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SATURATING DIRECTED SPACES

ANDRÉ HIRSCHOWITZ, MICHEL HIRSCHOWITZ, AND TOM HIRSCHOWITZ

1. Introduction

Directed algebraic topology [4] (see also, e.g., [7, 3, 4, 2, 1, 5, 8]) has recently
emerged as a variant of algebraic topology. In the approach proposed by Grandis, a
directed topological space (or d-space for short), is a topological space equipped with
a set of directed paths satisfying three conditions. These conditions are the three
conditions necessary for constructing the so-called fundamental category: constant
paths are directed for having identities, stability under concatenation is required
for having composition, and reparameterisation is required for having associativ-
ity. These are somehow minimal conditions, which leave room for a lot of exotic
examples (see Examples 2.1).

In the present work we propose an additional condition of saturation for distin-
guished sets of paths and show how it allows to rule out exotic examples without
any serious collateral damage.

Our condition involves “directed” functions (to the unit interval I), namely those
which are non-decreasing along each directed path. And it asserts that a path along
which any such (local) directed function is non-decreasing should be directed itself.

Our saturation condition is local in a natural sense, and is satisfied by the di-
rected interval (and the directed circle). Furthermore we show in which sense it is
the strongest condition fulfilling these two basic requirements.

Our saturation condition selects a full subcategory SDTop of the category DTop
of d-spaces, and we show that this new category has all standard desirable proper-
ties, namely:

• SDTop is a full, reflective subcategory of DTop, wich means that there is a
nice saturation functor from DTop to SDTop;

• it is closed under arbitrary limits;
• although it is not closed under colimits (as a subcategory), it has arbi-
trary colimits, each of which is obtained by saturation of the corresponding
colimit in DTop;

• SDTop is a dIP1 - category in the sense of [4] which essentially means that
it has nice cylinder and cocylinder constructions;

• the forgetful functor from SDTop to Top has both a right and a left adjoint.

Altogether these properties satisfy the general principles which, according to
Grandis [4, Section 1.9], should be satisfied by a good topological setting for directed
algebraic topology.

In Section 2 we describe our sheaf of “directed” functions, and introduce our sat-
uration condition. In Section 3, we exhibit adjunctions relating our new category
SDTop to Top and DTop. In Section 4, we prove the completeness and cocom-
pleteness properties of SDTop. In Section 5, we prove that SDTop admits cylinder
and cocylinder constructions with the desired properties. Finally in Section 6, we
discuss other saturation conditions, and show in which sense ours is maximal.

This work owes much to the second author’s wedding on October 30, 2010.
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2. Saturated d-spaces

We denote by I the standard closed unit interval, and by DTop the category
where

• objects are all directed spaces, i.e., pairs (X, dX) of a topological space X
and a set dX of continuous maps I → X , subject to the following three
conditions

– constant paths are in dX ,
– dX is stable under concatenation,
– dX is stable under precomposition with continuous, non-decreasing

maps I → I;
• morphisms from (X, dX) to (Y, dY ) are all continuous maps f : X → Y
satisfying f ◦ dX ⊆ dY .

The set dX is called the set of directed paths, or d-paths in (X, dX).
In the sequel, for a d-space X , we will also write X for the underlying topological

space, and we will write dX for its set of directed paths.
We denote by I the d-space obtained by equipping the standard closed unit

interval with the set of non-decreasing (continuous) paths.

Examples 2.1. As promised, here are a few exotic examples. For each of them,
the underlying space is either the usual plane X := R

2 or its quotient, the standard
torus X := R

2/Z2, which we consider equipped with the usual product order (or
local order). Hence we just specify the distinguished subset of paths, either dX or
dX.

(1) dX consists of all horizontal paths with rational ordinate (i.e., continuous
maps p : I → R

2 with p(t) = (q(t), a), for some rational a and continuous
q : I → R).

(2) dX consists of all horizontal paths with rational ordinate (i.e., continuous
maps p : I → R

2/Z2 with p(t) = (q(t), a), for some rational a and continu-
ous q : I → R/Z).

(3) dX consists of all horizontal nondecreasing paths with rational ordinate
(i.e., continuous maps p : I → R

2 with p(t) = (q(t), a), for some rational a
and continuous nondecreasing q : I → R).

(4) dX consists of all horizontal locally nondecreasing paths with rational ordi-
nate (i.e., continuous maps p : I → R

2/Z2 with p(t) = (q(t), a), for some
rational a and continuous locally nondecreasing q : I → R/Z).

