the two differ-
ent halfspaces defined by h.

THEOREM 2 (CARATHÉODORY’S THEOREM). If a convex set

C intersects the convex hull of some point set P , then it also inter-

sects a simplex spanned by P . Equivalently, either P can be sepa-

rated from C with one hyperplane, or C intersects the convex hull

of some (d + 1) points of P .

Here we have stated the theorem in a slightly more general form;
usually it is stated where C is just a point.

A beautiful extension of Carathéodory’s theorem was discovered
by Imre Bárány [Bár82]:

THEOREM 3 (COLORFUL CARATHÉODORY THEOREM).
Given d + 1 sets of points P1, . . . , Pd+1 in R

d and a convex set C
such that C ∩ conv(Pi) 6= ∅ for all i = 1, . . . , d + 1, there exists

a set Q with C ∩ conv(Q) 6= ∅ and where |Q ∩ Pi| = 1 for all

i. Such a Q is called a ‘rainbow set’. Equivalently, either some Pi

can be separated from C with one hyperplane, or C intersects the

convex hull of a rainbow set of d + 1 points.

This theorem is also commonly stated for the case where C is a
point, but the above slight generalization follows immediately from
Bárány’s proof technique [Bár82]. Also, Carathéodory’s theorem
follows by applying the colorful Carathéodory theorem to d + 1
copies of the same pointset.

Our results.
The starting point of our work is the following well-known gen-

eralization of the Erdös-Szekeres theorem:

THEOREM 4 (GENERALIZED ERDÖS-SZEKERES THEOREM).
Given positive integers d, k, n such that ⌈d/2⌉+ 1 ≤ k ≤ d, there

exists an integer n0 = ESd(n, k) such that any set of n0 points

in R
d contains a subset P of size n with the following property:

the simplex spanned by every (d + 1) − k points of P lies on the

boundary of conv(P ). This statement is optimal, in the sense that

this is not true for k < ⌈d/2⌉ + 1 for arbitrarily large pointsets.

The case k = d simply corresponds to the Erdös-Szekeres the-
orem (that any large-enough set contains a lot of points in convex



position). Of course the ‘large-enough’ size for the above theorem
increases with decreasing k; but if one pays that price, one can get
more properties. For example, for d = 4, k = 3, any large-enough
set of points in R

4 contains a large subset Q where every edge
spanned by points of Q lies on conv(Q).

We now observe that this immediately carries over to an at-first
nonobvious extension of Radon’s theorem: if one is willing to
increase the number of points, then a better upper-bound can be
achieved on the sizes of the Radon partition:

THEOREM 1.1. Given an integer ⌊d/2⌋ + 1 ≤ k ≤ d, any

set P of ESd(d + 2, k) points in R
d contains two sets P1, P2 such

that conv(P1)∩ conv(P2) 6= ∅ and additionally, |P1|, |P2| ≤ k.

Furthermore, this is optimal in the sense that the statement does

not hold for k ≤ ⌊d/2⌋.

PROOF. Apply Theorem 4 to P to get a set of d + 2 points
P ′. Apply Radon’s theorem to P ′ to get a partition P1, P2 ⊂ P ′

whose convex hulls intersect. Now note that if |P1| > k, then
|P2| ≤ (d + 1)− k. But then conv(P2) lies on the convex hull of
P ′, and so cannot intersect conv(P1), a contradiction.

Optimality is obvious as |P | ≥ d + 2 for such a partition to
exist (for P in general position), and so one set has to have at least
⌊d/2⌋ + 1 points.

Our first result is to show that a similar extension is possible for
Carathéodory’s theorem (Section 4):

THEOREM 1.2. Given a set P of n points in R
d and a convex

object C, either P can be separated from C by O(d4 log d) hyper-

planes (i.e., each p ∈ P is separated from C by one of the hyper-

planes), or C intersects the convex hull of some ⌊d/2⌋ + 1-sized

subset of P .

We show the above result by relating this problem to another
well-known problem; in fact we prove that the bounds for these
two problems are within a factor of d of each other, a result of
independent interest.

Unfortunately the above approach does not work for proving an
extension of the colorful Carathéodory theorem, for which we give
a proof using a different technique (Section 5):

THEOREM 1.3. For any d, there exists a constant Nd such that

given k = ⌊d/2⌋+ 1 sets of points P1, . . . , Pk in R
d and a convex

object C, either one of the sets Pi can be separated from C by Nd

hyperplanes, or there is a rainbow set of size k whose convex hull

intersects C.

