
HAL Id: hal-00761345
https://hal.science/hal-00761345

Submitted on 5 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient best response heuristic for a non-preemptive
strictly periodic scheduling problem

Clément Pira, Christian Artigues

To cite this version:
Clément Pira, Christian Artigues. An efficient best response heuristic for a non-preemptive strictly
periodic scheduling problem. Learning and Intelligent OptimizatioN Conference LION 7, Jan 2013,
Catania, Italy. pp.281-287, �10.1007/978-3-642-44973-4_30�. �hal-00761345�

https://hal.science/hal-00761345
https://hal.archives-ouvertes.fr


An efficient best response heuristic for a

non-preemptive strictly periodic scheduling

problem

Clément Pira, Christian Artigues

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

{pira,artigues}@laas.fr

Keywords: Periodic scheduling, equilibrium, twodimensional optimization

Abstract. In this article, we study an original heuristic for a non-
preemptive strictly periodic scheduling problem, based on the notion
of equilibrium. This heuristic was first considered in [1]. Our contribu-
tion is to greatly improve its efficiency through a complete redesign of
its main method, which is the best response procedure.

1 Problem and method

We consider a periodic scheduling problem introduced in [4, 3, 1, 2]. Such a prob-
lem arises in the avionic field, where a set of N periodic tasks (measure of a
sensor, etc.) has to be scheduled on P processors distributed on the plane. In
this problem, each task i has a fixed period Ti which cannot be modified. A
solution is given by an assignment of the tasks to the processors and, for each
task by the start time ti of one of its occurrences. Each task has a processing
time pi and no two tasks assigned to the same processor can overlap during any
time period.

Fig. 1. N = 4 non-overlapping periodic tasks on P = 1 processor

In this paper, we adopt a more general model in which processing times pi

are generalized by positive latency delays li,j ≥ 0 (or time lags). The former case
is the particular case where li,j = pi for all other tasks j. The proposed heuristic
does not suffer from this generalization even if some simplification occurs in the
case of processing times (see section 2.5).



In this paper, we only consider the case where the offsets ti are integers. Since
the problem is periodic, all the periods Ti also need to be integers. We will see in
section 1.2 why this hypothesis is important to prove convergence of the method.
Note that the latency delays need not be integer a priori, especially in the case
of the optimization problem presented in section 1.1.

1.1 Problem definition

Non-overlapping constraints We first focus on the monoprocessor problem.
In the formulation of a periodic scheduling problem, we want to constrain all
the occurrences of j with respect to all the one of i. More precisely, we want
a latency delay li,j ≥ 0 to be respected whenever an occurrence of j starts
after an occurrence of i. Say differently, we want the smallest positive difference
between an occurrence of j and an occurrence of i to be greater than li,j . The
set of occurrences of i is ti + TiZ, while the set of occurrences of j is tj + TjZ.
When doing the difference, and using Bézout identity, we obtain that the set
of possible differences is (tj − ti) + gi,jZ where gi,j = gcd(Ti, Tj). The smallest
positive representative of this set is (tj − ti) mod gi,j . Therefore, the constraint
we want to pose is simply :

(tj − ti) mod gi,j ≥ li,j , ∀(i, j) ∈ G (1)

The modulo is defined here as the only representative of (tj − ti) + gi,jZ which
belongs to [0, gi,j − 1] (in particular, we consider a classic positive modulo, and
not a signed modulo like in some programming languages). The graph G involved
in constraint (1) contains the arcs (i, j) for which li,j > 0 (since otherwise the
equation is trivially satisfied).

Objective to maximize In a context of robustness, it could be natural to
maximize the feasibility of the system. More concretely, we want an execution
of a task to be as far as possible from every other executions of another task
which precedes or follows it. We could imagine that a task lasts longer than
expected, due to failure of the processor. This increase in the duration is naturally
proportional to the original processing time. Hence, we make all the delays li,j
proportional to a common factor α ≥ 0 that we try to optimize (see [1, 2]).

max α (2)

s.t. (tj − ti) mod gi,j ≥ li,jα ∀(i, j) ∈ G (3)

ti ∈ Z ∀i (4)

α ≥ 0 (5)

We easily check that a schedule is feasible for the feasibility problem iff the
optimization problem has a solution with α ≥ 1. Hence, this optimization prob-
lem can be interesting simply to find feasible solutions. Given the offsets (ti) we
can always compute the best compatible α :

α = min
(i,j)∈G

(tj − ti) mod gi,j

li,j
(6)



This shows that an optimal solution is completely defined by the offsets. The
following proposition allows to define an upper bound :

Proposition 1. Let (i, j) ∈ G. A necessary condition for this problem to be
feasible is ⌈li,jα⌉ + ⌈lj,iα⌉ ≤ gi,j. This is equivalent to α ≤ αi,j

max where :

αi,j
max =

{

gi,j/li,j if lj,i = 0

max
(

1
li,j

⌊

gi,j

li,j+lj,i
li,j

⌋

, 1
lj,i

⌊

gi,j

li,j+lj,i
lj,i

⌋)

if lj,i > 0

We deduce that αmax = min(i,j) αi,j
max is an upper bound on the value of α.

