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Abstract. The dynamics and structure of rotating homogeneous turbulence is

investigated through the statistical properties of the ‘perceived’ velocity gradient

tensor, defined by interpolation from the locations and velocities of a set of four

particles. The results of direct numerical simulations of forced homogeneous

rotating turbulence at different Rossby numbers are presented. We thus provide

a multi-scale analysis of the dynamics of rotating turbulence and some of its

important features. We present scaling laws for second- and third-order moments

of the perceived velocity gradient tensor. We relate the distribution of the

enstrophy and strain variance, and of their production terms, to the topology

of the flow, thanks to conditional probability density functions. These quantities

demonstrate the role played by the Zeman scale in the elementary processes of

rotating turbulence, when compared to the scale at which the perceived velocity

gradient tensor is measured.
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1. Introduction

Particle-laden turbulent flows have recently received considerable attention due to their

widespread occurrence in natural and industrial systems. In particular, many efforts have

been devoted to the investigation of the dynamics of solid particles in turbulence, with

theoretical [1], experimental [2–4] or numerical approaches [5–7]. Objects of small size (in

practice, sufficiently smaller than the Kolmogorov scale) and of density equal to that of the

carrier fluid are expected to behave like passive tracers. This property has been used for a long

time in experiments (particle image velocimetry and particle tracking velocimetry techniques)

in order to characterize fluid flows in general. It has also inspired a new approach to turbulence,

based on the Lagrangian point of view. For instance, tracking a fluid particle or a pair of such

objects naturally brings some insight into turbulent dispersion and mixing.

A more refined description of incompressible flows is given by the Lagrangian dynamics

of the velocity gradient tensor, whose components are mab = ∂avb. Many works have been

devoted to the modeling of the dynamics of this object along a fluid trajectory, starting from

the restricted Euler dynamics [8, 9], and giving a series of increasingly refined models [10–13]

(see [14] for a recent review). A model for the dynamics of m in the presence of rotation

has recently been proposed and analyzed [15]. Another quantity of interest is the so-called

‘perceived velocity gradient tensor’, of components Mab, defined by interpolation from the

locations and velocities of a set of four tracer particles, called a tetrad [16]. The Lagrangian

statistics of this tensor provide some information on the flow topology and have been the

object of different investigations: measurements in experiments and in velocity fields coming

from direct numerical simulations (DNS) of homogeneous and isotropic turbulence [17, 18], or

modeling [16, 19–21] (see [22] for predictions in homogeneous shear turbulence).

In the case of anisotropic turbulence, significant modifications of the dynamics of the

turbulent field imply changes in the fluid properties at all scales by symmetry breaking, as

in turbulence subject to solid body rotation. The anisotropy of the flow may be observed at
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the level of one-point statistics, with, for instance, a separation of the rms velocity components,

but also considering velocity gradients, thus evidencing the extension of anisotropy throughout

all scales, from integral to dissipative ones. The geometrical information provided by tetrads

therefore permits us to quantify the detailed structure of the flow, as well as its scale-dependent

energetic equilibrium. Rotating turbulence is a heavily investigated topic, due to its relevance in

geophysical flows but also in several instances of industrial flows, e.g. in turbomachinery. Even

restricted to the very simple configuration of homogeneous flows, the effect of the rotation,

mediated by the Coriolis force, on the structure and dynamics of turbulence is still a relevant

research topic, since the description of anisotropic turbulence is not yet amenable to theoretical

advanced theories such as that of Kolmogorov for isotropic turbulence. Several efforts are

thus devoted to the characterization of the anisotropic structure of rotating homogeneous

turbulence, by experimental means [23, 24] and DNS [25], to cite but a few recent ones. The

statistical modeling of rotating turbulence is often tackled in the very low Rossby number

limit that produces wave turbulence, in which inertial waves interact in a weakly nonlinear

way among each other (see the recent book by Nazarenko [26] or [27]). These approaches

to rotating turbulence demonstrate the presence of three-dimensional vortices elongated along

the rotation axis, as a result of anisotropic nonlinear transfer of energy [28] or of the axial

propagation of inertial waves [24], depending on the ratios of the turbulent timescale to

inertial wave timescale, i.e. the Rossby number Ro(L) = u/(2�̂L), where u and L are the

velocity and integral length scales and �̂ is the rotation rate. This strong anisotropy propagates

throughout all scales when the Zeman scale ℓZ ≡ (ε/(2�̂)3)1/2 (ε is the dissipation) is smaller

than the smallest scale of turbulence [25]. A multiscale characterization of the anisotropy

of rotating turbulence thus requires specific statistics, e.g. directional spectra of two-point

velocity correlations [28, 29], or velocity increments and structure functions [23, 30, 31].