Remark 1: Unlike the small polynomial bound in the extension
of Carathéodory’s theorem, the constant Nd is exponential in d. We
leave improving Nd as an open problem.

Remark 2: The case where there are d + 1 sets, and a set can be
separated by one hyperplane is exactly the colorful Carathéodory
theorem.

Remark 3: Note also that, as before, Theorem 1.3 implies the
corresponding extension for Carathéodory’s theorem, although with
much worse quantitative bound than that given in Theorem 1.2.

Remark 4: Theorem 1.3 implies that given C and a set of red
and blue points in R

3, either the red set or the blue set can be sep-
arated from C by a constant N3 number of planes. Or there is a
red-blue edge intersecting C. In fact, for this case, a direct elemen-
tary proof with better constant exists, as follows. First, elementary

considerations show that given a pointset and a convex set C, ei-
ther there is a triangle ∆ spanned by the points so that each edge
of ∆ intersects C or all the point can be separated from C using
twelve hyperplanes. Now suppose that we have some red and blue
points and a convex set C. Then applying the above result to each
set of points, we conclude that either one of the sets can be sep-
arated from C with twelve planes or there is a red triangle and a
blue triangle each of whose edges intersect C. For each vertex of
these triangles consider the region on the boundary of C that it can
see (considering C to be opaque). Since each red (resp. blue) edge
intersects C, no two of the red (resp. blue) regions intersect, i.e.,
no three of the six regions intersect at a common point. Since the
regions are pseudodisks, their intersection graph is planar. As K3,3

is not planar, there is a red region and a blue region which do not
intersect. This implies that the red-blue edge defined by the points
corresponding to these regions intersects C.

We conclude with some open problems and future directions of
research in Section 6.

2. MOTIVATION & RELATED PROBLEMS
Besides building on some basic theorems of discrete geometry,

there are a few other reasons why statements of the type considered
in this paper are useful.

Weak ǫ-nets.
The weak ǫ-net problem asks, given a set P of n points in R

d,
for the existence of a small-sized set Q ⊆ R

d such that any convex
set containing at least ǫn points of P contains a point of Q. The
current best upper-bound on the size of Q required is Õ(1/ǫd),
while the best lower-bound is Ω(1/ǫ logd−1 1/ǫ). It is not clear
what upper-bound to expect. But if one believes that “the truth
is probably much smaller, maybe around O(1/ǫ⌊d/2⌋)” [Mat99],
then consider the following natural approach from [MR08].

Pick a strong ǫ-net Q (with respect to the intersection of some
constant k halfspaces). Now suppose a convex object C containing
ǫn points of P is not hit by this strong ǫ-net. Then it must be that
no set of k halfspaces separate C from points of Q; otherwise the
intersection of these halfspaces contains C and so contains at least
ǫn points without containing any point of Q, a contradiction. Intu-
itively, this means that the points of Q are ‘close’ to the boundary
of C. It seems likely that then C must contain a large fraction of
the volume (w.r.t. some measure) of some low-dimensional sim-
plex spanned by points of Q (in which case we are done by picking
weak nets of constant size within each low dimensional simplex).
Unfortunately even the existence of an intersection of some low-
dimensional simplex with C is not clear. The best one can hope
for is a large intersection with a ⌊d/2⌋-dimensional simplex (better
than this is not possible – to see this consider P to be the vertex
set of a cyclic polytope and let C to be a slightly shrunk copy of
the polytope). This is somewhat similar to the inductive approach
in [ABFK92, CEG+93]. Hence the above discussion provides one
reason to study the separation interaction of low-dimensional sim-
plices spanned by some set P with a convex set C.

High-depth edge.
The following is a well-known problem open for more than 20

years: given a set P of n points in the plane, show that there exist
two points of P such that any disk containing them contains at least
n/4 points of P . The current-best bound is n/4.73 [EHSS89]. We
now show a close relation to the problems we study in this paper.