(5) dX consists of piecewise horizontal or vertical paths, i.e., (finite) concate-
nations of vertical and horizontal paths.

(6) dX consists of piecewise horizontal or vertical paths.
(7) dX consists of continuous p : I → R

2 whose restriction to some dense open
U ⊆ R

2 is locally piecewise horizontal or vertical.
(8) dX consists of piecewise rectilinear paths with rational slope. (More gen-

erally, for any subset P of R containing at least two distinct elements,
piecewise rectilinear paths in R

2 with slope in P form a d-space.)
(9) dX consists of piecewise circular paths.
(10) dX consists of piecewise horizontal or vertical nondecreasing paths.
(11) dX consists of piecewise horizontal or vertical locally nondecreasing paths.

We now describe our saturation process, which will rule out such examples.
For any d-space X , we have the sheaf ÎX on X which assigns to any open U ⊆ X

the set of continuous functions U → I. Note that each such U inherits a structure
of d-space. We refer to this structure by saying that U is an open subspace of X .
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Definition 2.2. For any d-space X, we denote by ÎX the subsheaf of ÎX consisting,
on any open subspace U ⊆ X, of all morphisms of d-spaces c : U → I.

We say that such a section c : U → I of this sheaf is a directed function (on U).
The statement that this is indeed a subsheaf needs a proof:

Proof. Let us consider an open subspace U ⊆ X , a continuous map c : U → I,
and an open covering (Uj)j∈J of U such that any restriction cj of c to a Uj is a
directed function. In order to prove that c is directed, we consider an arbitrary
directed path p : I → U in dX and show that c ◦ p is non-decreasing. Pulling back
the covering along p gives a covering (Vj)j∈J of I, and the restrictions pj : Vj → Uj

of p are locally non-decreasing. We conclude by recalling that a function which is
locally non-decreasing on I is globally non-decreasing. �

Examples 2.3.

• On the directed interval I, the sheaf of directed functions is the sheaf of
locally non-decreasing functions.

• The directed circle is a locally ordered space, and its sheaf of directed func-
tions is the sheaf of locally non-decreasing functions.

• On Examples 2.1, for items 1 and 2, the sheaf of directed functions is the
sheaf of all continuous functions which are locally horizontally constant.

• On Examples 2.1, for items 3 and 4, the sheaf of directed functions is the
sheaf of functions which are locally nondecreasing in the first variable.

• On Examples 2.1, for items 5 to 9, the sheaf of directed functions is the
sheaf of locally constant functions.

• On Examples 2.1, for items 10 and 11, the sheaf of directed functions is the
sheaf of locally nondecreasing functions.

Morphisms of d-spaces respect directed functions in the following sense:

Proposition 2.4. Let f : X → Y be a morphism of d-spaces. If X ′ ⊆ X and Y ′ ⊆
Y are open subspaces with f(X ′) ⊆ Y ′, then for any directed function c : Y ′ → I
on Y ′, c ◦ f is a directed function on X ′.

Proof. The point is that f induces a morphism fromX ′ to Y ′. Since p is a morphism
from Y ′ to I, the composite p ◦ f is a morphism from X ′ to I. �

Remark 2.5. The previous statement has a sheaf-theoretic formulation as follows:
the continuous f : X → Y yields a companion sheaf morphism f∗ : ÎY → f∗ÎX and
if f is a morphism, then f∗ sends the sheaf of directed functions on Y into the
(direct image of the) sheaf of directed functions on X.

Next we introduce our notion of weakly directed paths:

Definition 2.6. We say that a path c : I → X in a d-space X is weakly directed if,
given any directed function f : U → I on an open subspace U ⊆ X, f◦c : c−1(U) → I
is again directed, that is to say locally non-decreasing.

We denote by d̂X the set of weakly directed paths in X.

Remark 2.7. Note that the inverse image c−1(U) need not be connected, so that the
pull-back f ◦ c may be locally non-decreasing without being globally non-decreasing.

Example 2.8. Of course directed paths are also weakly directed. Here we sketch
an example of a weakly directed path which is not directed. Consider the plane R

2,
equipped with the set of piecewise horizontal or vertical paths. Its directed functions
are locally constant functions. As a consequence, all its paths are weakly directed.

We are now ready for the introduction of our saturation condition.
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Definition 2.9. We say that a d-space X is saturated if each weakly directed path

in X is directed, in other words if d̂X = dX.

Examples 2.10.

• On the directed interval I, the sheaf of directed functions is the sheaf of
locally non-decreasing functions and I is saturated.