A third approach is the analysis based on variable scale gradient tensors [16], which we

consider in this paper. Its application is original in the framework of rotating turbulence

statistics.

One also expects to find traces of the anisotropic Eulerian structure of rotating turbulence

on Lagrangian statistics, such as the statistics of one- or two-particle dispersion, with separate

scalings in the axial and transverse directions, as observed experimentally [32] or by DNS and

stochastic modeling [30, 33]. Among other results, these studies show the subtle relationships

between third-order moments of velocity and multi-point correlations along the Lagrangian

trajectories.

The paper is organized as follows. We first recall in section 2 the definitions of the

moment of inertia and ‘perceived’ velocity gradient tensors (section 2.1), introduce the Q and

R invariants that allow us to describe the local topology of an incompressible flow (section 2.2)

and derive the equations describing the Lagrangian dynamics of strain and vorticity in rotating

turbulence (section 2.3). Section 3 is then devoted to the description of the numerical algorithm

of DNS. The results of our investigation of tetrad statistics in rotating turbulence are gathered

in section 4. In particular, the scaling laws of the low-order moments of the perceived velocity

gradient tensor M are presented in section 4.1. The joint probability density functions of the

Q and R invariants are exhibited in section 4.2. The densities of the second- (section 4.3) and

third- (section 4.4) order moments of M in the (R, Q) plane are then studied. The concluding

remarks are finally given in section 5.
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2. Moment of inertia and ‘perceived’ velocity gradient tensors

2.1. Definitions

We consider here the Lagrangian dynamics of a set of four tracer particles transported in a

turbulent flow. The motion of the center of mass of these tetrads simply reflects the large-scale

advection of these objects and is therefore irrelevant in the present study. We will thereafter

investigate the relative motion of the particles. In particular, their relative positions can be

represented by the three vectors

ρ1 = (x2− x1)/
√

2, (1)

ρ2 = (2x3− x2− x1)/
√

6, (2)

ρ3 = (3x4− x3− x2− x1)/
√

12, (3)

where xa denotes the location of the ath particle (a = 1, . . . , 4). A more convenient

representation, with respect to handling the three vectors ρa separately, is the so-called reduced

coordinates tensor ρ, in which ρia is the i th coordinate of the vector ρa. The moment of inertia

tensor g is then defined as

gab = ρiaρib. (4)

This symmetric tensor can be diagonalized in an orthonormal basis. Its three (real) eigenvalues

gi are obviously positive: upon ranking them in decreasing order, g1 > g2 > g3 > 0. Their sum is

the square of the radius of gyration of the tetrad, r 2
0 , while their ratios are related to its geometry.

In particular, g1 ≫ g2, g3 for a tetrad which is strongly elongated in one direction (‘cigar-like’

shape), whereas g1, g2 ≫ g3 for a flat tetrad (‘pancake-like’ geometry).

The relative velocities of the particles can be described in a similar way, by defining the

3× 3 tensor v in which via is the i th coordinate of the vector va, where

v1 = (u2− u1)/
√

2, (5)

v2 = (2u3− u2− u1)/
√

6, (6)

v3 = (3u4− u3− u2− u1)/
√

12, (7)

ua denoting the velocity of the ath particle. A physically more relevant quantity is the velocity

gradient tensor ‘perceived’ by the Lagrangian tetrad [18], defined by interpolation with the

incompressibility constraint TrM = 0:

Mab = [ρ−1]aivib−
δab

3
Tr(ρ−1 · v). (8)

For very small values of r0 (in practice, r0 . η, where η is the Kolmogorov scale), this

‘perceived’ velocity gradient tensor reduces to the exact velocity gradient tensor mab = ∂avb.

The symmetric part of M, S= 1

2
(M + M t), is the perceived rate of strain, while its

antisymmetric part is related to the perceived vorticity � (of components �a = εabc Mbc). These

two quantities obviously reduce, respectively, to the usual rate of strain matrix s = 1

2
(m + mt)

and to the usual vorticity ω =∇ × u if r0 → 0. Moreover, incompressibility imposes that

Tr(M)= Tr(S)= 0.

