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Abstract 

There is high prospect that derivatives of pentazole can lead to high energy density materials. 

However these molecules are potentially hazardous because of their high formation enthalpies 

and weak N-N bonds. In order to devise efficient protocols, possible schemes for the synthesis 

of nitro and azido derivatives of pentazole, and their mono- and di-oxides, have been explored 

using quantum chemical methods. Reaction pathways have been investigated in details, with 

particular emphasis on locating transition states and on obtaining a reliable treatment of 

solvent effects. Oxidation by ozone is found to be a favorable process, leading to some 

regioselectivity in favor of β-mono-oxides. Nitration by NO2
+BF4

– is also predicted to be 

favorable. On the contrary the electrochemical azidation of N5
– and its oxydized derivatives is 

found to be energetically inaccessible. Combination of the individual addition and oxidation 

steps leads to recommendations for future synthetic work. Finally the kinetic stability of 

products with respect to N2 and N2O elimination is assessed. 

 

 

Keywords 

High energy density materials (HEDM); Density functional theory (DFT); micro-solvation; 
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Introduction  

Molecules with high formation enthalpies have long been used as building blocks of energetic 

materials with applications in several different areas. Future applications of the chemistry of 

energetic materials are envisaged in the fields of space and defense for propulsion of rockets. 

The task is to increase the impulse to achieve higher payloads and get access to long term 

missions that are inconceivable with currently available ingredients. Thus increasing the 

energy content of constituent molecules remains a recurring concern. Changes in the nature of 

energetic groups (nitroesters, nitroaromatics, nitramines) during the last 150 years have led to 

continuous performance improvement, however with limited gain at each step. For more than 

20 years,1 the concept of High Energy Density Materials (HEDM) has appeared as leading to 

very high performance energetic molecules for applications in both explosives and rocket 

propellants. Calculations predict large improvements in both impulse and detonation energy. 

In conventional energetic molecules (EM), the energy is released from the decomposition of 

the molecule into oxidized forms of carbon and hydrogen using the oxygen that is present in 

the molecule (or in the formulation). In addition to the energy release due to the high heat of 

formation of the parent molecule, the light gases are generated at high temperature and 

expelled in large volume, producing the desired mechanical effect. HEDM differ from EM in 

that no oxidation process is necessary as far as the compound would be composed of light 

atoms linked by weak bonds (achieving high heat of formation) and able to recompose into 

light molecules containing stronger bonds.2,3 Nitrogen is the element of choice for such 

compounds due to the large difference of bond energies between weak N-N single bonds 

present in polyatomics and the very strong triple bond of dinitrogen. Elaboration of structures 

according to this principle is still a challenge for chemists as no such structures are known and 

as the basic knowledge of this chemistry is scarce. Although no systematic procedure for 

designing these compounds has been published, a large body of literature describes the 

computed properties of the virtual polynitrogen structures.4,5 Isolation of N5
+ salts6 and 

detection of N4 
7 and N5

- 8,9 in mass spectrometers have given trust in the feasibility of HEDM 

chemistry. 

Increased stability of cyclic polynitrogen molecules can be achieved by the introduction of 

oxygen atom(s) either as part of the cycle or exocyclically as nitroxide bonds.10,11 The 

pentazolate anion looks as a precursor of choice for HEDM not only because arylpentazoles 

have been known for a long time and because the heterolytic breaking of the aryl-pentazole 

bond has been suggested,12,13 but also because pentazolate anions have already been 

synthesized as zinc salt.14   
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During the course of our study on isolation of HEDM molecules, we have examined several 

synthetic routes to nitro and azido derivatives of pentazole mono- and di-oxides as stabilized 

analogues of the elusive pentazolate. Ozone and nitronium tetrafluoroborate have been 

selected as reactants for oxidation and nitration, respectively, because the cleanliness of the 

reactions makes them suitable for first experimental work. A number of these routes have 

been characterized by quantum chemical calculations of the various minima and transition 

states along various pathways. In this paper, we summarize the results of these investigations 

as well as the assessment of the kinetic stability of the target products. 