Proof. Since the offsets are integers, we have ⌈li,jα⌉ ≤ (tj − ti) mod gi,j and
⌈lj,iα⌉ ≤ (ti − tj) mod gi,j . Summing this two inequalities, we get ⌈li,jα⌉ +
⌈lj,iα⌉ ≤ gi,j . Let αi,j

max be the largest α-value satisfying this condition : αi,j
max =

max {α | ⌈li,jα⌉ + ⌈lj,iα⌉ ≤ gi,j}. If lj,i = 0, we have αi,j
max ≤ gi,j/li,j . Otherwise,

we easily see that we have either li,jα
i,j
max ∈ N or lj,iα

i,j
max ∈ N. Suppose li,jα

i,j
max =

n ∈ Z. Then n is the largest integer such that n+⌈nlj,i/li,j⌉ ≤ gi,j , i.e. nlj,i/li,j ≤
gi,j − n, i.e. n ≤ gi,j li,j/(li,j + lj,i). Therefore n = ⌊gi,j li,j/(li,j + lj,i)⌋. ⊓⊔

Remark 1. This necessary condition is stronger than li,jα + lj,iα ≤ gi,j , hence
the upper bound is tighter than min(i,j)

gi,j

li,j+lj,i
which is the upper bound in the

fractional case.

A word on zero delays Classically, processing times are strictly positive.
However our model allows zero delays, which amounts to introduce an addi-
tional graph G. Very often, the constraints associated with (i, j) and (j, i) work
together and some complications are introduced when only one of the couples
belongs to the graph i.e. only one of the delay is strictly positive (see for exam-
ple proposition 1). In the following we will suppose that the graph is symetric.
Since G is symetric, it can be seen as an undirected graph. We will write G(i) for
the set of neighbors of i, i.e. the set of tasks with which i is constrained. This
hypothesis is justified by the following proposition :

Proposition 2. We can always suppose the graph G to be symetric, i.e. the
delays li,j and lj,i to be either both zero or both strictly positive, possibly by
replacing a zero delay by 1/αmax.

Proof. Suppose li,j > 0, but lj,i = 0. We consider a new program in which lj,i as
been updated to be 1/αmax. This new program is stronger hence a solution of
this program is a solution of the original. Conversely, let ((ti), α) be a solution
of the original. If α = 0, then this is trivially a solution to the new program.
Otherwise α > 0. In this case, we have (tj − ti) mod gi,j ≥ li,jα > 0. Therefore
using proposition 3, we get (ti − tj) mod gi,j ≥ 1 ≥ α/αmax and so we have a
solution to the new program. ⊓⊔

A consequence of proposition 3 is that instead of considering equation (3)
for each couple (i, j) ∈ G, we can consider the following equation for each couple
(i, j) ∈ G with i < j :

li,jα ≤ (tj − ti) mod gi,j ≤ gi,j − lj,iα, ∀(i, j) ∈ G, i < j (7)



1.2 An equilibrium-based heuristic

The best response method The main component of the algorithm is called
the best response procedure. It takes its name from a game theory analogy.
Each task is seen as an agent which tries to optimize its own offset, while the
other offsets are fixed. Therefore, those other offsets are put in the RHS of the
problem. Moreover, the agent only takes into account the constraints in which
it is involved, i.e. only the constraints associated with its neighborhood G(i).
Hence, the agent i solves the following program (BRi) :

(BRi) max α (8)

s.t. lj,iα ≤ (ti − tj) mod gi,j ≤ gi,j − li,jα ∀j ∈ G(i) (9)

ti ∈ Z (10)

α ≥ 0 (11)

The concept of equilibrium and principle of the method to find one

Definition 1. A solution (ti) is an equilibrium iff for each task i, ti is an opti-
mal offset for the program (BRi).

In the following, we will say that a task i is stable if the current offset ti is
optimal for (BRi). Therefore an equilibrium is exactly a solution (ti) such that
all the tasks are stable. The heuristic uses a counter Nstab to count the number
of tasks known to be stable. It starts with an initial solution (for example ran-
domly generated) and tries to improves this solution by a succession of unilateral
optimizations. On each round, we choose cyclically a task i and try to optimize
its schedule, i.e. we solve (BRi). If no improvement was found, then one more
task is stable, otherwise we update and reinitialize the counter of stable tasks.
We continue until N tasks are stable. This is summarized in Algorithm 1. We
refer to [1] for the proof of termination and correction.

