N
N

N

HAL

open science

HPCML: A Modeling Language Dedicated to

High-Performance Scientific Computing
Marc Palyart, David Lugato, Ileana Ober, Jean-Michel Bruel

» To cite this version:

Marc Palyart, David Lugato, Ileana Ober, Jean-Michel Bruel. HPCML: A Modeling Language Dedi-
cated to High-Performance Scientific Computing. 1st International Workshop on Model-Driven Engi-
neering for High Performance and CLoud computing (MDHPCL), Feb 2012, Innsbruck, Austria. pp.1.
hal-00761340

HAL Id: hal-00761340
https://hal.science/hal-00761340

Submitted on 5 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00761340
https://hal.archives-ouvertes.fr

HPCML: A Modeling Language Dedicated to
High-Performance Scientific Computing

Marc Palyart
CEA/CESTA
33114 Le Barp, France
marc.palyart@cea.fr

lleana Ober
IRIT — Université de Toulouse
118, route de Narbonne
31062 Toulouse, France

ober@irit.fr

ABSTRACT

Tremendous computational resources are required to com-
pute complex physical simulations. Unfortunately comput-
ers able to provide such computational power are difficult to
program, especially since the rise of heterogeneous hardware
architectures. This makes it particularly challenging to ex-
ploit efficiently and sustainably supercomputers resources.
We think that model-driven engineering can help us tame
the complexity of high-performance scientific computing soft-
ware development by separating the different concerns such
as mathematics, parallelism, or validation. The principles of
our approach, named MDE4HPC, stem from this idea. In
this paper, we describe the High-Performance Computing
Modeling Language (HPCML), a domain-specific modeling
language at the center of this approach.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming— Parallel programming; D.1.7 [Programming Tech-
niques]: Visual Programming; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.3.2 [Programming
Languages|: Language Classifications—Specialized appli-
cation languages; Concurrent, distributed, and parallel lan-
guages; Design languages; Very high-level languages

General Terms
Design; Language; Performance

Keywords

Model-Driven Engineering; Domain-Specific Modeling Lan-
guage; Scientific Computing; High-Performance Computing;
Parallel Language

David Lugato
CEA/CESTA
33114 Le Barp, France

david.lugato@cea.fr

Jean-Michel Bruel
IRIT — Université de Toulouse
118, route de Narbonne

31062 Toulouse, France
bruel@irit.fr

1. INTRODUCTION

While software industry is facing the multicore crisis, high-
performance scientific computing developers had to initiate
the shift to parallel programming a long time ago. Indeed
parallel architectures were the only way to quench their
thirst for computational power.

Unfortunately, mainstream parallel programming models,
and in particular those addressing high-performance com-
puting (HPC), are generally low level and machine specific.
Even though good performance levels can be achieved with
these approaches, drawbacks in terms of programming com-
plexity, architecture dependency and mix-up of concerns oc-
cur :

e The complexity of parallel software programming re-
stricts the use of these workstations and supercom-
puters to a few scientists (usually they are not com-
puter scientists) who are willing to spend a significant
amount of time learning the specificities of a particular
set of machines.

e In our case, the life cycle of supercomputers is five
to seven times shorter than the life cycle of scientific
applications that run on them (4 years versus 20 to
30 years). In addition to usual problems encountered
with software maintenance over such a period of time
(e.g. team turnover) software migrations have to face
radical changes in hardware architectures arisen from
the race for performance.

e The problem to be solved - the scientific knowledge of
the physics - is entirely mixed with numerical schemes
and target dependent information added to manage
the parallelism. Once a complex system has been built,
it is difficult to identify how the problem is solved by
the the application. As a result, maintenance and up-
grading become even more complicated.

We think that model-based development techniques can help
us deal with these problems. First by offering abstract
and domain-specific concepts to developers (mainly applied
mathematics researchers or physicists) for specifying how

B HPCInterface| OWner

1
E HPCType &

B HPCDataPort
= kind : HPCPortType

B HPCConstData

[1 *
(from kernel) [B HPCShareablelnterfacé 0..* [E HPCComponentinterface! 0..* 0. | parameters
} | extends | } requiredConstants type | 1
0.* 0..* i H HPCTypeConfiguration &
; [E HPCDataSef ! | interface 0 ionSi oo kernel
types sharedInterfaces S ROE N o nain (from kernel)

dataSet| 0..1

B HPCPackage H HPCComponent

= version : EString

functionsSignatures

1 | signature

functions 0--*| implementations

nestedPackages B e o
. ! components| < main : EBoolean N B HPCFunctionImplementation
0 nestingPackage 0..* 0.1 parent 0.. = version : EString

