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A Hybrid Dynamic Model Of An Insect-Like MAV With Soft Wings

Ayman Belkhiri1, Mathieu Porez1 and Frédéric Boyer1

Abstract— This paper presents a hybrid dynamic model of
a 3-D aerial insect-like robot. The soft-bodied insect wings
modeling is based on a continuous version of the Newton-Euler
dynamics where the leading edge is treated as a continuous
Cosserat beam. These wings are connected to an insect’s
rigid thorax using a discrete recursive algorithm based on the
Newton-Euler equations. Here we detail the inverse dynamic
model algorithm. This version of the dynamic model solves the
following two problems involved in any locomotion task: 1◦) it
enables the net motion of a reference body to be computed from
the known data of internal motions (strain fields); 2◦) it gives the
internal torques required to impose these internal (strainfields)
motions. The essential fluid effects have been taken into account
using a simplified analytical hovering flight aerodynamic model.
To facilitate the analysis of numerical results, a visualization
tool is developed (see video available at [1]).

I. INTRODUCTION

Biologically inspired Micro Aerial Vehicles (MAVs) have
the potential to fly, maneuver, collect information and act in
Dull - Dirty - Dangerous environments. In the last decade,
the number of researches related to MAVs has exploded
and many successful prototypes and designs exist now.
The vast majority of these research activities deals with
: aerodynamic, fluid-structure interactions, prototypingand
control problems. It should be noted that in these works
there are two main categories of dynamic models. The first
ones are finite elements based models coupled with CFD
solvers [2], [3], [4]. These models are accurate but they
need heavy computations. In the other hand, the second
category uses very simple dynamical models [5], [6], [7],
[8]. This kind of models is suitable for control and real
time applications, however, it does not take into account
the flexibility of the wings which is a key parameter for
insect-like flapping flight. In an attempt to start overcoming
these modeling deficiencies, we propose in this paper a
dynamic model where the insect’s thorax is considered as
a rigid body connected with two soft wings. The proposed
model is aiming to replicate as closely as possible the
kinematics and internal deformations of the wing as well
as the rigid net motion of the insect. The proposed model is
distinguished by the following two points: 1◦) it is a dynamic
model called "hybrid", combining discrete and continuous
models taking into account the wing bending and twisting
deformations as well as the external aerodynamic forces;
2◦) the computational efficiency of the proposed algorithms
and the highly realistic visual rendering of the simulations
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(see video in [1]) allow one to access many information that
were, until now, unreachable e.g. the internal torques, the
aerodynamic forces, the wing-thorax reaction torques, the
passivity of the wings, etc.

The paper is organized as follows. We start first by recall-
ing the general modeling framework along with some basic
notations and mathematical definitions. Then, we expose our
hybrid dynamic model starting by discrete insect’s body
model. Then, we detail the continuous wing model followed
by the aerodynamic model. After that, we expose the general
algorithm that allows one to establish the connection between
the different insect’s parts. We explain how we can establish
the connection between the thorax and the wing’s models
and how to mix them to form a ’hybrid’ algorithm modeling
the hole insect. The obtained algorithm will perform fast
calculations of the control torques exerted at the thorax-
wing junction as well as those applied along the leading
edge span. Moreover, it will compute the overall rigid (net)
motions involved in locomotion tasks. Finally we present
some examples of simulations and results. The paper ends
with some concluding remarks.