• Since its sheaf of directed functions is the sheaf of locally non-decreasing
functions, the directed circle is saturated. For this example, the consid-
eration of the sheaf instead of only global directed functions is obviously
crucial.

• The Examples 2.1 are nonsaturated. We will see below what is their satu-
ration.

3. Adjunctions

We now have the full subcategory SDTop consisting of saturated d-spaces, which
is equipped with the forgetful functor U : SDTop → Top. This functor has a right
adjoint which sends a space X to the d-space obtained by equipping X with the
full set of paths in X . We will see below that U also has a left adjoint, obtained
as a composite of the left adjoint to U : DTop → Top and the left adjoint L to
SDTop → DTop which we build now.

Definition 3.1. Given a d-space X := (X, dX), we build its saturation X̂ :=

(X, d̂X) (recall that d̂X is the set of weakly directed paths in X).

Examples 3.2.

• On Examples 2.1, for items 1 and 2, weakly directed paths are horizontal
paths.

• On Examples 2.1, for items 3 and 4, weakly directed paths are (locally)
nondecreasing horizontal paths.

• On Examples 2.1, for items 5 to 9, all paths are weakly directed.
• On Examples 2.1, for items 10 and 11, weakly directed paths are all (locally)

nondecreasing paths.

In the previous definition, the verification that X̂ is indeed a saturated d-space
is straightforward. It is also easy to check that this construction is functorial, that
is to say that if the continuous map c : X → Y is a morphism of d-spaces, then it is
a morphism from X̂ to Ŷ as well. This yields our left adjoint L : DTop → SDTop
for the inclusion J : SDTop → DTop. Indeed L ◦ J is the identity, and we take the
identity as counit of our adjuntion. While for the unit η evaluated at X , we take the
identity map: idX : X → X̂ . The equations for these data to yield an adjunction
(see [6, Chapter IV, Thm 2 (v)]) are easily verified. Since J is an inclusion, this
adjunction is a so-called reflection (a full one since SDTop is by definition full in
Top).

Remark 3.3. We could build a more symmetric picture as follows. There is a
category STop consisting of spaces equipped with a “structural” subsheaf of their
sheaf ÎX of functions to I. Morphisms are those continuous maps f : X → Y which,
by composition, send the structural subsheaf on Y into the structural subsheaf of X.
(In sheaf-theoretical terms, maps f such that DY →֒ ÎY → f∗(ÎX) factors through

f∗(DX) →֒ f∗(ÎX), where DX and DY are the structural sheaves of X and Y ,
respectively.) Our construction of the sheaf of directed functions can be upgraded
into a functor D : DTop → STop. Dually, our construction of the saturation can
be upgraded into a functor S : STop → DTop which is right adjoint to D. This
adjunction factors through SDTop, which is thus not only a reflective subcategory
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of DTop but also a coreflective subcategory of STop. We choose not to develop this
material here and select only the next two statements.

Proposition 3.4. Let X be a topological space, and D a subsheaf of ÎX . Then the
set dDX of paths in X along which local sections of D are locally non-decreasing
turns X into a saturated d-space.

Proof. Indeed, it is easily checked that (X, dDX) is a d-space, and that D is con-
tained in the sheaf of directed functions on this d-space. Hence weakly directed
paths in (X, dDX) are automatically in dDX . �

Remark 3.5. The previous statement allows to check easily that a d-space is sat-
urated after having guessed (instead of proved) what are its directed functions.

Proposition 3.6. Let f : X → Y be a continuous map between saturated d-spaces.
If f transforms, by composition, (local) directed functions on Y into (local) directed
functions on X, then f is a morphism of d-spaces.

Proof. Indeed, consider a directed path c : I → X . we prove that f ◦ c is weakly
directed (hence directed). for this we take a (local) directed function p : Y ′ → I.
We know that p◦f is a (local) directed function on X , hence p◦f ◦c is directed. �

Remark 3.7. In the previous statement, the assumption that X is saturated is
useless, but we prefer to see this as a characterisation of morphisms in SDTop.

4. Completeness and cocompleteness

In this section, we prove that SDTop is complete and cocomplete. We further-
more show that limits may be computed as in DTop.

First, we have easily:

Proposition 4.1. SDTop is cocomplete.