0..11

nestingPackage

1

behavior | 0..1 innerStructure

E HPCFlowDescriptor &|

<<enumeration>>

0..* subComponents

E HPCAlgorithmicImplementation

l 5 HPCCompositeImplementation l
[]

|

£ HPCPortType
- IN
- ouT
- INOUT

(from behavior)

E HPCAIgorithmicContent | owner [1

(from behavior) 1

innerStructure

Figure 1: HPCML Structure Package

to solve their problems. Second by reducing the cost and
complexity of the software migration process thanks to the
sharing between projects of model transformations used to
convert abstract representations into executable implemen-
tations. Finally by separating the concerns with different
models and views located at different levels of abstraction.

In accordance with this opinion, we described in the
characteristics and possibilities of such a development ap-
proach that we called MDE4HPC. In , we applied the
MDE4HPC principles with the ArchiMDE tool and attemp-
ted to combine MDE and frameworks in order to solve our
problem. Based on the encouraging results of this last ex-
periment regarding possible reduction of maintenance costs
and thanks to the positive feedback from applied mathe-
matics researcher on the accessibility of the approach we
improved MDE4HPC and are evaluating it on a larger scale
application development.

In this paper we carry on the presentation of the MDE4HPC
approach and focus our attention on the High-Performance
Computing Modeling Language (HPCML), its core compo-
nent. The principal contribution of this paper is the presen-
tation of the concepts offered by the new version of HPCML
to model parallel applications independently from a specific
platform. We believe that our metamodel partially pre-
sented in was to tied to the selected framework, thus
the version of HPCML presented here attempts to be more
generic.

The rest of this paper is organised as follows: in Section
we present the structure package of the HPCML meta-
model and its component model. In Section [8|we follow with
the behavior package that provides constructs for expressing
parallelism. After presenting related work in Section {4} we
finally discuss in Section [5] the contributions of our research
and give directions for future work.

2. STRUCTURAL ASPECT

Numerical simulation programs are functional by nature,
they take input data, process them and give a result. The
Fortran language designed by John Backus in the late 1950s
for the IBM 704 a precursor of supercomputers, is still the
reference of the scientific computing community. It is a pro-
cedural languages that decompose a program into a hierar-
chy of functions. One other strength of Fortran comes from
its capacity to manipulate natively mathematical data types
such as matrix or vector. The metamodel of the structure
package presented in Figure[I] arises from this need for func-
tional decomposition.

The main concept of the structure package is the HPCCom-
ponent. The service provided by an HPCComponent is de-
fined with an HPCComponentInterface that may conform to
interfaces shared by several components (HPCShareableIn-
terface).

The implementation of the component interface is delegated
to an HPCFunctionImplementation. A particularity of these
functions is that they can either be called from another com-
ponents that requests the service or from the component
itself if it possesses an execution semantic defined with an
HPCFlowDescriptor (see section [3). Excluding constants,
an HPCComponent does not hold data that could be shared
among its internal functions. These functions therefore de-
clare all the data they consume and produce (HPCDataPort
and HPCConstData). This is a deliberate choice, dictated
by the need to identify data dependencies that are truly re-
quired.

Two possibilities are offered to the developer for defining an
HPCFunctionImplementation, he can:

e decide to refine his model with an HPCCompositeIm-
plementation. In this case he needs to model a sub-
component with its associated HPCFlowDescriptor.

B HPCFlowNode

out 1 1.*
nodes
[B HPCAIgorithmicContent |
‘ ‘ l = content : EString l
[B HPCFunctionNode | [E HPCFork | [B HPCloin | [BHPCIf | [B HPCENdIf | [B HPCFinalNode | [E HPCInitialNode
1 P i P | 1 il } | |
<<enumeration>>
2 HPCLoopDependenceCategory
- - none
targets |2,.* B HPCComéosrteNode - i ;%JT:Jati b
8 HPCGuardedTransition e
= condition : EString
1 E HPCParallelFor
source source target = dataDependency : HPCLoopDependenceCategory
1 1 v 2.* = loopvar : EString
target = init i
H HPCTransition 1_source = lsTet) EE;::E
source 2..* (8 |SSUTY . .
o+ 1 target = stopCondition : EString
target <
source 1 L target
5 HPCSetEnumerator iterator
target 1 1 source £ stencil : EString B HPCSetlterator
functon —
1 source
5 HPCFunctionSignature & 0.* 5 HPCDataPort @ E HpCMesh & structure
- .(frornEsSttrgcture) transitions & HPCFunctionSignature & (from structure (from kernel)
version : EString (from structure) = kind : HPCPortType 0.1
innerStructure | 1 = version : EString 1 1 1
port
& HPCFlowDescriptor signature | 0..1 producer| | consumer B HPCMeshStructure