Given P , map P to P ′ via a standard lifting to the paraboloid in



R
3. So each disk in R

2 corresponds to a downward-facing halfs-
pace in R

3. Now let C be the centerpoint region of P ′. By defi-
nition, each plane supporting a facet of C has less than n/4 points
on the side not containing C. Now our goal is to find two points,
say p1, p2 of P ′ such that any downward-facing halfspace contain-
ing p1p2 must contain at least one point of C – and so contain at
least n/4 points. For contradiction, assume that for every pair of
points, the “slab” swept by projecting the segment p1p2 onto the
xy-plane avoids C. Then one would prove the conjecture by show-
ing that there exist 4 planes supporting facets of C that separate all
the points of P ′ from C. This would yield a contradiction, as each
such halfspace contains less than n/4 points.

Therefore, the goal is to show that either the vertical slab for
a pair intersects C, or all the points of P ′ can be separated by 4
supporting hyperplanes. Then the easier question of separating P ′

from C with any separating hyperplanes if no edge intersects is
exactly the extension of Carathéodory’s theorem for R

3.

Gallai-type problems for Pseudodisks.
Danzer proved that given any set of caps of a sphere in three

dimensions such that every pair of them intersect, it is possible to
pierce all of them using four points. While at first sight this appears
unrelated to the problems we study, it is intimately related. Con-
sider a sphere S and a set of points in R

3 outside it. For each point
p, the set of points x ∈ S such that a tangent plane to the sphere
at x separates S from p is a cap of S. Two points p and q can be
separated from S using a single plane iff their corresponding re-
gions intersect. Danzer’s theorem therefore implies that either the
set of points can be separated from S using four planes or there
is an edge spanned by the points that intersects S. If we replace
this sphere in R

3 with an arbitrary convex set, then caps are re-
placed by regions that are pseudodisks. Danzer’s result is believed
to hold for pseudodisks as well but is currently known only with
worse bounds. Therefore such separation problems can be seen as
generalized Gallai-type problems.

3. PRELIMINARIES
In this section, we describe some basic results in discrete geom-

etry that we will need.

Hadwiger-Debrunner (p,q)-theorem [AK92]. Given a set S of
convex sets in R

d such that out of every p ≥ d + 1 sets, there is a
point common to q ≥ d+1 of them, then S has a hitting set of finite
size and the minimum size of such a set is denoted by HDd(p, q)
(so this is independent of |S|).

ǫ-nets w.r.t. halfspaces in R
d [HW87]. Given a set P of n points

in R
d and a parameter ǫ > 0, a set Q ⊆ P is an ǫ-net w.r.t. half-

spaces if any halfspace containing at least ǫn points of P contains
a point of Q. A famous theorem of Haussler-Welzl [HW87] shows
that ǫ-nets of size O(d/ǫ log d/ǫ) exist, independent of n. This
bound was later improved in [KPW92] to a near-optimal bound of
(1 + o(1))( d

ǫ
log(1/ǫ)).

Centerpoint depth [Mat02]. Given any set P of n points in R
d,

the Tukey depth of a point q ∈ R
d is the minimum number of points

of P contained in any halfspace containing q. It is known that there
always exists a point of Tukey depth at least n/(d + 1).

In general, the set of points of Tukey depth at least βn form a
convex region called the β-deep region of P . The β-deep region
is non-empty for any β ≤ 1/(d + 1). It is the intersection of all
halfspaces containing more than (1 − β)n points of P . Each facet

of this region is supported by a hyperplane that passes through d
points of P . We will need the following fact:

Fact 1 [PA95]: If P is a set of n points and h is a hyperplane
defining a facet of the β-deep region C of P , then the halfspace
defined by h that does not intersect the interior of C contains less
than βn points of P .

4. PROOF OF EXTENDED
CARATHÉODORY’S THEOREM

We first show that this problem is related to another problem
involving low-dimensional simplices.

Let f(d) be the smallest positive number such that for any set P
of points in R

d, there exists a ⌊d/2⌋+1-sized subset P ′ ⊆ P such
that any halfspace containing P ′ contains at least |P |/f(d) points
of P .

Let g(d) be the smallest positive number such that given any set
P of points in R

d and a convex set C, if P cannot be separated
from C using at most g(d) hyperplanes, then C must intersect the
convex hull of some ⌊d/2⌋ + 1 size subset of P .

We now show that g(d) and f(d) are related within a factor of d.

THEOREM 4.1. g(d) ≤ d·f(d) log f(d). In other words, given

a set P of points in R
d and a convex set C such that P cannot

be separated from C by df(d) log f(d) hyperplanes, then C must

intersect the convex hull of some ⌊d/2⌋ + 1 points of P .