II. MODELING APPROACH

To model our bio-inspired insect-like robot, we consider it
as an assembly of three distinct bodies i.e. a thorax and two
wings forming a tree-like structure completely disconnected
from the earth. In this regard, let us highlight two essential
points: 1◦) Globally, the insect can be considered as an
"unconstrained mobile multibody system". To establish the
dynamic locomotion model of such kind of systems, Boyer
et al. [9] proposed a unified computational method based
on Newton-Euler (N-E) formulation to model a wide range
of discrete mobile multibody systems including bio-inspired
snake-like robots, swimming eel-like robots, flying insect-
like robots, etc. 2◦) However, when dealing with the wings,
the number of internal degree of freedom of each wing
tends to infinity. Thus, the wing becomes a ’continuous-
like system’ and the discrete mobile multibody systems
approach is no longer valid in that case. To skirt this problem,
Boyer et al. [10] proposed a continuous version of the
Newton-Euler discrete algorithm in which the bio-inspired
robot is modeled as a geometrically exact beam continuously
actuated through an active strain law. Hence, to address the
insect-like dynamic locomotion problem accurately we need
to consider both of these approaches: 1◦) the discrete one
for the thorax; 2◦) the continuous one for the wings.



III. INSECT DYNAMIC MODELING

A. Description of the insect

In acordance with Fig.1, let us consider an insect-like robot
S+
o composed by a thoraxSo and two wingsS1 andS2, the

right and left one respectively. Each wing is connected to the
thorax through an actuated revolute joint. We attach to the
ambient geometric space a fixed orthonormal frame denoted
by Fe = (O, ex, ey, ez) and to each linkSj an orthonormal
mobile frameFj = (Oj , sj , nj, aj) for j = 0, 1, 2. At
any time t, the robot configuration is defined by the joint
positionsr, the wing strains (see section IV for more details)
and the rigid transformationego of Fo with respect to
Fe. Let us note that we choseSo as the reference of the
net motions of our virtual insect-like robot. In this section,
following usual N-E conventions of the multi-body system
modeling and labeling (see [11]), we reserve the subscript
0 for the thorax, the subscript1 for the right wing and the
subscript2 for the left wing. Let us start by introducing the

Fig. 1: Frames and parametrization of the insect-like MAV.

geometric model of the robot. For linksj = 1, 2, the rigid
transformation (elements of SE(3)), which define the posture
of the frameFj with respect to the frameFe is described
by:

egj =
ego

ogj(rj) , with ogj(rj) =

(
oRj(rj)

oPj

0 1

)
,

(1)
where oRj and oPj are the orientation matrix and the
position vector ofFj with respect toFo respectively. The
twist of the link j denoted byηj is defined by a(6 × 1)
vector of link velocity components expressed inFj , i.e.:

ηj = (V T
j ,ΩT

j )
T = Ad jgoηo + ṙjAj , (2)

where Vj and Ωj are respectively the linear and angular
Galilean velocities of the considered link,Aj = (0T3 , a

T
j )

T

is the unit vector representing the joint axisj, andAd jgo is
the adjoint map operator (see appendix). Once the Galilean
velocities are defined, by temporal derivation of (2), the
accelerations denoted bẏηj of the link j become:

η̇j = Ad jgo η̇o + ζj(ṙj , r̈j) , (3)

where ζj represents the part of accelerations that do not
depend of the thorax accelerations.ζj has the following form:

ζj =

(
(jVo +

jPo ×
jΩo)× ṙjaj

jΩo × ṙjaj

)
+ r̈jAj . (4)

Finally, by applying, on each body, the Newton’s law and
the Euler’s theorem, the dynamic equations of links fromSo

to S2 are:

0 = Moη̇o + Fgyr,o − Fext,o +

j=2∑

j=1

Ad∗jgoFj , (5)

F1 = M1η̇1 + Fgyr,1 − Fext,1 , and (6)

F2 = M2η̇2 + Fgyr,2 − Fext,2 , (7)

where, from left to right, we introduce the following physical
variables:
• the wrench of joint forces denoted byFj exerted by the

link 0 on the link j;
• the j th body inertia tensor denoted byMj and defined

by the following equation1:

Mj =

(
mj13 −m̂sj
m̂sj Ij

)
, (8)

wheremj, msj andIj are the mass, the first moment vector
and the inertia tensor of the linkj respectively;
• the wrench of gyroscopic forces applied on the linkj:

Fgyr,j =

(
Ωj × (Ωj ×mjsj) + Ωj ×mjVj

Ωj × (IjΩj) +mjsj × (Ωj × Vj)

)
, (9)

• the wrench of external forces denoted byFext,j is
defined in section V.