 

 

Computational methods 

In this paper we describe results obtained using a well established quantum chemical 

methodology, the B3LYP hybrid density functional associated with the valence double-ζ 6-

31G(d) basis set, including polarization functions on all atoms except H, for geometry 

optimization. In some cases the diffuse-augmented 6-31+G(d) basis set was used; this is 

specified in the associated text. Improved energies were obtained by single-point calculations 

at the B3LYP level, with the extended basis set of polarized valence triple-ζ quality 6-

311+G(2d,2p). It has been shown that the B3LYP barrier heights could be underestimated for 

the decomposition of nitrogen-oxygen compounds.15 Therefore, final energy calculations at 

the CCSD(T) level associated with the aug-cc-pVDZ or aug-cc-pVTZ basis sets have been 

achieved for selected key structures, to check our DFT results. In all cases except one (vide 

infra), trends observed for CCSD(T) calculations are well reproduced by B3LYP.    

Some care has been taken to provide a realistic modeling of solvent effects. Solvation free 

energy corrections were determined using the polarizable continuum solvation model CPCM. 

In the most simple implementation, the CPCM calculations were carried out on the gas phase 

B3LYP/6-31G(d) geometries, at the B3LYP/6-311+G(2d,2p) level, with a dielectric constant 

ε of 35.688, 32.613 and 78.3553 for acetonitrile, methanol and water, respectively. Refined 

models were built by adding a variable number of solvent molecules, described at the same 

DFT level as the solutes. The number of explicit solvent molecules was determined so as to 

provide a first solvation sphere to the solutes and to obtain a balanced description of reaction 

thermodynamics. In order to provide a reliable comparison between explicitly solvated 

reactants, transition states (TS) and products, the following modeling strategy has been 

applied: (a) explicit solvent molecules are manually added around the gas phase TS and their 
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positions are computationally optimized keeping frozen the geometry of the solute, making 

sure that a chemically meaningful solvation of the solute is maintained; (b) a geometry 

optimization without constraint is achieved, leading to the explicitly solvated TS; (c) forward 

and reverse IRC calculations are performed to locate explicitly solvated reactant and product 

including comparable position of solvent molecules. The resulting systems were then treated 

with the same CPCM approach as above for the bare solutes. All calculations have been 

performed with Gaussian 03.16 

 

Results and discussion 

Starting from pentazolate 1, the synthesis of nitro- and azido-pentazole-N-oxide 5-8 can be 

envisioned by introducing first either the oxygen atom or the nitro/azido group (Scheme 1). 

 

 

 

Scheme 1. Envisioned pathways from pentazolate anion to nitro- and azido-pentazole-N-

oxide. 

 

These pathways have been studied theoretically at the DFT level in order to evaluate the 

feasibility of these synthetic routes, and determine the easiest one. The envisioned nitrating 

agent is BF4NO2 whereas the introduction of the azide substituent is planned through an 

electrochemical pathway. The chemical oxidation may be achieved with ozone, as 

demonstrated with nitrotetrazolate17a and azidotetrazolate.17b A second oxidation step, leading 
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to compounds 9-14, and the oxidation of phenylpentazole 15, precursor of 1, have also been 

studied. Nitrotetrazolate 18 and azidotetrazolate 21 have been considered as well, for 

comparison with experimental data.17 This leads to the series of compounds shown in Scheme 

2. Finally, the kinetic stability of some of these mono- and di-oxidized synthetic targets has 

been explored.  

 

Scheme 2. Other compounds derived from pentazole (9-17) and tetrazole (18-23) studied in 

this work. 
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Figure 1. Potential energy surface (kJ/mol) of oxygen atom transfer from O3 to 1 computed at 

the B3LYP/6-311+G(2d), CCSD(T)/aug-cc-pVDZ (italics) and CCSD(T)/aug-cc-pVTZ (in 

parentheses) levels using B3LYP/6-31G(d) geometries.  

 

Chemical oxidation by ozone 

As a first step of our study, we have examined the oxidation mechanism of unsaturated 

nitrogen compounds by ozone. It is well known that ozonolysis of alkenes and alkynes leads 

to various oxidized compounds such as ketones, aldehydes or epoxides.18 The main proposed 

mechanism involves as first step a 1,3-dipolar cycloaddition of ozone with the unsaturated 

bond leading to cyclic C2O3 ozonide.19 Such a pathway has been searched for starting from 1 

and 3, however no intermediate including a N2O3 ring could be obtained. Such structures lead 

in all cases either to separated reactants O3 and 1/3, or to the disruption of the N5 ring. 