PROOF. Assume that no convex hull of any ⌊d/2⌋ + 1 points
of P intersects C. Then we show that P can be separated from C
using df(d) log f(d) hyperplanes.

CLAIM 4.2. Let P be a weighted set of points in R
d, with weight

of the point pi ∈ P to be wi. Assume all wi’s are rationals, and

let W =
P

wi. If the convex hull of no ⌊d/2⌋ + 1 points of P in-

tersects C, then there exists a hyperplane separating points of total

weight at least W
f(d)

from C.

PROOF. As each wi is a rational, assume wi = ŵi/D, where
ŵi and D are integers. Let Q be the pointset gotten by replacing
each point pi with ŵi copies of pi. Crucially, if the convex hull of
no ⌊d/2⌋ + 1 subset of P intersects C, then the convex hull of no
⌊d/2⌋ + 1 subset of Q can intersect C. Take the ⌊d/2⌋ + 1-sized
subset Q′ of Q such that any halfspace containing Q′ contains at
least |Q|/f(d) points of Q. As the convex hull of Q′ does not
intersect C, there is a halfspace h which does not intersect C and
contains Q′. Let P ′ be the set of points of P contained in h. Then
h contains exactly

P

pi∈P ′ ŵi points of Q, which by definition of
Q′ must be at least |Q|/f(d). Then the sum of weights of points of
P contained in h is bounded by

X

pi∈P ′

wi =

P

pi∈P ′ ŵi

D
≥

|Q|/f(d)

D
=

(
P

ŵi)/f(d)

D

=

P

wiD

Df(d)
=

W

f(d)

Discretize the set of all combinatorially distinct hyperplanes sepa-
rating some subset of P from C to get a set H = {h1, . . . , hm}
of O(|P |d) hyperplanes. Now consider assigning weights w(hi)
to each halfspace such that the total weight

P

w(hi) is minimized,
and the sum of weights of halfspaces containing any point of P is
at least 1. Let W (H) denote the minimum value.

Similarly, assign weights w(pi) to each point of P such that the
total weight

P

w(pi) is maximized, and the sum of weights of



points contained in any halfspace h ∈ H is at most 1. Let W (P )
denote the maximum value. Then the above two problems are dual
to each other (as linear programs), and so by the Strong Duality
Theorem, W (H) = W (P ).

Now note that W (P ) ≤ f(d): by Claim 4.2, there exists a half-
space in H of weight at least W (P )/f(d), which by the definition
of W (P ) is at most 1.

Therefore there exists an assignment of weights to halfspaces in
H such that W (H) ≤ f(d), and each point is contained in halfs-
paces of total weight at least 1. Now using the ǫ-net theorem for
halfspaces [KPW92], with ǫ = 1/W (H), there exists a set of

d/ǫ log 1/ǫ = dW (H) log W (H) = df(d) log f(d)

halfspaces of H containing all points of P . As all halfspaces in H
were separating halfspaces, we are done.

Remark 1: The above technique is similar to the one used in the
proof of Hadwiger-Debrunner (p, q) theorem [AK92], with some
crucial differences. In their use, they get an exponential bound,
which we are able to avoid due to three reasons: ǫ-nets for half-
spaces have a near-linear bound, avoiding double-counting argu-
ments that they use, and finally, the weighted version (Claim 4.2)
gives exactly the same quantitative bound as the unweighted ver-
sion.

Proof of Theorem 1.2: the paper [SSW08] proves that f(d) ≤
O(d3). And the proof is complete by using Theorem 4.1.

Similarly we now show that a bound on g(d) gives an upper-
bound on f(d):

THEOREM 4.3. f(d) ≤ d · g(d). In other words, given a set P
of points in R

d, there always exists a subset P ′ of size ⌊d/2⌋ + 1
such that any halfspace containing P ′ contains at least |P |/dg(d)
points of P .

PROOF. Consider the β-deep region C of P ; by the Centerpoint
theorem, for β ≤ 1/(d + 1), such a region always exists. Now we
claim that for β = 1/dg(d), there exists a ⌊d/2⌋ + 1-sized subset
P ′ whose convex hull intersects C. Then any halfspace contain-
ing P ′ contains at least one point of C, and so contains at least
|P |/dg(d) points by the definition of the centerpoint region.