B. Forward dynamic model of MAV

In order to compute the net motion of the considered robot,
we need to establish the forward dynamic model of this one,
i.e the dynamic equations of the multi-body systemS+

o . From
(5)-(7), the equation setting the external degrees of freedom
of S+

o and describing the net motion of the robot is:

M+
o (r(t))η̇o = F+

o (r(t), ṙ(t), r̈(t), ego, ηo) , (10)

where η̇o is the accelerations ofSo and those ofS+
o , M+

o

is the generalized inertia matrix ofS+
o . It is given by:

M+
o =

j=2∑

j=0

Ad∗jgoMjAdjgo . (11)

F+
o (r(t), ṙ(t), r̈(t), ego, ηo) is the wrench of all inertial and

external forces and moments exerted ontoS+
o , i.e. :

F+
o = Fext,o−Fgyr,o+

j=2∑

j=1

Ad∗jgo (Fext,j − Fgyr,j −Mjζj) .

(12)
Let us note that, in (12),Fgyr,o is calculated directly using
eq. (9), while Fgyr,1 and Fgyr,2 are obtained from the
continuous dynamic model (see section IV-B). Moreover, for

1Let us note that for any vectorsA andB in R
3, Â is defined such that

ÂB = A× B.



the sake of simplicity, the aerodynamic wrench acting on the
thoraxFext,o is neglected in this study. However, the calculus
of the aerodynamic forces wrenches applied onto the right
and left wingsFext,1 andFext,2 is detailed in section V.

IV. WING DYNAMIC MODELING

To model the compliant wings of the insect and to compute
the different physical variables related to these one (see
(10)), we adopted the macro-continuous approach proposed
by Boyer et al. in [10],[12]. This approach is suitable for
modeling hyper-redundant robot involving a lot of DoFs. For
the sake of simplicity of analysis, we make the choice of
considering that each "hyper-redundant wing" is composed
of a leading edge and a membrane without venation. In
agreement with [13], the leading edge may be assimilated to
a Cosserat beam or geometrically exact beam. In such theory,
the beam is subject to finite 3-D transformations and small
strains. Each cross-section of the beam (of span denoted by
l) is rigid and is labeled by its abscissaX along the leading
edge starting from the wing root. The reference configuration
is considered to be straight and aligned with(O, sj) (see
Fig. 3). Moreover, for a given cross sectionX , we attach
a non deformable membrane segment such that the leading
edge undergoes flexion and torsion deformations while the
membrane follows rigidly its motion.

A. Additional notations and definitions

To eachX cross section, we attache a mobile orthonormal
frameFm(X, t) = (P, s, n, a)(X, t) such that: 1◦) P (X, t)
coincides with the center of the cross section, 2◦) the vector
s(X, t) is tangent to the centroidal line of the leading edge,
3◦) the vectora(X, t) is tangent to the wing membrane. The
posture of the cross sectionX with respect to the frameFe

is given by:

g =

(
R(X) P (X)
0 1

)
. (13)

On the leading edge, we defined two vector fields. The first
is the time-twist field2:

η̂ : X ∈ [0, l] 7→ η̂(X, t) = g−1ġ ∈ se(3) , (14)

where η(X, t) defines the infinitesimal transformation un-
dergone by the cross sectionX between two infinitely close
instantst andt+dt. The second is the space-twist field such
that:

ξ̂ : X ∈ [0, l] 7→ ξ̂(X, t) = g−1g′ ∈ se(3) , (15)

where ξ(X, t) defines the infinitesimal transformation un-
dergone by the cross sectionX at fixed time t when the
material axis slides fromX to X + dX . Now, to ’copy’ the
flapping wing kinematics and deformations, we identifyξ̂ to
a desired control field explicitly dependent on the time and

2Let us note that for anyζ = (AT , BT )T ∈ R
6 with A ∈ R

3 and

B ∈ R
3, ζ̂ =

(

B̂ A
0 0

)

.