Proof. DTop is cocomplete [4], so given any diagram D : J → SDTop, we may
compute its colimit d in DTop. The left adjoint L then preserves colimits, of
course, but it also restores the original diagram by idempotency, so that L(d) is a
colimit of D in SDTop. �

Example 4.2. Here we sketch an example showing that a colimit of saturated d-
spaces need not be saturated. This involves four different directed planes. The first
one P0 has only constant directed paths. The next two ones P ′ and P ′′ have only
horizontal (resp. vertical) directed paths. The fourth one is the coproduct P1 of P ′

and P ′′ along P0. Its directed paths are piecewise horizontal or vertical. As we have
seen above, all its paths are weakly directed, hence it is not saturated.

Example 4.3. The product I×I in DTop, which has as underlying space the product
I × I and as directed paths all continuous maps p : I → I × I with non-decreasing
projections, is saturated. Furthermore, for any open U ⊆ I × I, a map c : U → I is
directed iff it is locally non-decreasing, i.e., for any x ∈ U , there is a neighbourhood
V of x on which c is non-decreasing. This is of course equivalent to being locally
separately non-decreasing, i.e., locally non-decreasing in each variable.

Next we also have:

Proposition 4.4. SDTop is complete as a subcategory of DTop.

Proof. First, recall that DTop is complete [4]. Then, consider any diagram D : J →
SDTop, and its limiting cone uj : d → Dj in DTop. Let d′ = sat(d). By universal
property of η, this yields a cone u′

j : d
′ → Dj in SDTop. By universal property of d,

we also have a compatible morphism from d′ to d, which has to be the identity. �
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5. Towards directed homotopy

As explained by Grandis [4], the basic requirement for building directed homo-
topy is the existence of convenient cylinder and cocylinder constructions. In the
present section, we check that our category SDTop is stable under the cylinder and
cocylinder constructions in DTop. In Grandis’s terminology, this reads as follows:

Theorem 5.1. SDTop is a cartesian dIP1- category.

Proof. Since SDTop is a full cartesian subcategory of DTop which is a cartesian
dIP1- category (see [4, Section 1.5.1]), we just have to check that it is stable under
the cylinder, the cocylinder and the reversor constructions.

It is clear for the cylinder, since it is the product with the directed interval,
which is an object of SDTop.

For the cocylinder construction, we must check that for X in SDTop, its path-
object X I is again in SDTop. Thus we have to prove that weakly directed paths in
X I are directed.

On the way, we have “separately directed” paths. First, recall from Grandis [4,
Section 1.5.1] that for any d-space X and t ∈ I, evaluation at t yields a directed
morphism ev t : X

I → X . Say that a path p : I → X I is separately directed iff for all
t ∈ I, ev t ◦ p is directed in X .

We first prove that any weakly directed path p : I → X I is separately directed.
Thus we have a point t ∈ I and we must prove that pt := ev t ◦ p is directed in X .
Since X is saturated, it is enough to show that it is weakly directed. For this, we
consider a directed function f : U → I on an open set U ⊆ X , and we must prove
that, where defined, f ◦ pt is locally non-decreasing. In pictures, we must prove
that the top row of

U ′′ U ′ U I

I X I X

i j f

p evt

pt

is locally non-decreasing. Since p is weakly directed in X I, it is enough to show
that f ◦ j is directed, which holds by Proposition 2.4.

Now we prove that any separately directed path is directed. Consider any sep-
arately directed p : I → X I. It is directed in Grandis’s sense iff its uncurrying
p′ : I× I → X is. For this, by Example 4.3 (I× I is saturated) and Proposition 3.6,
it is enough to show that for any directed map f on X , the composite f ◦ p′, where
defined, is directed on I × I. By Example 4.3 again, this is equivalent to both
f ◦ p′ ◦ 〈id , t〉 and f ◦ p′ ◦ 〈t, id〉 being locally non-decreasing, for any t ∈ I. For
the first map, observe that p′ ◦ 〈id , t〉 = ev t ◦ p is directed in X by hypothesis.
Hence, because X is saturated, its composition with f , where defined, is locally
non-decreasing. For the second map, we have p′ ◦ 〈t, id〉 = p(t), which is directed
in X by construction of X I, hence, again its composition with f , where defined, is
locally non-decreasing.

Finally we check that SDTop is stable under reversion. For this we take a
saturated d-space X and prove that RX is saturated. We first check that directed
functions on RX are exactly obtained by reversion from directed functions on X .
Then we take a weakly directed path c in RX and check easily that its reversion is
weakly directed on X hence directed, which means that c is directed in RX . �
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6. A universal property of saturation

In this final section, we discuss other possible saturation processes, showing in
which sense our choice is the best one.