Remark 2. The choice to search for integral offsets has some drawback, in partic-
ular when we are interested by a MILP resolution. However, the main reason for
the use of integers is that it allows to guarantee the convergence of the heuristic.
The termination proof relies on the fact that there is only a finite number of
possible values for α. This is not the case with fractional offsets, and indeed,
it is not hard to see that in this case, the heuristic has only a few chances to
converge in a finite number of steps.

2 The best response procedure

Since the offsets are integer, and since the problem is periodic, we can always
impose ti to belong to {0, · · · , Ti − 1}. Therefore we can trivially solve the best
response program (BRi) by computing the α-value for each ti ∈ {0, · · · , Ti − 1},
using expression (6), and select the best offset. This procedure runs in O(TiN),
hence any method should at least be faster. In [1], the authors propose a method



Algorithm 1 The heuristic

1: procedure ImproveSolution((tj)j∈I)
2: Nstab ← 0 ⊲ The number of stabilized tasks
3: i← 0 ⊲ The task currently optimized
4: while Nstab < N do ⊲ We run until all the tasks are stable
5: (newti, αi)← BestResponse(i, (tj)j∈I) ⊲ We optimize the task i
6: if newti = ti then ⊲ We do not have a strict improvement
7: Nstab ← Nstab + 1 ⊲ One more task is stable
8: α← min(αi, α)
9: else ⊲ We have a strict improvement

10: ti ← newti

11: Nstab ← 1 ⊲ We restart counting the stabilized tasks
12: α← αi

13: end if

14: i← (i + 1) mod N ⊲ We consider the next task
15: end while

16: return (α, (tj)j∈I)
17: end procedure

consisting in precomputing a set of intersection points (in the next section we
will see that a fractional optimum is at the intersection of an increasing and a
decreasing line). Then, they compute the α-value for each of these intersection
points and select the best offset. In the following, we present a method which
greatly improves (BRi) solving.

2.1 Structure of the solution set of (BRi)

Each task i is linked with all the tasks j ∈ G(i) through non-overlapping con-
straints. We want to describe the shape of the set of solutions (ti, α) for the
problem (BRi), given some fixed offsets (tj)j∈G(i). If we try to draw the func-
tion α = (ti − tj) mod gi,j/lj,i representing the optimal value of α respecting
constraint (ti − tj) mod gi,j ≥ lj,iα when ti takes rational values, we obtain a
curve which is piecewise increasing and discontinuous since it becomes zero on
tj + gi,jZ. In the same way, if we draw α = (tj − ti) mod gi,j/li,j , we obtain
a curve which is piecewise decreasing and becomes zero at the same points. It
is therefore more natural to consider the two constraints jointly, i.e. (7), which
gives a continuous curve (see Figure 2). Note that if G was not symetric, we
would need to consider some degenerate cases were one of the slope (increasing
or decreasing) would be infinite (since li,j = 0 or lj,i = 0).

The set of solutions for all the constraints is the intersection of the curves
decribed above for each j ∈ G(i) (see Figure 3). Hence, the solution set is com-
posed of several adjacent polyhedra. We can give an upper bound on the number
npoly of such polyhedra. A polyhedron starts and ends at zero points. For a given
constraint j, there is Ti/gi,j zero points in [0, Ti − 1], hence npoly is bounded by
Ti

∑

j 6=i
1

gi,j
. This upper bound can be reached when the offsets are fractional,

since in this case, we can always choose the offsets tj such that the sets of zero



Fig. 2. Possible values for (ti, α) when constrained by a single task j

points (tj + gi,jZ)j∈G(i) are all disjoint. In the case of integer offsets, there is
obvioulsy at most Ti zero points in the interval [0, Ti − 1] and therefore, at most
Ti polyhedra.

Fig. 3. Possible values for (ti, α) constrained by all tasks j ∈ G(i)

2.2 Local (two dimensional) polyhedron

We want to compute the local polyhedron which contains a reference offset t∗i .
Locally, the constraint (ti−tj) mod gi,j ≥ lj,iα is linear, of the form ti−oj ≥ lj,iα.
Here, oj is the largest x ≤ t∗i such that (x − tj) mod gi,j = 0. In the same way,
we can compute the decreasing constraint o′j − ti ≥ li,jα. In this case o′j is the
smallest x ≥ t∗i such that (o′j − x) mod gi,j = 0. By proposition 4, we have :

oj = t∗i − (t∗i − tj) mod gi,j and o′j = t∗i + (tj − t∗i ) mod gi,j (12)