Exploring other pathways, it was possible to locate a transition state corresponding to the 

transfer of one oxygen atom to the pentazole and the released of O2. The associated potential 

energy profile starting from 1 is depicted in Figure 1. Starting from the separated reactants 1 

and O3, an intermediate 1-RC (Reactant Complex) is formed in the gas phase. This weak 

interaction between the reactants implies only one nitrogen atom of the ring and one terminal 
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oxygen of ozone. This oxygen atom is then transferred to one nitrogen atom of the ring, 

through transition state 1-TS, forming a complex (called 1-PC for Product Complex) between 

2 and singlet dioxygen. In this intermediate, O2 interacts not only with the oxygen atom of 2, 

but also with the N5 ring, as indicated by its position above the ring. Final dissociation of 1-

PC to form the target product 2 may be accompanied by stabilization of dioxygen to its triplet 

ground state, leading to a high reaction exothermicity (200 kJ/mol at the B3LYP level).     

It is known that ozone has a partial biradical character and that restricted and unrestricted 

DFT may give different results. UB3LYP calculation of 1-TS confirms that the TS structure 

and its energy relative to 1 + O3 are only slightly influenced by the closed vs. open shell 

description. Therefore, we have restricted the following investigations to RDFT calculations. 

The reliability of this approach has been further confirmed by its agreement with experiment17 

on the regioselectivity of the oxidations of 18 and 21 (vide infra). In addition, the activation 

energies reported for these reactions in Table 2 are fully compatible with reactions carried out 

at 40 °C.17 

Due to the anionic nature of 1, it can be hypothesized that solvation would significantly 

modify the potential energy surface of this reaction. We have therefore included solvation 

effects through the introduction of explicit solvent molecules during the geometry 

optimization process and with the conductor-polarized continuum method (CPCM) for final 

energy calculations. In 1-RC, 1-TS and 1-PC, we have therefore added five acetonitrile 

molecules in order to solvate the pentazolate anion fragment only and eleven to solvate the 

full system. The structures of the corresponding TS are depicted in Figure 2. 

 

Figure 2. Geometry optimized structures of the transition state for the transfer of oxygen 

atom between ozone and pentazolate including various numbers of explicit solvent molecules. 
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The inclusion of acetonitrile molecules does not influence the interaction between the two 

reaction partners nor the formation of the N-O bond as indicated by the N…O distance in the 

transition states. On the contrary, the elongated O…O bond is sensitive to the solvent 

description (1.468, 1.413 and 1.361 Å in 1-TS, 1-TS(CH3CN)5 and 1-TS(CH3CN)11, 

respectively), indicating that solvation induces an earlier TS with a less pronounced 

dissociated character of ozone.  

 

Table 1. Relative energies (in kJ/mol) for the reaction between ozone and 1 with various 

solvation schemes.  

Number of explicit 

solvent moleculea 

Implicit 

solvationb 

1-RCc 1-TSc 1-PCc 

0 No 0 71 (87) -75 (-64) 

0 Yes 0 68 (84) -78 (-66) 

5 No 0 61 -80 

5 Yes 0 64 -76 

11 No 0 58 -64 

11 Yes 0 74 -70 

   a Solvent molecules (acetonitrile) included during the geometry optimization process at the 

B3LYP/6-31G(d) level. b Inclusion of the CPCM (acetonitrile. ε=35.688) implicit solvation 

scheme for the final energy calculations at the B3LYP/6-311+G(2d,2p) level. c Relative 

energy computed at the B3LYP/6-311+G(2d,2p) and CCSD(T)/aug-cc-pVDZ (in parentheses) 

levels using B3LYP/6-31G(d) geometries. 

 

However, values in Table 1 indicate that the energy barrier and the exothermicity of the 

oxidation reaction are only slightly influenced by solvation. Indeed, similar results are 

obtained with or without polarizable continuum, as well as with or without explicit solvent 

molecules. Consequently, explicit solvent molecules were not included in the other oxidation 

reactions with ozone described below.   
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Table 2. Oxidation energies of tetra- and pentazole derivatives. 