5 HPCDatalnstance

5 HPCDataPortConnector
connections 0.*

data 0.*

Figure 2: HPCML Behavior Package

e consider that the function is simple enough to be de-
scribed with a textual language (HPCAlgorithmicCon-
tent). Even though MDE4HPC does not formalize
such language at the moment, the language used must
possess certain qualities such as sharing high level con-
cepts with HPCML. Actually, the only language sup-
ported by the ArchiMDE tool is the textual DSL from
the Arcane platform [§].

The management of constants holds an important role in sci-
entific software. To fulfill this task HPCML extends the nu-
merical metamodel from the Paprika tool and provides
constructs to define data set of constants (HPCDataSet) for
each HPCComponent. HPCDataSet are shared within com-
ponents and can be used by HPCFunction through HPC-
ConstData. It is possible to obtain the global data set of
an application by merging all the data set from the com-
ponents used. In this merging process, identical constants
from different data sets are mapped and editable constants
are selected. The global data set model resulting from this
process is then passed to the Paprika tool that will generate
a GUI to manage instances of this model (creation, edition).

The concrete syntax of the concepts defined in the structure
package is based on a master-detail interface. The master
area is a tree displaying the hierarchy of components and
their elements. The detail area is form-based.

3. BEHAVIORAL ASPECT

The diversity and complexity of parallel architectures is prob-
lematic for the development of portable and efficient simula-

tion software. Usually, the architectures of supercomputers
are classified according to their memory architecture (e.g.
is memory shared or distributed between the different pro-
cessing units 7) or to the way they process data (e.g. is
the same operation applied to multiple data ?). Modern ar-
chitectures are frequently built by combining basic types of
parallel architectures (e.g. an architecture based on several
big computational nodes with a distributed memory archi-
tecture where each big node possesses a shared memory ar-
chitecture). Due to this diversity, developers have to choose
a programming solution for each kind of architecture they
target. The most popular solutions in the HPC community
are the MPI standard for dealing with distributed mem-
ory architectures, OpenMP for shared memory systems
and CUDA for exploiting GPUs. These three solutions
rely on different programming paradigms that were influ-
enced by the architecture they target.

In these conditions it is thus challenging to provide an ab-
stract way of expressing parallelism that would still be com-
patible with current and possibly future architectures. The
behavioral package provides concepts to compose an appli-
cation from components and attempts to provide generic
constructs for expressing potential parallelism. The meta-
model of this package is presented in Figure [

The root element enabling to compose components is the
HPCFlowDescriptor. It can be seen as merge of activity di-
agram formalism from UML [1] and SysML @ as it provides
a way to specify both control flow (HPCFlowNode, HPC-
Transition) and data flow (HPCDataPortConnector, HPC-

computeContribu-

tionsMatrix
\4 l
factorizeMatrix @ solveSystem

ParallelFor : (angle, angleStart, angleStop)

? @

i

@ solveSystem

l

O]

Figure 3: Example of the concrete syntax of an HPCFlowDescriptor

DataPort)

The current version of HPCML provides four ways of ex-
pressing parallelism in an application. Several of the con-
structs provided share the philosophy and were inspired by
parallel patterns Eﬂ and algorithmic skeletons [3].

e Task parallelism can be specified in the control flow by
using the concept of fork (HPCFork) in conjunction
with the concept of join (HPCJoin).

e Data parallelism can be expressed with a domain de-
composition approach (HPCSetEnumerator). The de-
veloper has just to specify which set may be parti-
tioned (HPCSet). Additionally, the size of the ghost
zone required at the boundaries of each partition may
be specified to guide the decomposition process.

e Task parallelism can also be specified with loops that
possess parallel semantics (HPCParallelFor). In this
case the critical point is to determine dependencies
among tasks. Three categories of dependence are iden-
tified (HPCLoopDependenceCategory): none (tasks have
no dependence), accumulation into a shared data struc-
ture (this kind of dependency can be managed with the
use of a reduction operation), complex dependencies.

e Parametric studies provides, at a meta level, a way of
expressing task parallelism. A parametric study relies
on the variation of parameters or functions to find the
best compromise for a given requirement. Concepts
for describing such parametric studies are not present
in Figure [2] as they are defined in a separated package
of HPCML.

