N
N

N

HAL

open science

A Hybrid Dynamic Model Of An Insect-Like M AV With

Soft Wings
Ayman Belkhiri, Mathieu Porez, Frédéric Boyer

» To cite this version:

Ayman Belkhiri, Mathieu Porez, Frédéric Boyer. A Hybrid Dynamic Model Of An Insect-Like MAV
With Soft Wings. 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO 2012),

Dec 2012, Guangzhou, China. pp.108-115. hal-00761287

HAL Id: hal-00761287
https://hal.science/hal-00761287

Submitted on 5 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00761287
https://hal.archives-ouvertes.fr

A Hybrid Dynamic Model Of An Insect-Like MAV With Soft Wings

Ayman Belkhirit, Mathieu PoreZz and Frédéric Boyér

Abstract— This paper presents a hybrid dynamic model of (see video in [1]) allow one to access many information that
a 3-D aerial insect-like robot. The soft-bodied insect wing were, until now, unreachable e.g. the internal torques, the

modeling is based on a continuous version of the Newton-Eule 40104ynamic forces, the wing-thorax reaction torques, the
dynamics where the leading edge is treated as a continuous o .
passivity of the wings, etc.

Cosserat beam. These wings are connected to an insect's
rigid thorax using a discrete recursive algorithm based on he The paper is organized as follows. We start first by recall-
Newton-Euler equations. Here we detail the inverse dynamic ing the general modeling framework along with some basic
model algorithm. This version of the dynamic model solves t 1, 4iinns and mathematical definitions. Then, we expose our
following two problems involved in any locomotion task: T) it . . . . T, )
enables the net motion of a reference body to be computed from hybrid dynamic mode_l Startlng. by d'SC_rete insect's body
the known data of internal motions (strain fields); 2°) it gives the  model. Then, we detail the continuous wing model followed
internal torques required to impose these internal (strainfields) by the aerodynamic model. After that, we expose the general
motions. The essential fluid effects have been taken into ament  g|gorithm that allows one to establish the connection betwe
using a simplified analytical hovering flight aerodynamic malel. the different insect's parts. We explain how we can establis
To facilitate the analysis of numerical results, a visualiation . ; o
tool is developed (see video available at [1]). the connect|o_n between the thorax_and th(_e wing’s mpdels
and how to mix them to form a ’'hybrid’ algorithm modeling
I. INTRODUCTION the hole insect. The obtained algorithm will perform fast

Biologically inspired Micro Aerial Vehicles (MAVs) have calculations of the control torques exerted at the thorax-
the potential to fly, maneuver, collect information and act i Wing junction as well as those applied along the leading
Dull - Dirty - Dangerous environments. In the last decadegdge span. Moreover, it will compute the overall rigid (net)
the number of researches related to MAVs has explodégotions involved in locomotion tasks. Finally we present
and many successful prototypes and designs exist no$@me examples of simulations and results. The paper ends
The vast majority of these research activities deals witwith some concluding remarks.

: aerodynamic, fluid-structure interactions, prototypamgd

control problems. It should be noted that in these works

there are two main categories of dynamic models. The first Il. MODELING APPROACH
ones are finite elements based models coupled with CFD

solvers [2], [3], [4]- These models are accurate but they

need heavy computations. In the other hand, the second'© model ourbio—inspire_d i.nsect—lik_e rgbot, we consider it
category uses very simple dynamical models [5], [6], [7]93 an assembly of three distinct bodies i.e. a thorax and two