Fig. 4. Selection of the polyhedron
containing a reference offset t∗i

Fig. 5. Two possibilities in the degen-
erate case α = 0

Therefore, we obtain a local polyhedron (see figure 4). Note that when (t∗i −
tj) mod gi,j > 0, we simply have o′j = oj + gi,j by proposition 3. However, when
(t∗i − tj) mod gi,j = 0, we have oj = o′j = t∗i . In this case, the polyhedron is
degenerate since it contains only {t∗i }, and the α-value at t∗i is zero. Instead
of computing this polyhedron, we prefer to choose either the polyhedron on
the right, or on the left (see figure 5). If we choose the one on the right, this



amounts to defining o′j to be the smallest x > t∗i which annulates the constraint.
By proposition 4, we have o′i,j = t∗i + gi,j − (t∗i − tj) mod gi,j . Therefore, this
simply amounts to enforcing o′j = oj + gi,j . Choosing the polyhedron on the left
amounts to defining o′j using (12) and to enforcing oj = o′j − gi,j . Once the local
polyhedron has been defined, the problem is now to solve the following MILP :

(Loc−BRi) max α (13)

s.t. ti − lj,iα ≥ oj ∀j ∈ G(i) (14)

ti + li,jα ≤ o′j ∀j ∈ G(i) (15)

ti ∈ Z (16)

2.3 Solving the local best response problem

We now need a method to solve efficiently the program (Loc−BRi). Even if
we are interested in integer offsets, we can first search for a fractional solution,
and for this we can use any available method of linear programming. However,
since the problem is a particular two dimensional program, we can give special
implementations of these methods. Most of them (primal or dual simplex) run
in O(N2), but Megiddo algorithm [5] allows to find such a solution in O(N).

Once a fractional solution has been found, we can round it to the closest
smaller and larger integers, compute the α-value associated with these two off-
sets (using expression (6)), and select the best one. Since the additional com-
putation of the two α-values runs in O(N), this gives immediately a method to
compute an integer solution in O(N). In practice however, Megiddo algorithm is
outperformed by the dual simplex method presented below, at least for the sizes
of instances we considered. In fact, the integrality assumption allows to improve
the dual simplex algorithm and obtain a complexity in O(NW ) where W is the
width of the polyhedron. This is enough to give an acceptable complexity in
O(TiN) for the global best response problem (described in section 2.4). Hence,
the O(N2) complexity of the dual simplex approach is not penalizing.

A subroutine to determine the constraint active at a given point Given
an offset xref, expression (6) allows to compute the best compatible α-value, say
αref. Once the local polyhedron (on the right) has been computed, this value can
be defined by αref = min(αinc, αdec) with :

αinc = min
j∈G(i)

xref − oj

lj,i
and αdec = min

j∈G(i)

o′j − xref

li,j
(17)

Here, we distinguish the use of increasing and decreasing constraints. At the
point (xref, αinc), at least one increasing line with equation x − oj = αlj,i is
active (i.e. pass through (xref, αinc)). Hence, the slope of this line is given by
l−1
j,i . Among all the active constraints of this form, we are interested by the one
with the smallest slope i.e. the largest delay lj,i. In the same way, at the point
(xref, αdec), at least one decreasing constraint is active. We can compute the



decreasing line with equation o′k − x = αli,k which pass through (xref, αdec) and
which has the largest slope (since this slope is negative, this is the one which is
the most close to 0). As this slope is given by −1/li,k, we select the line with the
largest li,k. Since αref = min(αinc, αdec), there are three possibilities, as shown
in Figure 6 :

(a) (b) (c)

Fig. 6. Active lines computed at different offsets

(a) If αinc < αdec, we have αref = αinc. In this case, the only active constraints
are increasing. If expression (6) is seen as a function x 7→ α(x), the value 1/lj,i
represents the derivative on the right of this function at xref. In particular,
the optimum is strictly on the right of xref.

(b) If αinc > αdec, we have αref = αdec. In this case, the only active constraints
are decreasing and the value −1/li,k represent the derivative on the left of
the function at xref. The optimum is then strictly on the left of xref.

(c) If αinc = αdec, we are both on an increasing and a decreasing line. The
derivative on the left is given by 1/lj,i while the derivative on the right is
given by −1/lk,i. In this case, xref is the optimum.

In the following, we synthetize the previous computation into a function
which returns a tuple (d, α, jinc, jdec), where α is the value at xref, and jinc and
jdec are respectively the indices of the selected increasing and decreasing lines.
We call this function ValueAndDerivative (see Algorithm 2) since it returns
both the value and informations on the slope of the active line. The field d can
take value in {−1, 0, 1} and indicate where should be searched the optimum. If
d = 1 is returned, we are on the increasing line having equation x−ojinc

= αljinc,i

and the optimum should be searched on the right. If d = −1 is returned, we are
on the decreasing line having equation o′jdec

− x = αli,jdec
and the optimum

should be searched on the left. Finally, if 0 is returned, we are at the intersection
of the two lines which is the optimum. This procedure trivially runs in O(N).