Otherwise, for contradiction assume that the convex hull of no
⌊d/2⌋+ 1-sized subset intersects C. Then by definition of g(d), P
can be separated from C using g(d) hyperplanes, say the set H.

Now any halfspace not intersecting C contains less than d ·β|P |
points: each halfspace supporting a facet of C contains less than
β|P | points, and any other halfspace not intersecting C is contained
in the union of at most d halfspaces supported by facets of C.

Therefore each halfspace of H contains less than d ·β|P | points.
And so the union of halfspaces in H contains less than g(d)·d·β|P |
points of P , a contradiction for β = 1/dg(d).

5. PROOF OF EXTENDED COLORFUL
CARATHÉODORY THEOREM

The goal of this section is to prove Theorem 1.3. We use a
slightly different language for convenience: instead of saying that
“a point set P can be separated from a convex body C using k hy-
perplanes”, we say that “there exists a polyhedron Q with k facets
such that C ⊆ Q and Q ∩ P = ∅”. In such a case we also say that
Q separates P from C. We re-state Theorem 1.3 in this language.

THEOREM 5. For any positive d and l > ⌊d/2⌋, there exists a

constant Nd,l s.t. the following is true. Given any compact convex

body C and l finite sets of points P1, . . . Pl in R
d, at least one of

the following holds:

1. There exists a polyhedron Q with at most Nd,l facets such

that for some i, Q separates Pi from C.

2. There exists a rainbow subset P ′ ⊆ ∪d
i=1Pi whose convex

hull intersects the interior of C.

The approach of the previous section does not work for proving
the extension of the colorful Carathéodory’s theorem. The method
gave one low-dimensional simplex intersecting C, or the existence
of a hyperplane separating many points. Unfortunately with mul-
tiple sets, one needs to find many such intersecting simplices for
each set Pi. Therefore one is forced to use a more Ramsey-theoretic
technique, and this causes the constant to become exponential in d.

We next present some preliminary definitions and claims required
to prove the above theorem.

Call a convex body C fine if it is compact and its boundary ∂C
is smooth and has positive curvature everywhere. Let C be a fine
convex body and let P be a finite set of points in R

d. We say that
a point p can see a point y if the relative interior of the segment py
does not intersect C. For any p ∈ P , let Up be the set of points in
∂C that p can see.

Let hy be the tangent plane to C at the point y ∈ ∂C and let h+
y

be the closed halfspace defined by it that contains C. Observe that
any point p ∈ P sees a point y ∈ ∂C iff p /∈ int(h+

y ), where int(S)
denotes the interior of the set S.

LEMMA 5.1. For any positive numbers d and t ≥ d, there ex-

ists a constant Ht,d such that given any fine convex body C and

a finite set of points P such that P ∩ C = ∅, at least one of the

following hold:

• There exists a set X ⊂ ∂C of size at most Ht,d such that

each point in P is seen by some x ∈ X .

• There is a subset P ′ ⊆ P of size at least t such that no

y ∈ ∂C sees more than d − 1 points in P ′.

PROOF. Fix any point ν ∈ ∂C as a reference point. Let hν be
the tangent plane to C at ν. Let h be the unique tangent hyperplane
parallel to hν such that C is contained in the strip between hν and
h. Let π be the continuous bijective map that maps any y ∈ ∂C \
{ν} to l(ν, y) ∩ h, where l(ν, y) denotes the line through ν and y.

For any p ∈ P that does not see ν (i.e., ν /∈ Up), let Vp =
π(Up) = {π(y) : y ∈ Up} and let V = {Vp : p ∈ P, p does not see ν}.
Clearly, for each p ∈ P that does not see ν, Vp lies on the plane h,
is convex and has dimension d−1. Note that if two points p, q ∈ P
see a point y ∈ ∂C then y ∈ Up ∩ Uq . So π(y) ∈ Vp ∩ Vq .

Suppose that the second part of the theorem does not hold; i.e.,
in every subset of P of size t, there are at least d points which can
be seen by a single point y ∈ ∂C. Equivalently, any subset of V
of size t has at least d sets which have a common intersection. By
the Hadwiger-Debrunner theorem [AK92], there exists a constant
HDd−1(t, d) of points in h that hit all the sets in V . Let X ′ be the
set of these points. Let X = π−1(X ′) ∪ {ν}. Each point in P is
seen by at least one point in X (if Vp is hit by the point y′ ∈ h,
then p ∈ P is seen by π−1(y′) ∈ ∂C). The theorem is therefore
proved by setting Ht,d = HDd−1(t, d) + 1.