As a first naive attempt, we could have defined weakly directed paths by testing
only against global directed functions. In this case, the directed interval would
have remained saturated; but the saturation of the directed circle would have pro-
duced the reversible circle, which is highly undesired. This explains why we have
considered local directed functions.

As a second, much more reasonable attempt, we can define almost directed paths
to be limits (in the compact-open topology) of directed paths. It is easily checked
that almost directed paths are weakly directed. But we observe that almost directed
paths are not in general stable by concatenation. To see this, just equip the real
line L with the set dL of paths which are constant or avoid 0: almost directed paths
are those which stay in the nonnegative, or in the nonpositive half-line.

Of course we could nevertheless define the small saturation of a d-space X to
be obtained by equipping X with the smallest set adX of paths in X containing
almost directed paths and stable by reparameterisation and concatenation. This is
in general strictly smaller than the set of weakly directed paths. To show this we
sketch an ad hoc example.

Example 6.1. Our example is a subspace H (for harp) of R
3. It consists of a

skew curve C, together with some of its chords La,b (here, by the chord, we mean
the closed segment) . For the curve C, we take the rational cubic curve:

C := {(t, t2, t3)|t ∈ R}.

The interesting property of this curve is that its chords meet C only at two
points, and two of these chords cannot meet outside C. Indeed, otherwise, the
plane containing two such chords would meet our cubic curve in four points. We
pose Ct := (t, t2, t3) and write La,b for the chord through Ca and Cb.

We take for H the union of C with the chords La,b for a < b, a rational and b
irrational (the point here is that these two subsets are dense and disjoint). We take
for dH the set of paths which are either constant or directed paths in one of the
chords La,b equipped with the usual order with Ca < Cb. These are clearly stable
by reparameterisation and there is clearly no possibility for concatenation except
within a chord. Thus this yields a d-space.

Concerning this d-space, we have two claims. We first claim that this set of paths
is closed. Indeed, a (simple) limit of paths each contained in a line is contained in
a line too and if the limiting path is not constant, the line for the limit has to be
the limit of the lines. Secondly we claim that this d-space is not saturated. Indeed,
local directed functions are non-decreasing along C (equipped with the obvious order,
where Ca < Cb means a < b). To see this, consider a local function f : U → I where
U is an open neighbourhood of Ca. We may choose a neighborhood V of Ca on C
such that U contains any chord joining two points in V . Since f is continuous
(in particular along C) and non-decreasing along these chords (whose endpoints
are dense in V ), it has to be non-decreasing along V . Thus directed paths on C
(equipped with the above order) are weakly directed in H but not directed.

Now we wish to show in which sense our saturation process is maximal among
reasonable saturation processes, in the following sense.

Definition 6.2. A d-saturation process is any functor S : DTop → DTop which
commutes with the forgetful functor DTop → Top, equipped with a natural trans-
formation from the identity ηS : id → S, such that
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• ηS is mapped to the identity by the forgetful functor to Top;
• its component ηS

I
: I → SI at I is the identity;

• S satisfies the following “locality” condition: for any d-space X and sub-
space Y ⊆ X, directed paths in SX with image contained in Y are also
directed in SY .

Remark 6.3. Let us comment on the previous condition. First note that directed
paths in SY are automatically directed in SX thanks to functoriality. Next let us
expain why our condition concerns locality: if X is covered by open subspaces Yi,
then SX is determined by the SYi’s. Indeed , by concatenation (and compactness
of I), a path in SX is directed if and only if each of its restrictions contained in
a Yi is directed in this SYi. (The locality condition is here used in the “only if”
direction.)

Example 6.4. Our functor L : X 7→ (X, d̂X) is obviously a d-saturation process,
with ηL the unit of L ⊣ J .

Now we have an order on d-saturation processes, which says S ≤ T whenever,
for each X ∈ DTop, the set-theoretic identity of X is directed from SX to TX .
Observe in particular that the induced poset contains the (opposite of the) poset
of fully reflective subcategories of DTop.

Theorem 6.5. Our functor L is maximal among d-saturation processes.

Proof. Let us consider a d-saturation process S. What we have to prove is that,
given a d-space X , any directed path c in SX is weakly directed in X . For this,
we take a directed function f : U → I on X and prove that for any closed directed
subpath c′ of c with image contained in U , f ◦ c′ is non-decreasing. By functoriality
of S, f is also a morphism from SU to I = SI, and by locality, c′ is also directed in
SU , so that f ◦ c′ is an endomorphism of I, hence non-decreasing. �
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