Remark 3. Since the procedure tells us where to search for the optimum, we
easily deduce a dichotomous procedure which solves problem (Loc−BRi) and
which runs in O(N log(W )) where W is the width of the polyhedron1.

A dual simplex approach We present a dual simplex approach. As we will
see, this seems to be a primal approach since we traverse the vertices of the

1 Note however that contrary to the simplex based approach, we cannot garantee a
complexity in O(N2).



Algorithm 2 A routine to compute the α-value and the active line

1: procedure ValueAndDerivative(xref)
2: αinc ←∞; αdec ←∞
3: for all j ∈ G(i) do

4: α← (xref − oj)/lj,i ⊲ Or directly α← (xref − tj) mod gi,j/lj,i

5: if α < αinc or (α = αinc and lj,i > ljinc,i) then αinc ← α; jinc ← j
6: α← (o′j − xref)/li,j ⊲ Or directly α← (gi,j − (xref − tj) mod gi,j)/li,j
7: if α < αdec or (α = αdec and li,j > li,jdec

) then αdec ← α; jdec ← j
8: end for

9: if αinc > αdec then return (−1, αdec, jinc, jdec)
10: if αinc < αdec then return (1, αinc, jinc, jdec)
11: return (0, αinc, jinc, jdec)
12: end procedure

polyhedron (see Figure 8). However we apply the dual simplex not on problem
(BRi) but on its dual which is in standard form. We find unnecessary to present
the primal simplex approach which is illustrated on Figure 7.

Fig. 7. Finding the fractional optimum
with a primal simplex approach

Fig. 8. Finding the fractional optimum
with a dual simplex approach

We first describe an algorithm to find a fractional solution. We will present
some modifications afterward in order to return an integral solution. Let xfrac be
the variable intended to contain the offset of the fractional solution. In order to
initialize the algorithm we start with xfrac = ti, where ti is the current offset of
the task i. We will try to find the best value in the local polyhedron containing
xfrac. Using Algorithm 2, we can compute the associated α-value αmin, as well
as the ‘derivative’, i.e. the slope of an active line (see Figure 6). If we are both
on an increasing and a decreasing line, we know that we are at the optimum,
we return the solution (ti, αmin). Otherwise the active line is either increasing or
decreasing. In the following, we will suppose that we are on an increasing line,
say with equation x − o = αl. Hence, in order to reach the optimum, we will
traverse the vertices of the polyhedron in the right direction (see Figure 8). In
order to determine the next vertex, we first compute intersections of the active
line with decreasing lines having equation o′i,k − x = αli,k. Such an intersection
point has the following coordinates :

α =
o′k − o

l + li,k
and x =

lo′k + li,ko

l + li,k
(18)



We keep the one with the smallest α-value (see figure 9). In the same way, we
also search for intersections of the active line with other increasing lines having
equation x − oj = αlj,i. The coordinates are given by :

α =
o − oj

lj,i − l
and x =

olj,i − oj l

lj,i − l
(19)

Fig. 9. The lowest intersection point
with decreasing lines

Fig. 10. The lowest intersection point
with increasing lines

Among the increasing lines, we are only interested with lines having a strictly
smaller slope, i.e. a strictly greater delay lj,i > l 2. At the end, we have an
intersection point (see figure 10) which becomes our new fractional solution
(xfrac, αfrac). Note that in the above computation, only the α-coordinate is
needed since the x-coordinate of the selected intersection point can be computed
afterward by x = o + αl. We now proceed following one of the two alternatives :

A1 If we fail to find an intersection point of the second kind (with an increasing
line) with a better value, this means the selected point (xfrac, αfrac) corre-
spond to the intersection of an increasing and a decreasing line. Therefore,
this is the fractional optimum (see Figure 12), hence the procedure ends.

A2 Otherwise, we are not at the fractional optimum. The line which is involved
in the intersection is increasing, with equation x − oj = αlj,i. We take this
line as the new active line, i.e. we set o = oj and l = lj,i, and we restart
at the point where we search for intersection points (see Figure 11). If the
minimum is reached with several increasing lines, we can take the line with
the smallest slope, i.e. the largest lj,i.