New Journal of Physics 14 (2012) 125002 (http://www.njp.org/)



5

2.2. The (R, Q) invariants

A convenient representation of the local topology of an incompressible flow is the (R, Q) plane.

In that case, in virtue of the Cayleigh–Hamilton theorem the three eigenvalues of the 3× 3

matrix M are indeed fully determined by the invariants [9]

Q =−1

2
Tr(M2), (9)

R =−1

3
Tr(M3). (10)

More specifically, if D = 27R2 + 4Q3 > 0 (the region above the zero discriminant line in

figures 4–13), then two of these eigenvalues are complex conjugates, which means that the flow

is locally elliptic, with locally swirling streamlines. For D < 0 (below this separatrix), the three

eigenvalues of M are real: strain dominates and the flow is locally hyperbolic. Incompressibility

imposes Tr(M)= 0. For R < 0, two eigenvalues (or their common real part) are negative and

the third one is positive; therefore the flow will be contracting in two directions (‘filament-type’

topology), whereas for R > 0 two eigenvalues (or their real part) are positive, resulting in a

‘sheet-like’ topology of the flow. A schematic description of the (R, Q) plane can be found in

figure 1(b) of [34]. It is also worth noting that

Q = 1

4
�2− 1

2
Tr(S2) (11)

and

R =−1

4
�S�− 1

3
Tr(S3). (12)

2.3. Dynamics of strain and vorticity in rotating turbulence

2.3.1. Strain equation. The Navier–Stokes equation in a rotating frame can be written as

∂tu j + uk∂ku j =−
1

ρ
∂ j p + ν∂kku j + 2ε jkluk�̂l (13)

for the fluctuating velocity u, with a rotation rate �̂. Note that the Einstein summation

convention on repeated indices is used throughout the paper. Upon multiplication by ∂i and

recalling that mi j = ∂i u j , equation (13) becomes

Dmi j

Dt
+ m2

i j =−
1

ρ
∂i j p + ν∂kkmi j + 2ε jklmik�̂l, (14)

where D/Dt = ∂/∂t + uk∂k denotes the Lagrangian derivative. Taking the symmetric part of this

equation, we obtain

Dsi j

Dt
+

1

2
(m2

i j + m2
j i)=−

1

ρ
∂i j p + ε jklmik�̂l + εiklm jk�̂l + ν∂kksi j . (15)

New Journal of Physics 14 (2012) 125002 (http://www.njp.org/)
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Figure 1. Typical instantaneous enstrophy densities in two-dimensional slices of

the three-dimensional flows. Increasing values from red to blue. Top: isotropic

turbulence (run I). Bottom: rotating turbulence (run III); left: ‘horizontal’ plane

(perpendicular to �̂); right: ‘vertical’ plane. The rotation vector �̂ is in the

z-direction.

Multiplying this equation by si j , we obtain

1

2

DTr(s2)

Dt
=−Tr(s3)− 1

4
ωsω + 2ε jkl�̂l(s ·m) jk −

1

ρ
si j∂i j p + νsi j∂kksi j , (16)

where we have used the fact that 1

2
si j(m

2
i j + m2

j i)= 2Tr(s3)−Tr(m2mt), and that Tr(m2mt)=
Tr(s3)− 1

4
ωsω. Strictly speaking, the term ωsω = ωi si jω j should be written as ωt sω, but the

former notation is used in this paper for the sake of simplicity (in the same way, we will, for

instance, use the notations ω2 and ωssω instead of ωtω and ωt ssω).

2.3.2. Vorticity equation. We rewrite equation (13) by using a semi-conservative formulation

of the nonlinear term, thus evidencing the superposition of background rotation on the vorticity,

and with a pressure modified to include the additional potential term

∂t u + (ω + 2�̂)× u =− 1

ρ
∇ p + ν∇2u. (17)

New Journal of Physics 14 (2012) 125002 (http://www.njp.org/)
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After taking the curl of this equation, we obtain

∂tω + (u · ∇)ω = [(ω + 2�̂) · ∇]u + ν∇2ω. (18)

For each vorticity component, the first term of the rhs of the above equation reads

(ω j + 2�̂ j)∂ j ui = (ω j + 2�̂ j)si j +
1

2
(ω j + 2�̂ j)(∂ j ui − ∂i u j)

= (ω j + 2�̂ j)si j + (ω× �̂)i .