Fig. 3: Frames and parametrization of the soft wing.

noted ξ̂d(X, t) which parameterizes the internal kinematics
of the wing motion, i.e.:

g−1g′ =

(
K̂d(X, t) Γd(X, t)

0 0

)
= ξ̂d(X, t) , (16)

whereKd = (KdX ,KdY ,KdZ) andΓd = (ΓdX ,ΓdY ,ΓdZ).
The KdX component is the rate of twist per unit of wing
span. It represents the torsion of the wing around its leading
edge. TheKdZ and KdY components are the curvatures
of its centroidal line in the planes(P, s, n) and (P, a, s)
respectively. The first one represent the flexion of the wing
in the stroke plane, while the second one, represents the
azimuthal or the elevation curvature. In the same way,
(ΓdX − 1) is the rate of stretching of the centroidal line.
Since the leading edge is inextensible,ΓdX is set to1 (see
[10]). ΓdY andΓdZ are the local transverse shearing rotations
around the axes(P, a) and (P, n) respectively and they are
equal to zero.

B. Continuous model of wings

Let us note that the macro-continuous framework used
here is nothing else but a continuous version of the discrete
framework presented in the section III, where the Cosserat
beam stands for the mobile multibody system, a beam cross
section stands for a discrete body, and finally the strain field
ξ stands for the joint coordinatesr. Pushing forward the
analogy, each one of the wings will need a reference body
(i.e. a reference cross section). In this case, we naturally
chose the root, i.e the cross section labeled byX = 0 as a
reference for the wing modeling. The continuous kinematic
model of the wing splits into 3 equations detailed as follows:

• Continuous model of transformations:this is immedi-
ately derived from the definition (16) of internal DoFs:

g′ = gξ̂d(t), with g(X = 0) = egj . (17)

The boundary condition of (17) is determined by (1).
• Continuous model of velocities:by taking the derivative

of (14) with respect toX , and by invoking (16) and thead



Fig. 2: Working schematic of the ’hybrid’ locomotion dynamic model of insect-like MAV with soft wings.

operator (see appendix), we obtain:

η′ = −adξd(t)(η) + ξ̇d(t), with η(X = 0) = ηj . (18)

At each time step, the thorax-wing junction point is animated
by the velocity of the joint’s flapping movement fed by
the rigid net motion of the thorax. Hence the boundary
conditions are obtained using (2).
• Continuous model of accelerations:this is inferred by

taking the derivative of the previous model (18) with respect
to time:

η̇′ = −adξd(t)(η̇)− adξ̇d(t)(η) + ξ̈d(t) , (19)

with the boundary conditioṅη(X = 0) = η̇j fixed by (3).

Following the works detailed in [14], by applying the
Hamilton principle on the wing subject to a density of
imposed external (here aerodynamic) wrenches per unit of
wing spanF on ]0, l[ and two punctual external wrenches
F− andF+ imposed onX = 0 andX = l respectively, one
obtains the following Partial Differential Equations (PDE)
governing the dynamics of a wing cross section:

Mη̇ − ad∗η (Mη)− Λ′ + ad∗ξd(t) (Λ) = F , (20)

with the boundary conditions:

Λ(0) = −F− , and:Λ(l) = F+ , (21)

whereΛ is the density of internal wrenches ensuring the
forcing of the internal desired strain:ξ = ξd(t). Since the

wings and the thorax are connected through joints, and they
are mutually applying action and reaction forces on each
other, the internal torques equation (20) is initialized bythe
thorax-wing reaction wrench calculated using (6) forS1 and
(7) for S2. Finally the boundary conditions (21) become (for
j = 1, 2):