Thanks to the level of abstraction of these concepts, it is
possible to define transformations that could map them to

different parallel architectures. For example an HPCSetEnu-
merator could be mapped onto a shared or distributed mem-
ory architecture.

The theory proposed by Moody in [12] was used for defin-
ing the concrete syntax of concepts from the behavior pack-
age. This theory aims at designing cognitively effective vi-
sual notations. Even though we cannot present entirely the
concrete syntax and its design rationale in this paper, the
figure [3| provides an overview. This figure shows the de-
fault view of an HPCFlowDescriptor : only the control flow
is displayed. Several elements of the concrete syntax are in-
spired from existing notations (eg. HPCFork and HPCJoin)
but were enhanced based on Moody’s principles (increase of
the perceptual discriminability and semantic transparency
in the case of the HPCFork and HPCJoin). It is also inter-
esting to note that the color is used to highlight the different
concerns : orange for parallelism, red for control flow, blue
for data flow (not shown here).

4. RELATED WORK

In addition to mainstream programming solutions such as
the ones cited in section [3| (MPI , OpenMP [4] and Cuda
[10]), research efforts to overcome at least one of the prob-
lems introduced in section [I] are numerous. Among them
we can mention the High Productivity Computing Systems
(HPCS) programme launched in 2002 by the DARPA
from which emerged novel programming languages: Chapel
(Cray), Fortress(SUN) and X10 (IBM). The principal draw-
back of this approach is the need to develop high-performance
compiler, debugger and implementation for each existing ar-
chitecture. Macro-based approaches such as HMPP (Hybrid
Multi-core Parallel Programming environment) [2] offer a re-
spectable solution for improving legacy code. However, as
their use is based on compiler directives which limit the sepa-
ration of concerns, this solution can appear as less attractive
for new developments.

The underlying idea to use model-driven engineering for de-
veloping scientific applications is also used in the Gaspard
project |18} [16]. Although their work is step further in the
right direction, we believe that their choice to model the ap-
plication with the MARTE profile [7] is not optimal in term
of accessibility for mathematicians and physicists.

Another project tackling our problematic by raising the level
of abstraction is Liszt [5]. It aims at solving partial-differential
equations on meshes by providing a domains-specific lan-
guage built on top of Scala. Due to its qualities and common
philosophy with HPCML, we plan to add Liszt as an addi-
tional target of the transformation process in the ArchiMDE
tool. This would demonstrate the capability of HPCML to
target multiple high-level platform (Arcane, Liszt). A more
complete view of related work can be found in [15].

5. DISCUSSION

In this paper we addressed the main concepts of the HPCML
metamodel and especially how parallelism can be expressed
in a generic fashion. This metamodel and, more generally
the MDE4HPC approach are currently used to redevelop
an existing application used in production at CEA /CESTA.
The goal of this experiment is to assess their ability to model
and manage the different aspects of a real-scale simulation
software.

Regarding future work, the definition of a textual language
for describing algorithms (HPCAlgorithmicContent) is our
next step. The syntax of the Liszt language is a good can-
didate and its implementation based on Scala makes it pos-
sible to use it in ArchiMDE as a generic language for the
description of algorithms.

Another path of research concerns the transformation pro-
cess. As a matter of fact HPCML provides only concepts
for applied mathematics researchers to let them model how
they want to solve their problems but what about the soft-
ware engineers in charge of writing the model transforma-
tions that take the abstract description and produce the ex-
ecutable implementations. The actual situation is not idyl-
lic as the transformations are quite "monolithic” and their
parametrization limited. Hence they can be used for sev-
eral projects but not for several platforms. We have already
some ideas on how to model precisely the platform and on
how to guide the mapping process but there is still a long
way to go before getting a viable solution.

Until now, the use of modeling techniques in our context was
aimed at easing development and maintenance processes.
The models obtained in this process could be exploited in
directions that are ”classical” for the modeling community,
but are not used these days by the HPC community. These
extras, could include the formal verification of properties on
the model, a better (and possibly formal) characterization
of the needs for particular algorithms in terms of platform
resources or architectures, an abstract description of timing
properties that may lead to model level time analysis for
existing algorithms, etc. The fact that there is no direct
demand for such analysis by the HPC community is mainly
due to the current habits of having low-level code that is not
very exploitable by analysis tools. Adding more abstraction,
would probably open the door to a wide range of model level

analysis, most of them being yet to be defined in order to
better address the needs of the HPC community.