[8]. This kind of models is suitable for control and realVings forming a tree-like structure completely disconeelct

time applications, however, it does not take into accourffom the earth. In this regard, let us highlight two esséntia
the flexibility of the wings which is a key parameter forPonts: T) Globally, the insect can be considered as an
insect-like flapping flight. In an attempt to start overcogiin uncon;tralned mob|le multibody system”. To establish the
these modeling deficiencies, we propose in this paperda\'n""m'C locomotion mod_e_l of such k'”‘?' of systems, Boyer
dynamic model where the insect's thorax is considered &% @l- [9] proposed a unified computational method based
a rigid body connected with two soft wings. The propose§@n Newton-Euler (N-E) formulation to model a wide range
model is aiming to replicate as closely as possible th@f discrete mobile multibody systems including bio-ingpir
kinematics and internal deformations of the wing as Weﬁnake-hke robots, swimming eel-like rpbots_, flying msect
as the rigid net motion of the insect. The proposed model |g<e robots, etc. 2) However, when dealing with the wings,
distinguished by the following two points?}Lit is a dynamic the numb_er_ ‘?f internal degre_e of freedom Of, eac_h wing
model called "hybrid", combining discrete and continuouf€ds to infinity. Thus, the wing becomes a "continuous-
models taking into account the wing bending and twistinfk€ Systém’ and the discrete mobile multibody systems
deformations as well as the external aerodynamic forcegpproach is no longer valid in that case. To skirt this proble

2°) the computational efficiency of the proposed algorithm&0Yer et al. [10] proposed a continuous version of the
and the highly realistic visual rendering of the simulagion Néwton-Euler discrete algorithm in which the bio-inspired
robot is modeled as a geometrically exact beam continuously
LAll the authors are with IRCCyN laboratory and Ecole des Mime actuated through an active strain law. Hence, to address the

Nantes, 4, rue Alfred Kastler, B.P. 20722, F-44307, Nan®seR 3, France.  jnsect-like dynamic locomotion problem accurately we need
E-mails:ayman. bel khiri at m nes-nantes.fr, . .
mat hi eu. porez at nines-nantes. fr to consider both of these approache$) the discrete one

frederic. boyer at mnes-nantes.fr. for the thorax; 2) the continuous one for the wings.



[1l. INSECT DYNAMIC MODELING where ¢; represents the part of accelerations that do not

A. Description of the insect depend of the thorax acceleratiogshas the following form:
In acordance with Fig.1, let us consider an insect-like tobo o (Vo +7P, x1Q,) X 1ja; S A (a4
S composed by a thora&, and two wingsS; and Ss, the 7o IO, % 105 +iid ()

right and left one respectively. Each wing is connectedmthFina”y’ by applying, on each body, the Newton's law and

thorax through an actuated revolute joint. We attach to tf}% Euler's theorem, the dynamic equations of links frégn
ambient geometric space a fixed orthonormal frame denot%FS are: '
2 .

by Fo = (0, e, ey, e.) and to each linkS; an orthonormal

mobile frame F; = (0j,s;,nj,a;) for j = 0,1,2. At . =

any timet, the robot configuration is defined by the joint 0 = Moo+ Foyro = Feat,o + ZAdJ‘gon » ()
positionsr, the wing strains (see section IV for more details) ) J=1

and the rigid transformatiorfg, of F, with respect to Fo= M+ Fyri — Fearn , and (6)
F.. Let us note that we chos§, as the reference of the  F» = Mo+ Fyyro — Fegt (7

net motions of our virtual insect-like robot. In this sectjo . . .

) . . where, from left to right, we introduce the following phyaic
following usual N-E conventions of the multi-body system . )
modeling and labeling (see [11]), we reserve the subscrib’?”ables' -

' e the wrench of joint forces denoted Wy exerted by the

0 for the thorax, the subscrigt for the right wing and the . Lo
subscript2 for the left wing. Let us start by introducing the link 0 on the Imk.j’ . )
' e the j " body inertia tensor denoted by(; and defined

by the following equatioh
‘ Revolute joint rz

Mj _ <mj13 —?Sj) , (8)
J
Left wing S,

TﬁSj
wherem;, ms; andl; are the mass, the first moment vector

and the inertia tensor of the link respectively;
Right wing S, e the wrench of gyroscopic forces applied on the link

oo (S < (g xmysg) £ xomyV )
qyr,j Q] X (I]Q]) +mJSJ X (Q] X ‘/7) )

e the wrench of external forces denoted Wy, ; is
defined in section V.