Therefore, the vorticity equation (18) can be rewritten as

Dωi

Dt
= (ω j + 2�̂ j)si j + (ω× �̂)i + ν∂ j jωi . (19)

Upon multiplying it by ωi , one obtains the following equation, which describes the Lagrangian

dynamics of enstrophy in a rotating frame:

1

2

D(ω2)

Dt
= (ωi + 2�̂i)si jω j + νωi∂ j jωi . (20)

Equations (16) and (20) describe the Lagrangian dynamics of the usual rate of strain

variance and enstrophy. The transport equations of the perceived quantities Tr(S2) and �2 are

expected to be more complicated, and to include in particular terms depending on an object

similar to a subgrid scale stress. We will not try to write down these equations here, but rather

focus, in section 4, on the statistics of the quantities that depend on M explicitly, −Tr(S3),

�S�, εi jk�̂i(S.M) jk and �S�̂ and of their sums, abusively denoting the latter as perceived

strain variance or enstrophy production.

3. Numerical method and parameters

The basic set of equations describing incompressible homogeneous rotating turbulence are the

Navier–Stokes equations in a rotating frame of reference, and the continuity equation for the

fluctuating velocity field u(x, t), which is thus governed by

∂u

∂t
+ (u · ∇)u =− 1

ρ
∇ p + ν∇2u + 2u× �̂ + F, (21)

∇ · u = 0, (22)

where p(x, t) is the pressure field, ρ and ν, respectively, denote the fluid density and kinematic

viscosity, �̂ is the rotation vector, and possibly including a forcing term F(x, t). The spatial

domain is a three-dimensional periodic cube of dimension 2π . The system of above equations

has been integrated using a pseudo-spectral method, by projection of equations (21) and (22)

on a set of three-dimensional Fourier polynomials, using a now classical collocation technique

[35, 36]. The advection term is written in a semi-conservative way, and the viscous term is

integrated implicitly using integrating factors. Time marching is achieved by a third-order

Adams–Bashforth scheme. As required to obtain the velocity at a given point of the tetrad

within the complete velocity field, we use a sixth-order Lagrange interpolation scheme in each

direction of space for the velocity field.

New Journal of Physics 14 (2012) 125002 (http://www.njp.org/)
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Table 1. Physical and numerical parameters of the runs. Reynolds number

based on the Taylor microscale λ: Rλ = urmsλ/ν; large-scale Rossby number:

Ro(L) ≡ urms/(2L�̂); small-scale Rossby number: Ro(ω) ≡ ωrms/(2�̂); Zeman

scale: ℓZ ≡
√

ε/(2�̂)3. L is the integral length scale, η the Kolmogorov scale,

ε is the energy dissipation rate, ν the kinematic viscosity, and urms and ωrms,

respectively, denote the rms of velocity and vorticity fluctuations.

Run Rλ kmaxη Ro(L) Ro(ω) L/ℓZ L/η

I 190 1.3 ∞ ∞ 0 165

II 270 1.7 0.12 1.15 50 145

III 430 1.9 0.07 0.55 140 125

The forcing term has been added to the Navier–Stokes equations to maintain a stationary

level of turbulence. Inspired by previous works on isotropic turbulence [37], we employed the

following method: the Fourier modes û(k, t) for which |k|6 1.5 obey the Euler equations, in

a rotating frame of reference, truncated on the sphere |k|6 1.5, while the modes |k|> 1.5 are

solutions of the Navier–Stokes equations (21) and (22). Starting from a random incompressible

velocity field, a statistically steady state was reached after a few eddy turnover times.

Typical instantaneous enstrophy density distributions in the planes are shown in figure 1.