Reactant Transition state Producta 

 Erel
b Erel

b number 

2 +105 (+126) -157 (-129) 9 

2 +86 (+108) -181 (-156) 10 

3 +178 (+158) -128 (-103) 5 

3 +156 (+139) -169 (-139) 6 

4 +178 (+152) -140 (-121) 7 

4 +153 (+133) -163 (-135) 8 

7 +159 (+124) -145 (-128) 11 

8 +162 (+137) -136 (-123) 12 

8 +170 (+143) -138 (-131) 13 

8 +172 (+128) -112 (-94) 14 

15 +171 -141 16 

15 +140 -168 17 

18 +81 -169 19 

18 +72 -205 20 

21 +54 -178 22 

21 +46 -207 23 
a Separated products with dioxygen in its triplet state. b relative energy (related to separated 

reactants) in kJ/mol computed at the B3LYP/6-311+G(2d,2p) and CCSD(T)/aug-cc-pVDZ (in 

parentheses) levels using B3LYP/6-31G(d) geometries, including CPCM(acetonitrile) 

solvation correction obtained at the B3LYP/6-311+G(2d,2p) level. 

 

Following this study on the mono-oxidation of 1, we explored the same process starting from 

various tetra- and pentazole derivatives (Table 2). In all cases, the same oxygen transfer 

mechanism has been obtained. Comparison between the TS geometries indicates a stronger 

interaction of the O2 leaving group with the ring for neutral substituted pentazoles (3, 4, 7, 8, 

and 15) than for anionic pentazolates (1 and 2) and tetrazolates (18 and 21). This difference in 

geometry parallels a higher reactivity for the anions, as revealed by the relative energies of the 

TS. Surprisingly, B3LYP barriers are underestimated for anions and overestimated for 

neutrals, compared to CCSD(T) values. However, these quantitative differences do not 

modify the relative reactivity between anions and neutrals. A closer examination indicates that 

phenylpentazole (15) is slightly more reactive than nitro- (3) and azidopentazole (4). 
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Similarly, azidotetrazolate (21) is more reactive than nitrotetrazolate (18). The second 

oxidation of 1 (i.e. the oxidation of 2) is more difficult to achieve than the first. This 

observation seems to be more questionable for azido-pentazole derivatives. Indeed, contrary 

to B3LYP values, CCSD(T) ones indicate that 4 is slightly less reactive than 8. Taken 

together, these results show that the reactivity parallels mostly the electronic density located 

on the nitrogens in the ring, which depends mainly on the electronic charge (anionic vs. 

neutral compounds) and to a lesser degree on the withdrawing ability of the substituents (NO2 

> N3 > Ph ; O > no substituent). These results also indicate that it could be possible in some 

cases to stop the reaction after the first oxidation step in order to obtain mono-oxidized 

products.  

For each mono-substituted tetra- and pentazole-based derivative (2, 3, 4, 15, 18 and 21), two 

isomers may be obtained in principle through N-oxidation either in α- or in β-position relative 

to the substituent. In all cases, β-oxidation is found to be easier than α-oxidation, both at the 

B3LYP and CCSD(T) levels, with an energy barrier which is lower by ca. 20-30 and 10-20 

kJ.mol-1 for neutrals and anions respectively. This difference seems to be induced by 

repulsion between the substituent and the incoming azoxy group, which leads phenyl-, nitro- 

and azide substituents not to lie in the N5 or CN4 ring plane. This results announces that 

oxidation of mono-substituted derivatives is a regioselective (or even regiospecific) process. 

Furthermore, this kinetic preference for β-oxidation comes along with thermodynamic 

preference for the same position, once again due to repulsive interaction between substituents. 

This theoretical result nicely agrees with experimental ones obtained recently for tetrazole-

based derivatives,17 which have shown that nitro- and azidotetrazolate are exclusively β-

oxidized by ozone. It also indicates that oxidation of 1 and 2 would probably proceed 

smoothly, as observed for 18 and 21, whereas harsher conditions would be probably needed 

for oxidation of neutral pentazole-base derivatives. 