ez

ex

D B. Forward dynamic model of MAV

y In order to compute the net motion of the considered robot,

A/ve need to establish the forward dynamic model of this one,
I.e the dynamic equations of the multi-body systéfn From
(5)-(7), the equation setting the external degrees of freed

geometric model of the robot. For links= 1,2, the rigid  of S and describing the net motion of the robot is:
transformation (elements of SE(3)), which define the pestur

e

Fig. 1: Frames and parametrization of the insect-like M

of the frame; with respect to the framéF, is described MG (r(t))no = Fy (r(t),7(t),7(t), “go, o) (10)
by: wherer, is the accelerations of, and those ofS;, M}
e e o o °R;(r;) °P; is the generalized inertia matrix o' . It is given by:
9i = “Go gj(rj) ’W|th gj(rj) — ( .70( J) 17) ’ g - g Y
=
(1) M} =" Adi, M;Ad;,, . (11)

where °R; and °P; are the orientation matrix and the
position vector ofF; with respect toF, respectively. The o . o
twist of the link j denoted byn; is defined by a(6 x 1) £ (r(t),7(t),7(t),“go, ) is the wrench of all inertial and

Jj=0

vector of link velocity components expressedfh , i.e.: external forces and moments exerted ofifo, i.e. :
T T\T . Jj=2
;= (VI Q0T = Ady, o+ 754 @)
3= (05745) . ! 7 ’ Fr= Feztyo_ngnO"'Z Adj,, (Featj — Fayrg — M;G) -
where V; and ; are respectively the linear and angular -
Galilean velocities of the considered link; = (0%, al)” (12)

is the unit vector representing the joint ayisand Ad,, is Let us note that, in (12)f,,, , is calculated directly using
the adjoint map operator (see appendix). Once the Galile®q. (9), while F,,,.; and Fg,,.» are obtained from the
velocities are defined, by temporal derivation of (2), theontinuous dynamic model (see section IV-B). Moreover, for

accelerations denoted by of the link j become: o
1Let us note that for any vectord and B in R?, A is defined such that

1} :Adjgoﬁo+<j('f'j,'i;j) , (3) AB=AxB.



the sake of simplicity, the aerodynamic wrench acting on the re e

thoraxF..: , is neglected in this study. However, the calculus
of the aerodynamic forces wrenches applied onto the right Virerg
and left wingsF,,;1 and F... » is detailed in section V.

IV. WING DYNAMIC MODELING

To model the compliant wings of the insect and to compute
the different physical variables related to these one (see
(10)), we adopted the macro-continuous approach proposed
by Boyer et al. in [10],[12]. This approach is suitable for
modeling hyper-redundant robot involving a lot of DoFs. For
the sake of simplicity of analysis, we make the choice of
considering that each "hyper-redundant wing" is composed e
of a leading edge and a membrane without venation. In Fig. 3: Frames and parametrization of the soft wing.
agreement with [13], the leading edge may be assimilated to
a Cosserat beam or geometrically exact beam. In such theory,
the beam is subject to finite 3-D transformations and small . ) _ ) ) )
strains. Each cross-section of the beam (of span denoted Bgted&a(X, ) which parameterizes the internal kinematics
1) is rigid and is labeled by its abscisdaalong the leading ©f the wing motion, i.e.:
edge starting from the wing root. The reference configunatio =
is considered to be straight and aligned with, s;) (see 9 'y = < Kd((‘)X’ t) Fd(é(’ t)
Fig. 3). Moreover, for a given cross section, we attach
a non deformable membrane segment such that the leadinbere K; = (Kux, Kay, Kaz) andTy = (Tax,Tay,Taz).
edge undergoes flexion and torsion deformations while thehe K ;x component is the rate of twist per unit of wing

)—&aw, (16)

membrane follows rigidly its motion. span. It represents the torsion of the wing around its lepdin
edge. TheK, 7z and K y components are the curvatures
A. Additional notations and definitions of its centroidal line in the planesP, s,n) and (P, a, s)

To eachX cross section, we attache a mobile orthonorméFSpeCtively' The first one represent the flexion of the wing
frame F,, (X, ) = (P, s,n,a)(X,t) such that: 1) P(X, ) in the stroke plane, while the second one, represents the
m b) - b) b) b b . b) . .
coincides with the center of the cross sectiof), the vector azimuthal or rt]he elevaftlon cur:_vatur(fe. r:n the sggmlel_way,
s(X,t) is tangent to the centroidal line of the leading edgdlax — 1) is the rate of stretching of the centroidal line.