Now we can finish the proof of the main theorem of this section:

PROOF. Let P = ∪l
i=1Pi. We set Nd,l = Ht,d for some t to be

fixed later.
If P ∩ C 6= ∅ then the second part of the theorem is trivially

satisfied. We therefore assume that P ∩ C = ∅. Without loss of
generality we also assume that C is fine since we can always find a



fine convex body C′ that contains C and does not intersect P and
furthermore for each point y′ ∈ C′, there is a point y ∈ C such
that the Euclidean distance between y and y′ is smaller than any
prescribed δ > 0. Proving the theorem for such C′s also proves it
for arbitrary closed convex bodies.

For each i, apply Lemma 5.1 to C and Pi with the parameter
t. This gives us either a set Xi of at most Ht,d points in ∂C such
that each point in Pi is seen by at least one of these or we get a set
Qi ⊆ Pi of t points so that no d of them is seen by the same point
in ∂C. If the first possibility happens for some j, then

T

x∈Xj
h+

x

gives us the polyhedron Q with at most Ht,d facets and where Q
contains C while Pj lies outside Q. This satisfies the first part of
the Theorem and we’re done.

We therefore assume the second possibility for each i; namely,
each Pi has a subset Qi of t points such that no d points of Qi are
seen by the same point of ∂C. Equivalently, the convex hull of any
d points of Qi intersects C.

Let Q = ∪l
i=1Qi. Consider any rainbow set R ⊆ Q with one

point from each Qi. There are tl such sets. If the convex hull of
R intersects C, then the second part of the theorem is satisfied,
and we’re done. Assume for contradiction that this is not the case.
Then for each rainbow set R, there exists a hyperplane h separat-
ing R from C. The closed halfspace h− bounded by h and not
intersecting C contains at most d−1 points from any particular Qi

due to the fact that any d-sized subset of Qi intersects C. Therefore
|h−∩Q| ≤ (d−1)l, and hence is a ≤ k-set of Q with k = l(d−1).

If no rainbow set intersects C, then we get such a ≤ k-set for
each rainbow set R of size l. As there are tl such rainbow sets, we
get tl ≤ k-sets. However each such ≤ k-set can be overcounted
at most

`

k
l

´

=
`

l(d−1)
l

´

times. This implies that there are at least

L(t) = tl/
`

l(d−1)
l

´

distinct ≤ k-sets. On the other hand, it is
known that the number of ≤ k-sets of a set of n points in R

d is at
most O(n⌊d/2⌋(k + 1)⌈d/2⌉) [Mat02]. This gives an upper bound
of U(t) = O((tl)⌊d/2⌋((d− 1)l +1)⌈d/2⌉) on the number of ≤ k-
sets. Since l > ⌊d/2⌋, for some large enough t depending only on
l and d, L(t) > U(t). Thus we get a contradiction implying that
one of the rainbow sets must intersect C.

6. CONCLUSIONS
We think that the phenomenon studied in this paper is much

more widely applicable. In fact, statements of this type might shed
light on interactions between several classical theorems (see be-
low). Besides improving quantitative bounds presented in this pa-
per – for both extended Carathéodory and the extended colorful
Carathéodory theorems – we end with a number of questions for
which we think the answer is affirmative:

1. Extension of Kirchberger’s theorem. Given a set P of n
red points and n blue points in R

d either there exist a con-
stant number of hyperplanes H such that every red-blue pair
is separated by a plane in H, or a ⌊d/2⌋-dimensional red
simplex intersects a ⌊d/2⌋-dimensional blue simplex.

2. Extension of Tverberg’s theorem. Given a set P of n points
in R

d, there exists a Tverberg partition on a large subset of P
where two sets have size ⌊d/2⌋ + 1. It is not too hard to see
that this implies a version of the extension of Carathéodory’s
theorem.

3. Extension of Colored Tverberg’s theorem. Given (d +
2) sets P1, . . . , Pd+2, there exists a colored Tverberg par-
tition on a large subset where two sets have size ⌊d/2⌋ +
1. Again, this version implies the extension of the colorful
Carathéodory theorem.
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