 

Compared to mono-substituted neutral compounds, the second oxidation process of azido-

pentazole is less selective. Starting from 8, the product obtained after oxidation of 4, three 

N,N-oxidized azido-pentazoles 12, 13 and 14 may be obtained. The activation barriers to 

reach the TS’s are close (162-172 kJ.mol-1 at the B3LYP level, 128-143 kJ/mol at the 

CCSD(T) level). Furthermore, the most stable isomer (13 both for B3LYP and CCSD(T) 

levels) is not the one obtained under kinetic control (12 at the B3LYP level, 14 at the 

CCSD(T) level). Due to the β-position of azide and azoxy groups in 8, the second incoming 
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azoxy group is in all cases located in α-position relative to (at least) one of the former N5-

substituents. This may explain the lower selectivity of this oxidation, compared to mono-

substituted azido compounds. 

We have shown that it should be possible to experimentally manage the oxidation of 1, 3 and 

4 by ozone in order to obtain 2 and, selectively, 6 and 8, respectively. The second oxidation 

process of 2 will lead to 10 selectively, whereas 6 and 8 would probably produce a mixture of 

doubly-oxidized products. Further to these encouraging results, we then turn our interest to 

the synthesis of nitro- and azido-pentazole derivatives (3-8) from 1 or 2.  

 

 

Scheme 3. Nitration process. 

  

Nitration process 

Following the pioneering work of Olah et al.,20 nitration is commonly carried out through 

NO2
+ transfer from the nitronium tetrafluoroborate salt NO2

+
 BF4

–.21 Thus it is this reaction 

which has been envisioned in this work for the nitration of 1 and 2 (Scheme 3). B3LYP-DFT 

calculation in the gas phase indicates that this ion pair is spontaneously transformed into a 

complex between BF3 and NO2F. Thus gas phase modeling is inappropriate in this case. The 

thermodynamics of reactions 1 and 2 in Scheme 3 have therefore been studied by taking into 

account solvation in order to obtain a satisfying description of reactants and products. For all 

compounds (1-3, 5, 6, NO2
+

 BF4
– and BF4

–), we have included explicitly several acetonitrile 

molecules in order to generate a saturated first solvation shell. Due to weak solvent-solvent 

and solute-solvent intermolecular interactions, a large number of geometry optimizations at 

the B3LYP/6-31+G(d) level has been achieved for all solutes surrounded by 4 to 7 solvent 

molecules located in different conformations. From this exploration, we have kept only those 

structures allowing the same total number of solvent molecules in the reactants and products 

and those having saturated first solvation shells. Some of these structures are depicted in 

Figure 3.   
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Figure 3. Optimized structures of (A) BF4
–(CH3CN)4; (B) BF4

–(CH3CN)5; (C) NO2
+BF4

–

(CH3CN)7; (D) 1(CH3CN)5. 

 

It should be noticed that the nitronium salt NO2
+
 BF4

– could only be obtained with at least 

seven solvent molecules. On the contrary, N5NO2 is not an ion pair and the N-NO2 covalent 

bond is only slightly sensitive to solvation (N-NO2 = 1.51 and 1.49 Å in the gas phase and in 

solution, respectively). 

The above described micro-solvation scheme allows to examine the nitration reaction 

including a total of eleven or twelve acetonitrile molecules (Table 3). The computed energies 

for the nitration of 1 are in all cases negative (between –43 and –55 kJ/mol depending upon 

the micro-solvation scheme), indicating that a spontaneous process should take place between 

pentazolate and NO2
+

 BF4
– to form the nitro-pentazole. Furthermore, values obtained with 

various micro-solvation of solutes are relatively similar, suggesting that the effect of solvation 

on the thermodynamics of the nitration process has been adequately introduced and that this 

solvation protocol leads to an error bar of about 15 kJ/mol on the thermodynamic of the 

reaction. The nitration of N5
– thus seems to be a synthetically viable process. 
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Table 3. Nitration energies (in kJ/mol) computed at the CPCM(acetonitrile)-B3LYP/6-

311+G(2d,2p)//B3LYP/6-31+G(d) level. 