3°) the vectora(X, t) is tangent to the wing membrane. TheS'nCe the leading edge is inextensiblig. is set _t01 (seg
posture of the cross sectio with respect to the frame, [10]). I'yy andT' 4z are the local transverse shearing rotations
around the axe$P, a) and (P, n) respectively and they are

is given by: 't
_ (R(X) P(X)> | w3 equal to zero.
0 1 B. Continuous model of wings
On the leading edge, we defined two vector fields. The first Let us note that the macro-continuous framework used
is the time-twist field: here is nothing else but a continuous version of the discrete
R R L. framework presented in the section Ill, where the Cosserat
N:Xe[0]—nX,t)=ggese(3),  (14) peam stands for the mobile multibody system, a beam cross

where (X, ) defines the infinitesimal transformation un_sec:tion stands for a discrete body, and finally the straid fiel
s ¢ stands for the joint coordinates Pushing forward the

dergone by the cross sectioh between two infinitely close . :
) : L analogy, each one of the wings will need a reference body
instantst andt + dt. The second is the space-twist field such. . ;

i.e. a reference cross section). In this case, we naturally

that: chose the root, i.e the cross section labeledXby= 0 as a

£:X €0, =X, t)=g"¢ €se(3), (15) reference for the wing modeling. The continuous kinematic
model of the wing splits into 3 equations detailed as follows

where {(X,t) defines the infinitesimal transformation un-

dergone by the cross sectioXi at fixed timet¢ when the e Continuous model of transformationghis is immedi-

material axis slides fronX to X + dX. Now, to 'copy’ the ately derived from the definition (16) of internal DoFs:

flapping wing kinematics and deformations, we idenﬁfgo , . . .

a desired control field explicitly dependent on the time and 9" = g€a(t), with g(X = 0) = “g; . (7)

i S . 5 The boundary condition of (17) is determined by (1).
'-EtSUSA note t%at fi’lr ang = (A%, B7)" € R® with A € R” and e Continuous model of velocitieby taking the derivative
BeR’, (= ( 0 0 ) of (14) with respect taX, and by invoking (16) and thed



Inputs: (r,f,F)(t)

Left wing l Thorax l Right wing
Newton-Euler Forward Recursion: Newton-Euler Forward Recursion:
M,F, .F,
g:'”:’év: 0° 7 gyr0” " ext,0 g‘ Y”“;’]
Forward Continuous Dynamics: Forward Continuous Dynamics:
— =6 4.8040E) Whole insect =4 (460é0E) -—
A, =(g.n.7,M.F) &, =(g.m.5,M,F)

Solving External Dynamics:

Inputs: Strain Field
(Enéa&) (X0

Inputs: Strain Field
€ ané) (X0

. F, . F

Inverse Internal Dynamics:
=1 (.8.4.4)
&, =(g.n1,A)

Inverse Internal Dynamics:
A= 0(4.8,.4,.4)
A, =(g.n.1.A)

Outputs: Outputs:

Control (Internal) Forces / Torques: A(X,t) Control (Internal) Forces / Torques: A(X,t)

Fig. 2: Working schematic of the ’hybrid’ locomotion dynasmmodel of insect-like MAV with soft wings.