6. REFERENCES

[1] UML 2.2 Superstructure Specification. Technical
report, Object Management Group (OMG), 2009.

[2] F. Bodin. Keynote: Compilers in the manycore era. In
HiPEAC ’09: Proceedings of the 4th International
Conference on High Performance Embedded
Architectures and Compilers, pages 2—3, Berlin,
Heidelberg, 2009. Springer-Verlag.

[3] M. Cole. Algorithmic skeletons: structured
management of parallel computation. MIT Press,
Cambridge, MA, USA, 1991.

[4] L. Dagum and R. Menon. Openmp: An
industry-standard api for shared-memory
programming. Computing in Science and Engineering,
5:46-55, 1998.

[5] Z. DeVito, N. Joubert, F. Palacios, S. Oakley,

M. Medina, M. Barrientos, E. Elsen, F. Ham,

A. Aiken, K. Duraisamy, E. Darve, J. Alonso, and

P. Hanrahan. Liszt: a domain specific language for
building portable mesh-based pde solvers. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 9:1-9:12. ACM, 2011.

[6] S. Friedenthal, A. Moore, and R. Steiner. A Practical
Guide to SysML: Systems Modeling Language. Morgan
Kaufmann Publishers Inc., 2008.

[7] S. Gérard and B. Selic. The uml marte standardized
profile. In Proceedings of the 17th IFAC World
Congress, pages 6-11, 2008.

[8] G. Grospellier and B. Lelandais. The arcane
development framework. In POOSC ’09: Proceedings
of the 8th workshop on Parallel/High-Performance
Object-Oriented Scientific Computing, pages 1-11,
New York, NY, USA, 2009. ACM.

[9] K. Keutzer, B. L. Massingill, T. G. Mattson, and B. A.
Sanders. A design pattern language for engineering
(parallel) software: merging the plpp and opl projects.
In Proceedings of the 2010 Workshop on Parallel
Programming Patterns, ParaPLoP ’10. ACM, 2010.

[10] D. Kirk. Nvidia cuda software and gpu parallel
computing architecture. In ISMM, pages 103-104,
2007.

[11] T. Mattson, B. Sanders, and B. Massingill. Patterns
for parallel programming. Addison-Wesley
Professional, first edition, 2004.

[12] D. L. Moody. The ”physics” of notations: Toward a
scientific basis for constructing visual notations in
software engineering. IEEE Transactions on Software
Engineering, 35:756-779, 2009.

[13] D. Nassiet, Y. Livet, M. Palyart, and D. Lugato.
Paprika: Rapid Ul development of scientific dataset
editors for high performance computing. In SDL 2011:
Integrating System and Software Modeling, pages
69-78. Springer, 2011.

[14] M. Palyart, D. Lugato, I. Ober, and J. Bruel.
Improving scalability and maintenance of software for
high-performance scientific computing by combining
MDE and frameworks. In MODELS’11, Model Driven
Engineering Languages and Systems, pages 213-227.

[15]

[16]

[17]

[18]

[19]

Springer, 2011.

M. Palyart, D. Lugato, I. Ober, and J.-M. Bruel.
MDE4HPC: An approach for using Model-Driven
Engineering in High-Performance Computing. In 15th
System Design Languages Forum (SDL 2011), 2011.
W. Rodrigues, F. Guyomarc’h, and J. Dekeyser. An
mde approach for automatic code generation from
uml/marte to opencl. Computing in Science
Engineering, (99):1, 2012.

M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and
S. Huss-Lederman. MPI: The Complete Reference.
MIT Press, Cambridge, MA, USA, 1995.

J. Taillard, F. Guyomarc’h, and J.-L. Dekeyser. A
Graphical Framework for High Performance
Computing Using An MDE Approach. Furomicro
Conference on Parallel, Distributed, and
Network-Based Processing, 2008.

M. Weiland. Chapel, Fortress and X10: Novel
Languages for HPC. Technical report, The University
of Edinburgh, October 2007. http://www.hpcx.ac.uk/
research/hpc/technical_reports/HPCxTRO706.pdf.

http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0706.pdf
http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0706.pdf

	Introduction
	Structural Aspect
	Behavioral Aspect
	Related Work
	Discussion
	References