Reactants Products Nitration energy 

1(CH3CN)4 NO2
+BF4

–(CH3CN)7 BF4
–(CH3CN)5 3(CH3CN)6 –43 

1(CH3CN)4 NO2
+BF4

–(CH3CN)7 BF4
–(CH3CN)4 3(CH3CN)7 –51 

1(CH3CN)5 NO2
+BF4

–(CH3CN)7 BF4
–(CH3CN)5 3(CH3CN)7 –55 

2(CH3CN)5 NO2
+BF4

–(CH3CN)7 BF4
–(CH3CN)5 5(CH3CN)7 +26 

2(CH3CN)5 NO2
+BF4

–(CH3CN)7 BF4
–(CH3CN)5 6(CH3CN)7 –22 

 

The nitration of 2 also leads to an exothermic reaction, however only for the formation of 6. 

This result indicates that the synthesis of 6 could be achieved selectively from 2, even if the 

nitration of the latter is more difficult than for 1, as there is probably no significant energy 

barrier for such an ion transfer reaction.      

 

Azidation process 
Following previous experimental studies on azidation of anions,22 the synthesis of azido-

pentazole derivatives has been envisioned electrochemically as illustrated in Scheme 4. It is 

known from previous studies23,24 that the instability of N5
• in the gas phase makes this 

reaction very unlikely starting from 1. It is however interesting to consider this synthetic 

pathway for 2 and 10 since pentazole-oxides are expected to be more stable than pentazole 

itself.10,11 

 

  

Scheme 4. Electrochemical synthesis of (oxidized) azido-pentazole from (oxidized) 

pentazolate anion and N3
–. 

 

In order to evaluate the feasibility of such a reaction in solution, we have computed the 

electronic oxidation energy of several nitrogen-based anions. A significant solvent effect is 

expected on oxidation energies. As an example, oxidation of N3
- is known to amount to 

263±12 kJ/mol in the gas phase,25 a value which is well reproduced by DFT calculations (262 

kJ/mol). In solution, at the same level of calculation including solvent effects (see below) this 
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value is raised to ca. 520 kJ/mol as expected since solvation of the anion is much more 

stabilizing than that of the neutral radical. 

From the results gathered in Table 4, we can conclude that the nature of the solvent does not 

appear to influence the electronic oxidation energy. Indeed, calculations including a 

polarizable continuum solvent model lead to almost identical energies for various solvents 

(acetonitrile, methanol and water). Furthermore, including micro-solvation through explicit 

solvent molecules does not significantly modify the computed oxidation energies. Therefore, 

subsequent calculations in this section have been carried out in acetonitrile with the solute 

surrounded only by a polarizable dielectric continuum.  

 

Table 4. Electronic oxidation energies (in kJ/mol) computed at the CPCM-B3LYP/6-

311+G(2d,2p)//B3LYP/6-31G(d) level. 

Molecule 
Solvent 

Acetonitrile (ε=35.688) Methanol (ε=32.613) Water (ε=78.3553) 

1 732 731 736 

2 587 586 590 

10 557 556 559 

N3
– 522 521 526 

N5N3
●– 400 399 402 

1(H2O)5 - - 689 

1(CH3CN)5 718 - - 

2(CH3CN)5 586 - - 

 

1 has larger oxidation energy than N3
–. Therefore, in the presence of N3

–, the radical oxidized 

counterpart of 1 would not chemically add to it, but rather an electronic transfer would take 

place, leading to N3
● and the initial anion 1 (Scheme 5). N-oxidized pentazolates 2 and 10 

have lower electronic oxidation energies than 1 (587 and 557 vs. 732 kJ/mol in acetonitrile). 

However, these energies remain larger than the oxidation energy of N3
– and the same 

electronic transfer would also be observed.  
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Scheme 5. Energies of the reaction between N3
– and (A) 1; (B) 2.  

 

At this point, a chemical reaction between 1 or 2 and N3
● could be envisioned. However, 

these reactions are endothermic (Scheme 5). We can thus conclude that the electrochemical 

synthesis of azido-pentazole derivatives from pentazolate and N3
– is thermodynamically 

impossible. It was further found that N5N3
●– and N5ON3

●– are kinetically instable relative to 

loss of N2 (from the N3 moiety), with a transition barrier no larger than 14 and 10 kJ/mol, 

respectively.   