operator (see appendix), we obtain: wings and the thorax are connected through joints, and they
p : . are mutually applying action and reaction forces on each
0= —adg,m (1) + &alt), with n(X = 0) =7;. (18) other, the internal torques equation (20) is initializedthg
At each time step, the thorax-wing junction point is anindatethorax-wing reaction wrench calculated using (6) farand
by the velocity of the joint's flapping movement fed by(7) for S,. Finally the boundary conditions (21) become (for
the rigid net motion of the thorax. Hence the boundary = 1, 2):
conditions are obtained using (2).

e Continuous model of accelerationthis is inferred by AO0) = Fj=Mjnj —Fegrj+ Foyr; v (22)
taking the derivative of the previous model (18) with redpec A) = 0, (23)
to time:
0 = —adg, ) (7) — adg, ) (1) +E) (19) where, M; and F,, ; stand for the inertia tensor and the

inertial wrenches of the whole wing, both reduced to the
with the boundary conditiorj(X = 0) = ), fixed by (3). reference cross sectioi = 0, while F,,; ; stands for the
wing external aerodynamic forces wrench reduced to the
Following the works detailed in [14], by applying thereference cross sectiol = 0 (see section V). We define
Hamilton principle on the wing subject to a density ofAf; by:
imposed external (here aerodynamic) wrenches per unit of !
wing spanF on ]0,![ and two punctual external wrenches M, :/ Adj MAdRdX | (24)
F_ and F;. imposed onX = 0 and X = [ respectively, one 0
obtains the following Partial Differential Equations (PDE

> ) ! _ where, M is the inertia matrix of the cross sectioli
governing the dynamics of a wing cross section:

connected to its membrane segment. The external wrenches,
Mij — ad?y (M) — A + adg, ) (A) = F, (20) reduced to the reference cross section (i.e. the thorag-win
d

. . junction) are equal to:
with the boundary conditions:

l
A(0) = —F_ , and:A(l) = F (21) Feprj = —F_+ Adj, Fy + / Ady(F)dx ,  (25)
where A is the density of internal wrenches ensuring the 0
forcing of the internal desired straig: = £4(t). Since the and the inertial wrenches reduced to the reference cross



section are given by: flight. Moreover, by virtue of the intrinsic form of equation
(25), one can enrich this model by adding other aerodynamic

l
Foyrj :/ Ady(MC¢ — ad),(Mn))dX . (26) components e.g. wake capture, dynamic stall, transversal
0 flow components, etc.

V. AERODYNAMIC MODEL
VI. GENERAL MIXED CONTINUOUS-DISCRETE

As a reminder, (10) rules the forward dynamics by ALGORITHM
computing the net accelerations from a model of external From section Il to section V we detailed the ’hybrid’

forceslz the allerodyfrw:]mi?l loads. I dgener?ll, dge tq thff'ynamic model of a flapping wing MAV. The execution of
complex topology of the flow surrounding a flapping wing,, algorithm solving this model can be stated as follows. In

such a model requires the computation of the NaVier'StOk%%cordance to Fig. 2, and at each time step of a global time
equations (see [2], [3], [15]). However, for prototypingloO .

and control-oriented applications, we have chosen to use a, o, ; ; ; ; ;
L . L 1°) knowing the imposed time-dependant flapping kine-

simplified analytical model based on the works of D'Ck'nso'?natiz:s 6W7|; gf)(t) Ian% the :nternalp strain Iavxf)fp[)(l %d !

et _aI [16]. [17]. _Dickinson’s m_erI was initially estab_lisr_]ed fd)(X, t),’an'd using the forward discrete geométri'c miodel

using a dynamically scaled rigid wing model of fruit flies. 1)-(3), we can compute the state of each thorax-wing

Hence, we have rewritten these aerodynamic componer%ﬁ% '

) . _ o ction point ¢;,n;,¢;). This thorax-wing junction point
n olrlder o mak_e them compaﬂple with the . slice bQstate is used to initialize the first spatial integrationpgoo
slice” (cross-section by cross-section) formulation of ou