Λ(0) = Fj = Mj η̇j − Fext,j + Fgyr,j , (22)

Λ(l) = 0 , (23)

where,Mj andFgyr,j stand for the inertia tensor and the
inertial wrenches of the whole wing, both reduced to the
reference cross sectionX = 0, while Fext,j stands for the
wing external aerodynamic forces wrench reduced to the
reference cross sectionX = 0 (see section V). We define
Mj by:

Mj =

∫ l

0

Ad∗kMAdkdX , (24)

where, M is the inertia matrix of the cross sectionX
connected to its membrane segment. The external wrenches,
reduced to the reference cross section (i.e. the thorax-wing
junction) are equal to:

Fext,j = −F− +Ad∗k+
F+ +

∫ l

0

Ad∗k(F )dX , (25)

and the inertial wrenches reduced to the reference cross



section are given by:

Fgyr,j =

∫ l

0

Ad∗k(Mζ − ad∗η(Mη))dX . (26)

V. A ERODYNAMIC MODEL

As a reminder, (10) rules the forward dynamics by
computing the net accelerations from a model of external
forces: the aerodynamic loads. In general, due to the
complex topology of the flow surrounding a flapping wing,
such a model requires the computation of the Navier-Stokes
equations (see [2], [3], [15]). However, for prototyping
and control-oriented applications, we have chosen to use a
simplified analytical model based on the works of Dickinson
et al [16], [17]. Dickinson’s model was initially established
using a dynamically scaled rigid wing model of fruit flies.
Hence, we have rewritten these aerodynamic components
in order to make them compatible with the "slice by
slice" (cross-section by cross-section) formulation of our
wing modeling strategy. For our simulations we select the
following main aerodynamic contributions:

• Stationary component: Aerodynamically speaking, we
define as stationary the effects that do not involve the
derivatives of the angles of the wing movement. We typically
meet these effects on a fixed airfoil in the presence of
a steady flow:F stat = 1

2 ρ cX |η|2 Cstat, where,Cstat

denotes the(3×1) vector of stationary coefficients,ρ stands
for the air density, andcX represents the cord length at a
given cross sectionX ( for more details see [16]).
• Rotational circulation: It was shown that the rapid

rotation of the wing during each change of direction causes
a circulation of the air in the opposite direction, which
increases the lift:F rot = ρ c2X |η| Crot Ω, where,Crot

denotes the(3 × 3) diagonal matrix of theoretical values
of rotational coefficients (see [18], [17]).
• Added mass: The effect of the added mass is defined

as the reaction due to the acceleration of the mass of fluid
surrounding the wing, whose modeling is given here by:
F add = ∂(Madd.η)/∂t, whereMadd represents the(6× 6)
’added inertia’ matrix (see [19], [20]).

Let us remark that all the aerodynamic contributions are
calculated in a frame attached to the aerodynamic center of
each membrane segment. In order to include their effects on
the insect dynamics, they must be transported to the cross-
sectional frameFm(X, t) using the appropriate adjoint map
operatorAdagX , where agX stands for the homogeneous
transformation matrix that defines the mapping between the
frame attached to the aerodynamic center and the correspond-
ing cross-sectional frame. Hence, the density of external
aerodynamic wrenches per unit of span is defined by:

F = Ad∗agX (F stat + F rot + F add) . (27)

Finally, from a qualitative viewpoint, these three components
introduced in (27) are sufficient to reproduce the commonly
observed aerodynamic phenomena during insect-like flapping

flight. Moreover, by virtue of the intrinsic form of equation
(25), one can enrich this model by adding other aerodynamic
components e.g. wake capture, dynamic stall, transversal
flow components, etc.