 

Kinetic stability of pentazole mono- and di-oxide  

Even if it has been proposed that an N-oxide group kinetically stabilizes pentazolate 

derivatives,11 the interest of the synthetic targets studied in this work as potential candidates 

for high energy density materials has to be explored. Therefore, we have examined the 

decomposition paths of 4-8 and 11-13 toward loss of N2 and N2O. Depending upon the case, 

these two processes may or may not be competitive. In addition, elimination of N2 may occur 

in a stepwise or in a concerted manner. The optimized structures obtained for the 

decompositions of 5 are displayed in Figure 4. The complete set of activation barriers for 

these processes is presented in Table 5. 
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Figure 4. Optimized structures along the paths for N2 elimination (stepwise, top) and N2O 

elimination (concerted, bottom) from N5O-NO2 5. 

 

Table 5. Energy barriers toward loss of N2 and N2O (in kJ/mol) at the CPCM(acetonitrile)-

B3LYP/6-311+G(2d,2p)//B3LYP/6-31+G(d) level.  

Molecule Loss of N2 Loss of N2O 

4 76 - 

5 102a 55 

6 39 122 

7 128a 90 (98)c 

8 65 118 

11 b 62 

12 - 52 

13 - 56 
a two step process. Only the largest energy barrier is indicated. b no TS could be located, even 

though loss of N2 should be easy, as reflected by its large exothermicity (-281 kJ/mol). c value 

in bracket is computed at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-31+G(d) level including 

CPCM(acetonitrile)-DFT correction. 
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We find that N2 elimination from 5 involves two consecutive N-N bond breaking steps. The 

associated transition states, TSa and TSb, correspond to energy barriers of 89 and 

102 kJ.mol-1, respectively, with an intermediate structure 5a which is more stable than 5 by 

8 kJ.mol-1. Elimination of N2O is also possible from 5 in a single step, with an energy barrier 

of 55 kJ.mol-1 making it the most likely fragmentation. Although this barrier confers a 

reasonable kinetic stability to 5, it seems however to be too low to make this product useful in 

real applications.  

These results indicate that N-oxide azido-pentazoles 7 and 8 are kinetically more stable than 

N-oxide nitro-pentazoles 5 and 6. It is also clear that the α-isomers 5 and 7 are kinetically 

more stable than their corresponding β-isomers 6 and 8, respectively, even if they are less 

stable thermodynamically (Table 2). CCSD(T) calculations for the N2O loss from 7 confirm 

that this azido-pentazole has a sufficient kinetic stability to be an interesting candidate as 

HEDM material. The effect of an N-oxide moiety on the stability of pentazole derivatives is 

not as straightforward as that obtained for pentazolates.11 Indeed, if the decomposition of 

azido-pentazole 4 is easier than the decomposition of its mono-oxidized (in α position) 

derivative 7, it is the case neither for the other mono-oxidized (in β position) derivative 8 nor 

for the di-oxidized products 11-13.  

 

Conclusions 

We have explored computationally the reaction paths for the synthesis of N- and N,N’-oxide 

pentazole-based derivatives. The mechanism for the oxidation by ozone has been determined 

and the synthesis of some of the mono- and di-oxidized derivatives studied here seems to be 

realistic, with a regioselectivity in favor of the β-isomer for the mono-oxidized products. 

Nitration can be achieved with NO2
+BF4

–, whereas azide group addition through 

electrochemical pathways is not thermodynamically viable. From pentazolate, the most 

accessible target seems to be 6. We recommend a synthesis in two steps from 1, with 

oxidation by ozone followed by nitration. The oxidation of phenylpentazole 15 prior to N-CPh 

bond breaking and nitration can also be envisaged. This sequence of reaction, where the 

second step should be spontaneous, should make possible the use of experimental conditions 

allowing stabilizing the expected product, despite its weak kinetic stability. Better kinetic 

stability is observed for azide derivatives however other pathways, like electrophilic transfer 

of an azido unit with the help of electron-poor sulfonyl azides, should be explored for its 

formation rather than the electrochemical one studied here. 
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