. . : . of the forward continuous kinematic model i.e. (17)-(19).
wing modeling strategy. For our simulations we select thﬁt the end of this integration, we recover the whole wing
following main aerodynamic contributions:

inertia tensorM;, the wrench of gyroscopic forceg,,, ;

and the wrench of aerodynamic forég,: ; using (24), (26)

and (25), respectively. At this stage, the algorithm is dble
Eompute the generalized inertia matriX;” and the wrench

¥f all the inertial and external forces acting on the ingegt
c(tsee (11),(12)). Hence, the external dynamics are resolved

T 1 2 7 ) . :
3 steadyhﬂow.Fsmt - pr cx [n| Csmt%rvx_/here, Csmé and the thorax acceleratiop is obtained using the dynamic
enotes the3 x 1) vector of stationary coefficients,stands o ation of the whole insect (10).

for the air density, andx represents the cord length at a 2°) To compute the field of internal torques and forces

given cross selct|ga( I( f_or more deta;:s see LlG])'h id along the wing span, we use the obtaingdto calculate

° _Rotauona cireu atlpn It was shown t "_it t.e rapid the thorax-wings reaction torques using equations (6) and
rotation of the wing during each change of direction cause$y Thege reaction torques will determine the boundary
a circulation of the air in tth opposite_direction, whichgqnjitions (22) initializing the second spatial integpatioop
increases the lifttF,o; = p cx [ Crot ©, Where, Cro
dfenote§ th?(?’ x f?). diagonal nigtnxlsf theoretical values 3°) Since both external and internal dynamics are resolved,
of rotational coefficients (see [18], [17]). ) . we can finally integrate the thorax acceleratipriwice with

e Added massThe effect of the added mass is defmecj[espect to time to obtain the net motion of the whole insect:

as the reaction due to the acceleration of the mass of flu&% 1o, 7o This thorax state will be used to start the next
09 0 o

surrounding the wing, whose modeling is given here byine sten of the global temporal integration loop.
Foga = 0(Maga-m)/0t, whereM 44 represents thés x 6)
'added inertia’ matrix (see [19], [20]). VII. ILLUSTRATIVE EXAMPLES AND

NUMERICAL RESULTS

Let us remark that all the aerodynamic contributions are |, this section, we present some numerical results obtained
calculated in a frame attached to the aerodynamic center L9§ing the hybrid algorithm presented in section VI. The
each membrane segment. In order to include their effects Qfynjation parameters were chosen such that the simulated
the insect dynamics, they must be transported to the cro§§ay emulates as close as possible a real hawk moth
sectional frameF,,, (X, ?) using the appropriate adjoint map (\anduca sexia Hence, to approximate the moth we took

operator Ada,,.., where “gy stands for the homogeneousihe morphological parameters provided by [5]. The tho-
transformation matrix that defines the mapping between the, is considered as an ellipsoid of great and small axis
frame attached to the aerodynamic center and the correspo%gthSa — 40 mm andb = ¢ = 10 mm respectively.

ing cross-sectional frame. Hence, the density of externgl,q wing spanl is about55 mm, whereas the maximum
aerodynamic wrenches per unit of span is defined by: chord length isc — 30 mm. 'I:he mass of the MAV is

T _ A (T = = m = 1.8 g where the wings represent approximativéhy

F = Adigy (Fatar + Frot + Faaa) @7) of the total weight of the MAV. The different kinematics
Finally, from a qualitative viewpoint, these three compuaise of real Manduca sextavhere measured experimentally by
introduced in (27) are sufficient to reproduce the commonlf21] and represented as a third order Fourier series. These
observed aerodynamic phenomena during insect-like flgppikinematics were simplified and approximated by a first order

e Stationary componentAerodynamically speaking, we
define as stationary the effects that do not involve th
derivatives of the angles of the wing movement. We typicall
meet these effects on a fixed airfoil in the presence



z (mm)
z (mm)

20

y (mm)

Fig. 4: Three snapshots during one flapping cycle: (a) begil
ning of the stroke, (b) middle of the stroke, (c) end of the
stroke. The whole video sequence is available at:[1].