VI. GENERAL MIXED CONTINUOUS-DISCRETE

ALGORITHM

From section II to section V we detailed the ’hybrid’
dynamic model of a flapping wing MAV. The execution of
the algorithm solving this model can be stated as follows. In
accordance to Fig. 2, and at each time step of a global time
loop:

1◦) knowing the imposed time-dependant flapping kine-
matics (r, ṙ, r̈)(t) and the internal strain law (ξd, ξ̇d,
ξ̈d)(X, t), and using the forward discrete geometric model
(1)-(3), we can compute the state of each thorax-wing
junction point (gj, ηj , ζj ). This thorax-wing junction point
state is used to initialize the first spatial integration loop
of the forward continuous kinematic model i.e. (17)-(19).
At the end of this integration, we recover the whole wing
inertia tensorMj , the wrench of gyroscopic forcesFgyr,j

and the wrench of aerodynamic forceFext,j using (24), (26)
and (25), respectively. At this stage, the algorithm is ableto
compute the generalized inertia matrixM+

o and the wrench
of all the inertial and external forces acting on the insectF+

o

(see (11),(12)). Hence, the external dynamics are resolved
and the thorax acceleratioṅηo is obtained using the dynamic
equation of the whole insect (10).

2◦) To compute the field of internal torques and forces
along the wing span, we use the obtainedη̇o to calculate
the thorax-wings reaction torques using equations (6) and
(7). These reaction torques will determine the boundary
conditions (22) initializing the second spatial integration loop
(20).

3◦) Since both external and internal dynamics are resolved,
we can finally integrate the thorax accelerationη̇o twice with
respect to time to obtain the net motion of the whole insect:
ego, ηo, η̇o. This thorax state will be used to start the next
time step of the global temporal integration loop.

VII. ILLUSTRATIVE EXAMPLES AND
NUMERICAL RESULTS

In this section, we present some numerical results obtained
using the hybrid algorithm presented in section VI. The
simulation parameters were chosen such that the simulated
MAV emulates as close as possible a real hawk moth
(Manduca sexta). Hence, to approximate the moth we took
the morphological parameters provided by [5]. The tho-
rax is considered as an ellipsoid of great and small axis
lengths a = 40 mm and b = c = 10 mm respectively.
The wing spanl is about55 mm, whereas the maximum
chord length iscmax = 30 mm. The mass of the MAV is
m = 1.8 g where the wings represent approximatively10%
of the total weight of the MAV. The different kinematics
of real Manduca sextawhere measured experimentally by
[21] and represented as a third order Fourier series. These
kinematics were simplified and approximated by a first order



Fig. 4: Three snapshots during one flapping cycle: (a) begin-
ning of the stroke, (b) middle of the stroke, (c) end of the
stroke. The whole video sequence is available at:[1].

and symmetric Fourier series by [22]. Consequently, the
time-dependant flapping law is:r = ro sin(ωt), where
ro = 60o stands for the flapping amplitude andω = 2 πf .
Here, f = 25 Hz represents the flapping frequency [21].
The Reynolds number corresponding to these parameters is
approximativelyRe ≃ 104. The spanwise wing torsion is
introduced by the following strain law:KdY = KdZ = 0
andKdX = α(X)h(t), whereα is given in terms of X by:
α = α1−α1e

(−α2X), with α1 andα2 are positive constants.
The time-dependant lawh(t) is given by:h(t) = sin(ωt−φ)
whereφ represents the phase lag between the flappingr(t)
and torsion motions. The spanwise and chordwise flexion
deformations are not considered in this simulation.

Due to the high number of parameters involved in this kind
of simulations, it is important to have a visual feedback that
facilitates the analysis of the numerical results. In Fig. 4, we
show using VRML three snapshots taken at three different
times during one flapping cycle. The position of the thorax
So with respect to fixed frameFe are reported in Fig. 5.
As explained in section IV-B, the hybrid algorithm is able
to evaluate the internal wrenches field along the wing span.
The Fig. 6 illustrates an example of such computation at

the middle and at the end of one flapping cycle. The time
evolution of the lift generated by both wings of our MAV, as
well as its aerodynamic components are represented in Fig.
7. The mean value of the total generated lift isL = 3.2 ×
10−2 N. The hybrid algorithm allows one to gain insight into
the interactions between the thorax and the wings through the
computation of the thorax-wing reaction wrench (see Fig. 8).
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Fig. 5: Thorax position in the fixed frame.
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(a) Internal torques field at the middle of the stroke.
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(b) Internal torques field at the end of the stroke.