Fig. 11. We restart from the new vertex Fig. 12. Until we reach the optimum

A phase involves the computation of up to 2N intersection points. At each
phase, the slope of the active increasing line strictly decreases (i.e. the delay l

2 Indeed, since l has been choosen to be minimal, we easily check that the α-value of
the intersection point is strictly better than αfrac iff lj,i > l.



increases). Therefore, the number of phases is bounded by the number of distinct
delays (itself bounded by N), which gives a complexity in O(N2). This gives us a
method to compute an integral solution in O(N2) since once we have a fractional
solution, we can deduce an integral solution with an additional computation in
O(N). Indeed, if x is integer, then (x, α) is the desired solution. Otherwise we
can compute the α-values α− and α+ associated with ⌊x⌋ and ⌈x⌉ and take
the largest one. Note that since ⌊x⌋ (resp. ⌈x⌉) is on the increasing phase (resp.
decreasing phase), only the corresponding constraints are needed to compute α−

(resp. α+) :

α− = min
k∈G(i)

(⌊x⌋ − ok)/lk,i and α+ = min
k∈G(i)

(o′k − ⌈x⌉)/li,k (20)

Improvement due to integrality assumption Instead of computing the
value α− at the end, we can compute this value during the algorithm. For this,
it is possible to maintain a variable xint representing the current best integral
solution, and αint representing its value. Another problem with the dual simplex
procedure is that between two integer offsets, there is possibly several interme-
diary intersection points. In order to skip this unnecessary points, we modify
alternative A2 as follow :

A2’ Since A1 didn’t occur, we know that we are not at the fractional opti-
mum. However it is still possible that the fractional optimum belongs to
(xint, xint + 1]. In order to test this, we use procedure ValueAndDeriva-

tive to compute the value α′ associated with xint +1, and the active line at
this point. If a decreasing line is active, this means we passed the fractional
optimum. In this case, we also return the optimal solution which is the best
solution among (xint, αint) and (xint + 1, α′). Otherwise, only an increasing
line is active at xint + 1. We redefine x − o = αl to the the equation of this
line. We update (xfrac, αfrac) = (xint +1, α′) and we restart at the point were
we search for intersection points.

With this modification, xint is garanteed to increase by one on each round.
This allows to obtain a complexity in O(NW ) where W is the width of the
polyhedron.

2.4 Solving the best response problem

We now have all the elements to describe the procedure which solves (BRi).
We saw that ti can be supposed to belong to {0, · · · , Ti − 1}. More generally
we can start at any initial offset x and run on the right until we reach the
offset x + Ti − 1, hence we obtain a solution ti ∈ {x, · · · , x + Ti − 1}. If needed,
we can consider ti mod Ti which is an equivalent solution in {0, · · · , Ti − 1}.
Following the idea described in section 2.2, we can compute the local polyhedron
(on the right) which contains the current reference offset. Using the dual simplex
method presented in 2.3, we solve the associated problem (Loc−BRi). If the local
optimum is better than the current solution, we update. We now want to go to the
next polyhedron. At the local optimum, there are two active lines, an increasing



one with equation x−oj = lj,iα and a decreasing one with equation o′k−x = li,kα.
Since the procedure runs from left to right, we follow the decreasing line until
we reach the x-axis, i.e. the offset o′k. We can use this point as the new reference
point. We continue until the period has been traversed. This method is illustrated
on Figure 13.

Fig. 13. Principle of the best response procedure

If we use Megiddo algorithm to solve the local problems, this best response al-
gorithm runs in O(npolyN) and we saw that in the integral case, npoly is bounded
by Ti. If we use the dual simplex adapted for the integral case, we have a com-
plexity in O(TiN) since the complexity on each polyhedron is proportional to its
width. Note that in practice, a lot of polyhedra are skipped (see grey polyhedra
in Figure 13).

2.5 Some possible improvements

The case of processing times In the case of processing times, no such refine-
ment as Megiddo algorithm is needed in order to obtain a complexity in O(N).
Indeed, in this case, we have li,j = pi. Since the delays li,j gives the slope of the
decreasing lines, this implies that all of them have the same slope −1/pi. Thus,
even if initially there are N decreasing lines with equations o′j −x = αpi, we can
remove all of them except one : the one with the smallest o′j . Once this decreas-
ing line is selected, we compute the intersection points with the N increasing
lines (having equation x − oj = αpj), and we select the one with the smallest
α-value. In order to jump over more polyhedra, it is also more interesting to run
from right to left (see Figure 14).

Fig. 14. The case of processing times

Finding the next polyhedron Suppose that after a local optimization, the
current best solution ti has value αmin. This becomes a lower bound for the
optimal value and we are only interested by polyhedra which could improve it.
However if αmin is a good value, most of the polyhedra will lie completely below
this level. Therefore, once a local optimum has been reached, it is possible to
add a propagation mechanism which allows to skip more polyhedra by finding
the smallest offset strictly greater than ti with an α-value strictly greater than
αmin. Instead of starting again at o′k (which has a zero α-value), as described in
section 2.4, we start at this new offset. Then, we are sure to improve the α-value.