and symmetric Fourier series by [22]. Consequently, th
time-dependant flapping law is: ro sin(wt), where
r, = 60° stands for the flapping amplitude and= 2 = f.
Here, f = 25 Hz represents the flapping frequency [21].
The Reynolds number corresponding to these parameters
approximatively R, ~ 10%. The spanwise wing torsion is
introduced by the following strain lawkyy = Kgz = 0
and K x = a(X)h(t), wherea is given in terms of X by:
a = o —arel=*2%)  with o; anda, are positive constants.
The time-dependant la¥(t) is given by:h(t) = sin(wt—¢)
where ¢ represents the phase lag between the flapping
and torsion motions. The spanwise and chordwise flexion
deformations are not considered in this simulation.

Due to the high number of parameters involved in this kint
of simulations, it is important to have a visual feedback the
facilitates the analysis of the numerical results. In Figwé
show using VRML three snapshots taken at three differel
times during one flapping cycle. The position of the thora:
S, with respect to fixed frameF, are reported in Fig. 5.
As explained in section IV-B, the hybrid algorithm is able
to evaluate the internal wrenches field along the wing spa

The Fig. 6 illustrates an example of such computation ¢
the middle and at the end of one flapping cycle. The time
evolution of the lift generated by both wings of our MAV, as
well as its aerodynamic components are represented in Fig.
7. The mean value of the total generated liftlis= 3.2 x
10~2 N. The hybrid algorithm allows one to gain insight into
the interactions between the thorax and the wings through th

computation of the thorax-wing reaction wrench (see Fig. 8) In this paper, we presented a 'hybrid’ dynamic model of
an insect-like MAV. Contrary to previous works dealing with
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Fig. 5: Thorax position in the fixed frame.
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Fig. 6: Internal torques field of the right wing.
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Fig. 7: The generated lift by one wing of the MAV.

VIIl. CONCLUSIONS
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(1]
(2]

0.06 0.08 0.1

Time (s)

0 0.02 0.04 0.12

Fig. 8: Thorax-right wing reaction torques. (3]

A
aerial robot modeling, our approach takes into account botr[l]
the overall (net) motion of the insect as well as the wing's
compliance. The wings are modeled using a continuous;
model based on a nonlinear beam. Moreover, based on the
literature of air flow at low Reynolds number, a simplified
analytical model is used to evaluate the aerodynamic per[-ﬁ]
formances of our aerial vehicle. To resolve the proposed
locomotion model numerically, we developed a set of compul{?]
tationally efficient algorithms endowed with visual rendgr
routines. These developments could then constitute atgene
tool’ for soft wing MAVs modeling, design, prototyping [8l
and control-oriented applications. It could be also usesul
investigate wing’s elasticity and passivity problems gdine  [9]
imposed internal deformations and the calculated internal
wrenches field. Hence, we could treat many problems ?{0]
optimization and energetic efficiency frequently encorede
in biology [23] and bio-inspired robotics.

APPENDIX (11]

This appendix provides some basic insights of the nota-
tions of geometric mechanics [24]. The elemerd SE(3)
is a4 x 4 homogeneous transformation matrix that defines
the mapping between two frames:

-(51)

Ad, is a6 x 6 matrix that once applied to a vector or twist!*4l
changes it from one frame to another frame separated by
transformation element, where:
_ (R —-Rp
Ady = < fiooh ) |
For a givennp = (VT ,QT)T € RS, ad, is a6 x 6 matrix
that once applied to a vector (or twist), changes it fronmz

one frame to another frame separated by the infinitesimal
transformation(1 + 7):

[13]
(28)

[15]

(29)
[16]

(18]

Qv
ad, = ( 0 0 ) (30) (191
[20]

Passing to dualAd; and ad;, define the6 x 6 matrices

that change any dual vector (or wrench) from one fram@1l
to another frame separated by and(1+7)7, respectively.
Where, Ad; = Ad] andad;, = ad].

EVA (Flying Autonomous Entomopter) project.
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