Fig. 6: Internal torques field of the right wing.
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Fig. 7: The generated lift by one wing of the MAV.

VIII. CONCLUSIONS

In this paper, we presented a ’hybrid’ dynamic model of
an insect-like MAV. Contrary to previous works dealing with
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Fig. 8: Thorax-right wing reaction torques.

aerial robot modeling, our approach takes into account both
the overall (net) motion of the insect as well as the wing’s
compliance. The wings are modeled using a continuous
model based on a nonlinear beam. Moreover, based on the
literature of air flow at low Reynolds number, a simplified
analytical model is used to evaluate the aerodynamic per-
formances of our aerial vehicle. To resolve the proposed
locomotion model numerically, we developed a set of compu-
tationally efficient algorithms endowed with visual rendering
routines. These developments could then constitute a ’generic
tool’ for soft wing MAVs modeling, design, prototyping
and control-oriented applications. It could be also usefulto
investigate wing’s elasticity and passivity problems using the
imposed internal deformations and the calculated internal
wrenches field. Hence, we could treat many problems of
optimization and energetic efficiency frequently encountered
in biology [23] and bio-inspired robotics.

APPENDIX

This appendix provides some basic insights of the nota-
tions of geometric mechanics [24]. The elementg ∈ SE(3)
is a 4 × 4 homogeneous transformation matrix that defines
the mapping between two frames:

g =

(
R p
0 1

)
. (28)

Adg is a 6× 6 matrix that once applied to a vector or twist
changes it from one frame to another frame separated by
transformation elementg, where:

Adg =

(
R −R p̂
0 R

)
. (29)

For a givenη = (V T ,ΩT )T ∈ R
6, adη is a 6 × 6 matrix

that once applied to a vector (or twist), changes it from
one frame to another frame separated by the infinitesimal
transformation(1 + η̂):

adη =

(
Ω̂ V̂

0 Ω̂

)
. (30)

Passing to dual,Ad∗g and ad∗η define the6 × 6 matrices
that change any dual vector (or wrench) from one frame
to another frame separated bygT and(1+ η̂)T , respectively.
Where,Ad∗g = AdTg andad∗η = adTη .

ACKNOWLEDGMENT

The authors would like to thank the French National
Agency for Research (ANR) for supporting this work via
EVA (Flying Autonomous Entomopter) project.

REFERENCES

[1] http://www.youtube.com/watch?v=dbG6gqNZRV8.
[2] H. Liu, “Integrated modeling of insect flight: From morphology, kine-

matics to aerodynamics,”Journal of Computational Physics, vol. 228,
no. 2, pp. 439–459, 2009.

[3] W. Shyy, H. Aono, S. K. Chimakurthi, P. Trizila, C. K. Kang, C. E. S.
Cesnik, and H. Liu, “Recent progress in flapping wing aerodynamics
and aeroelasticity,”Progress in Aerospace Sciences, vol. 46, no. 7,
pp. 284–327, 2010.

[4] P. Pai, D. Chernova, and A. Palazotto, “Nonlinear modeling
and vibration characterization of mav flapping wings,”50th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, pp. 1–25, 2009-2415.

[5] T. L. Hedrick and T. L. Daniel, “Flight control in the hawkmoth mand-
uca sexta: The inverse problem of hovering,”Journal of Experimental
Biology, vol. 209, pp. 3114–3130, 2006.

[6] R. Zbikowski, S. Ansari, and K. Knowles, “On mathematical mod-
elling of insect flight dynamics in the context of micro air vehicles,”
Bioinspiration and Biomimetics, vol. 1, no. 2, pp. R26–R36, 2006.