3 The multiprocessor problem

3.1 Definition and method

MILP formulation of the multiprocessor problem In the multiprocessor
case, the scheduling problem is coupled with an assignment problem. In order
to define a MILP, we introduce binary variables ai,k which indicate if a task
i is assigned to a processor k, and variables xi,j which indicate if i and j are
on different processors. These variables must satisfy (22) and (23). For a given
couple (i, j) ∈ G, with i < j, the non-overlapping constraint (7) can be rewritten,
using an additional ‘quotient variable’ qi,j , as li,jα ≤ tj−ti+gi,jqi,j ≤ gi,j−lj,iα.
Since it has to be satisfied whenever the two tasks are on the same processor,
this yields constraints (24) and (25).

max α (21)
∑

k

ai,k = 1 ∀i (22)

xi,j ≤ 2 − ai,k − aj,k ∀k, ∀(i, j) ∈ G, i < j (23)

tj − ti + gi,jqi,j ≥ li,jα − αmaxli,jxi,j ∀(i, j) ∈ G, i < j (24)

tj − ti + gi,jqi,j ≤ gi,j − lj,iα + αmaxlj,ixi,j ∀(i, j) ∈ G, i < j (25)

ti ∈ Z ∩ [0, Ti − 1] ∀i (26)

qi,j ∈ Z ∩ [1 − Tj/gi,j , Ti/gi,j ] ∀(i, j) ∈ G, i < j (27)

xi,j ∈ [0, 1] ∀(i, j) ∈ G, i < j (28)

ai,k ∈ {0, 1} ∀k,∀i (29)

In the multiprocessor case, αmax cannot be defined by mini,j αi,j
max as in

proposition 1, since it corresponds to the worst case where all the tasks are
on the same processor. Instead, we can use αmax = maxi,j αi,j

max. However, since
αmax is used as a ‘big-M’, we try to find its lowest possible value in order to
improve the efficiency of the model. For this, we solve a preliminary model in
which constraints (24-27) are replaced by the following weaker constraint :

α ≤ αi,j
max + αmaxxi,j , ∀(i, j) ∈ G, i < j (30)

The resolution of this model is much faster than for the original one (less
that 1s for the instances considered in the results). It gives us a new value αmax

which can be used in the original model.

Multiprocessor best-response The adaptation of the heuristic to the multi-
processor case is quite simple. On each phase, a task is optimized and its offset
and assignment are changed accordingly. In order to solve the multiprocessor
best response, we solve the best response on each processor and move the task
on the processor which gives the best result.



3.2 Results

We test the method on non-harmonic instances, the same which were used in
[1, 2]. These instances were generated using the procedure described in [3] : the
periods were choosen in the set {2x3y50 | x ∈ [0, 4], y ∈ [0, 3]} and the processing
times were generated following an exponential distribution and averaging at
about 20% of the period of the task. The results on 25 instances with N = 20
tasks and P = 4 processors are presented in Table 1.

MILP (200s) Original heuristic [2] (bayesian test) New heuristic (2s)

id α
M

IL
P

t
im

e
s
o
l

α
h
e
u
r
is
t
ic

t
im

e
s
in

g
le

t
im

e
s
t
o
p

s
t
a
r
t
s
2
s

α
h
e
u
r
is
t
ic

s
t
a
r
t
s
s
o
l

s
t
a
r
t
s
2
s

t
im

e
s
o
l

0 2.5 159 2.3 1.43 101.33 1.4 2.5 35 3624 0.01932
1 2 18 2.01091 3.27 5064.67 0.61 2.01091 28 4477 0.01251
2 1.6 6 1.40455 1.52 869.45 1.32 1.6 2 2462 0.00162
3 1.6 4 1.6 4.34 8704.45 0.46 1.64324 45 2910 0.03093
4 2 5 1.92 3.48 1115.51 0.57 2 1 2489 0.00080
5∗ 3 7 1.43413 1.63 1498.21 1.23 3 1 2107 0.00095
6 2.5 54 2.3 1.44 101.25 1.39 2.5 35 3805 0.01840
7 2 19 2 0.23 302.27 8.7 2 3 4431 0.00135
8 2.12222 8 1.75794 1.03 871.8 1.94 2.12222 3 2513 0.00239
9∗ 2 11 2 2.42 3541.79 0.83 2 3 3575 0.00168
10 1.12 6 0.87 0.72 368.44 2.78 1.12 4 3466 0.00231
11 2.81098 20 0.847368 3.78 478.63 0.53 2.81098 1 3421 0.00058
12 1.5 7 1.5 0.27 313.74 7.4 1.5 4 3645 0.00219
13 1.56833 49 1.5 1.77 3293.33 1.13 1.56833 1 3863 0.00052
14 2 8 2 1.85 3873 1.08 2 2 2331 0.00172
15 1.28 7 1.28 7.89 5468.86 0.25 1.28 1 1782 0.00112
16 1.8 24 1.55 0.38 314.87 5.26 1.8 39 3802 0.02052
17 1 5 0.58 2.43 815.08 0.82 1 1 2507 0.00080
18 2.25 7 2 1.99 3059.82 1.01 2.25 2 1522 0.00263
19 2.3 6 2.3 0.99 710.03 2.02 2.3 1 2537 0.00079
20 1.65506 86 1.6 0.97 817.33 2.06 1.65506 12 2014 0.01192
21 1.90312 13 0.97 1.31 205.95 1.53 1.90312 195 3123 0.12488
22 2.07636 11 1.66364 2 1093.37 1 2.07636 40 5574 0.01435
23 3.7 4 1.36 4.23 2034.59 0.47 3.7 2 4540 0.00088
24 1.73 36 1.41053 1.06 481.4 1.89 1.73 19 2753 0.01380