[7] N. Finio, B.M.and Perez-Arancibia and R. Wood, “System iden-
tification, modeling, and optimization of an insect-sized flapping-
wing micro air vehicle,”2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1107–1114, 2011.

[8] T. Rakotomamonjy, M. Ouladsine, and T. Le Moing, “Modelization
and kinematics optimization for a flapping-wings microair vehicle,”
Journal of Aircraft, vol. 44, pp. 217–231, January-February 2007.

[9] F. Boyer and S. Ali, “Recursive inverse dynamics of mobile multibody
systems with joints and wheels,”IEEE Transactions on Robotics,
vol. 27, pp. 215 – 228, April 2011.

[10] F. Boyer, S. Ali, and M. Porez, “Macro-continuous dynamics for
hyper-redundant robots: Application to kinematic locomotion bio-
inspired by elongated body animals,”IEEE Transactions on Robotics,
vol. 28, pp. 303 – 317, April 2012.

[11] W. Khalil and J.-F. Kleinfinger, “Minimum operations and minimum
parameters of the dynamic models of tree structure robots,”IEEE
Journal of Robotics and Automation, vol. 3, pp. 517–526, December
1987.

[12] F. Boyer, M. Porez, and W. Khalil, “Macro-continuous computed
torque algorithm for a three-dimensional eel-like robot,”IEEE Trans-
actions on Robotics, vol. 22, pp. 763–775, Aug. 2006.

[13] J. C. Simo and L. Vu-Quoc, “On the dynamics in space of rods un-
dergoing large motions - A geometrically exact approach,”Computer
Methods in Applied Mechanics and Engineering, vol. 66, no. 2, pp. 125
– 161, 1988.

[14] F. Boyer, M. Porez, and A. Leroyer, “Poincaré-Cosseratequations for
the Lighthill three-dimensional large amplitude elongated body theory:
Application to robotics,”Journal of Nonlinear Science, vol. 20, pp. 47–
79, 2010.

[15] S. Ansari, R. Zbikowski, and K. Knowles, “Aerodynamic modelling
of insect-like flapping flight for micro air vehicles,”Progress in
Aerospace Sciences, vol. 42, no. 2, pp. 129–172, 2006.

[16] M. H. Dickinson, F.-O. Lehmann, and S. P. Sane, “Wing rotation and
the aerodynamic basis of insect flight,”Science, vol. 284, no. 5422,
pp. 1954–1960, 1999.

[17] J. A. Walker, “Rotational lift: Something different ormore of the
same?,”Journal of Experimental Biology, vol. 205, pp. 3783–3792,
2002.

[18] S. P. Sane and M. Dickinson, “The aerodynamic effects ofwing
rotation and a revised quasi-steady model of flapping flight,” Journal
of Experimental Biology, vol. 205, pp. 1087–196, 2002.

[19] H. Lamb,Hydrodynamics. Cambridge University Press, 1932.
[20] J. D. DeLaurier, “An aerodynamic model for flapping-wing flight,”

Aeronautical Journal, pp. 125–130, April 1993.
[21] A. Willmott and C. Ellington, “The mechanics of flight inthe

hawkmoth manduca sexta. I. Kinematics of hovering and forward
flight,” Journal of Experimental Biology, vol. 200, pp. 2705–2722,
1997.



[22] S. Sane and M. Dickinson, “The control of flight force by aflapping
wing: Lift and drag production,”Journal of Experimental Biology,
vol. 204, pp. 2607–2626, 2001.

[23] R. M. Alexander,Elastic Mechanisms in Animal Movement. Cam-
bridge University Press, 1st ed., 1988.

[24] R. M. Murray, S. S. Sastry, and L. Zexiang,A Mathematical Intro-
duction to Robotic Manipulation. Boca Raton, FL, USA: CRC Press,
Inc., 1st ed., 1994.