Table 1. Results of the MILP, the heuristic of [1], and the new version of the heuristic

Columns 2 and 3 give the results of the MILP formulation. One advantage
of the MILP over the heuristic could be that it gives a proof of optimality.
However, it is rarely the case even with 1h of CPU time (optimality could only
be proved for instances 5 and 9 in 7s and 20s, respectively). Therefore, we
fix a timeout of 200s. αMILP represents the best solution found during this
time, and timesol the time needed to find it. Table 1 also includes results about
the original heuristic presented in [1, 2] (columns 4-7). Here, timesingle is the
time needed for a single run of the heuristic. In the results presented in [1, 2],
the heuristic was started several times with different initial solutions until a
bayesian test was satisfied, which gives a value timestop. In order to compare
with our version of the heuristic, we add a column starts2s = 2/timesingle which
measures the average number of starts performed by the original heuristic in 2s.
Table 1 also includes the results for our version of the heuristic, called the new
heuristic (columns 8-11). The results of the original heuristic show that on a lot
of instances, it stops with a solution which is far from the best solution found



by the MILP. Therefore, for the new heuristic, we abandoned the bayesian test
and we simply run the heuristic during 2s. The value start2s is the number of
times the heuristic was started during this time. We immediately see that this
number is much greater that the equivalent number for the original heuristic.
Therefore our heuristic is much faster (about 1660 times on these instances).
Moreover, startsol is the number of starts needed in order to find the best
solution, and timesol = 2startsol/start2s represents approximately the time
needed to find the best solution. This is to compare with the column timesol

of the MILP formulation, which shows that our version of the heuristic is very
competitive compared to the MILP. Finally, we performed additional tests on
big instances (48 processors, 1000 tasks), which show that our heuristic can give
feasible solutions (α ≥ 1) in about 1min, while these instances cannot even be
loaded by the MILP solver.

4 Conclusion

We have proposed an enhanced version of the original heuristic proposed in [1, 2]
to solve a NP-hard strictly periodic scheduling problem. Inspired by game the-
ory, the heuristic reaches an equilibrium by iteratively solving best response
problems. We propose acceleration techniques taking advantage of the two-
dimentionality of the best response problem. The results show that the new
heuristic greatly improves the original one and compares favorably with MILP
solutions.

References

1. A. Al Sheikh. Resource allocation in hard real-time avionic systems - Scheduling
and routing problems. PhD thesis, LAAS, Toulouse, France, 2011.

2. A. Al Sheikh, O. Brun, P.E. Hladik, B. Prabhu. Strictly periodic scheduling in
IMA-based architectures. Real Time Systems, Vol 48, N◦4, pp.359-386, 2012.

3. F. Eisenbrand, K. Kesavan, R.S. Mattikalli, M. Niemeier, A.W. Nordsieck, M.
Skutella, J. Verschae, A. Wiese. Solving an Avionics Real-Time Scheduling Problem
by Advanced IP-Methods. ESA 2010, pp.11-22, 2010.

4. J. Korst. Periodic multiprocessors scheduling. PhD thesis, Eindhoven university of
technology, Eindhoven, the Netherlands, 1992.

5. N. Megiddo. Linear-Time Algorithms for Linear Programming in R3 and Related
Problems. SIAM J. Comput., Vol 12, N◦4, pp.759-776, 1983.

A Appendix

Proposition 3. If x mod a = 0, then (−x) mod a = 0, otherwise (−x) mod a =
a − x mod a. In particular x mod a > 0 ⇔ (−x) mod a > 0.

Proposition 4. (1) The smallest y ≥ a such that (y − b) mod c = 0 is given by
y = a+(b−a) mod c. (2) The smallest y > a such that (y−b) mod c = 0 is given
by y = a+ c− (a− b) mod c. (3) The largest y ≤ a such that (y− b) mod c = 0 is
given by y = a− (a−b) mod c. (4) The largest y < a such that (y−b) mod c = 0
is given by y = a − c + (b − a) mod c.