The structure of the flow is clearly very different between the isotropic turbulence run I and the

rapidly rotating turbulence run III. Figure 1 for run I (top panel) clearly shows the classical three-

dimensional structure of isotropic turbulence at sufficiently high Reynolds number, with small-

scale vortex filaments filling all the domain, with arguably some hint of intermittency. Any plane

cut through the resolution domain exhibits the same features. In contrast, figure 1 for run III

(bottom panels) presents a flow structure very different in a horizontal plane (left panel) and in

a vertical plane (right panel). The horizontal cut of the three-dimensional domain contains well-

separated intense vortices, very similar to the structure of two-dimensional turbulence. However,

the vertical cut demonstrates the persistence of significant variability of these vortices along the

rotation axis. For this forced high Reynolds number DNS, complete two-dimensionalization

is not achieved. The rotating turbulence of run III thus exhibits larger velocity correlation

scales along the rotation axis, and reduced horizontal ones. Smaller scales down to the

dissipative range may similarly be affected by very strong rotation provided the Zeman scale

ε1/2(2�̂)−3/2 is resolved [25], where ε is the kinetic energy dissipation. This is the case for run

III, as shown by the parameters of table 1.

The results presented in the following were obtained with runs of 5123 collocation points.

The Courant number, computed as the ratio of the maximal instantaneous velocity fluctuations

to δx/δt , where δt and δx are the timestep and space increment, was always <0.15. The physical

and numerical parameters of these runs are gathered in table 1. Other simulations with lower

resolutions (2563 and 1283) have been carried out to make sure that the observed behavior was

robust.

For each of the runs I–III and each value of r0, 106 tetrads of tracer particles were

considered. These tetrads were isotropic (gab = (r 2
0/3)δab), so as to consider only one length

scale. The values of r0 covered the whole inertial domain, ranging from η to L . The perceived

velocity gradient tensor M was calculated through equations (1)–(3) and (5)–(8).

New Journal of Physics 14 (2012) 125002 (http://www.njp.org/)
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4. Results

4.1. Scaling laws of the low-order moments of M

The most natural statistics one can measure are the low-order moments of the M tensor. In

homogeneous and isotropic turbulence, these moments are expected to satisfy approximately

the Kolmogorov K41 scaling: the nth moments of M should therefore scale as (ε/r 2
0 )

n/3. The

ratios between different moments of the same order also give some information about the local

structure of the flow. In particular, for a Gaussian ensemble of traceless matrices M,

〈�2〉> 〈Tr(S2)〉 (23)

and

〈(�2)2〉> 〈Tr(S2)�2〉> 〈(Tr(S2))2〉> 〈�SS�〉. (24)

In isotropic turbulence and for r0 & L , the second- and fourth-order moments of M(r0)

are expected to satisfy these inequalities since the velocities of the four particles are roughly

uncorrelated. In statistically homogeneous turbulence, the second-order moments of the usual

velocity gradient tensor mab (r0 → 0 in our case) are known to obey the exact relation 〈�2〉 =
2〈Tr(S2)〉. It has also been shown by DNS that the ordering (24) also holds for the m tensor in

homogeneous and isotropic turbulence [38].

Figure 2 shows the second- and fourth-order moments of the M tensor measured for

different Rossby numbers. As expected in homogeneous turbulence, for any Ro, the mean

enstrophy 〈�2〉 is twice as large as the mean strain variance 〈Tr(S2)〉 for the smallest values

of r0 (dissipative regime). In the isotropic case, all the moments satisfactorily satisfy the K41

prediction for scales η < r0 < L . In this type of flow, the orderings (23) and (24) are satisfied for

any tetrad of size r0. Interestingly, it is found that these inequalities are also valid at any scale in

rotating turbulence.

Figure 3 presents the third-order moments of the tensor M. Unlike the even-order moments,

the third-order ones can indicate a change of sign of the velocity gradient, and thus provide

information on the asymmetry of the structures in the flow. A term such as 〈�S�〉 is involved

as production in both the strain equation (16) and the vorticity equation (20), and is compared

to 〈−Tr(S3)〉 in figure 3(a). For both the rotating cases and the isotropic one, |〈−Tr(S3)〉|>
|〈�S�〉|, with a K41 scaling recovered in the isotropic case (not shown here), and a positive

production 〈�S�〉> 0. The production term 〈−Tr(S3)〉 in the strain variance equation also

remains positive at all Rossby numbers, but 〈�S�〉 is much reduced, with a value within the

statistical sampling jitter for the most rapidly rotating case. This term is therefore compared

in figure 3(b) to the other vorticity production term in the enstrophy equation, 〈�̂S�〉, due to

background rotation. The latter term is still smaller than 〈�S�〉, and we note that some sign

reversal can occur, particularly clear in the case of larger Rossby number. This may be due

to a change in the dynamics at large scales, where rotation is comparatively more active, with

respect to the smaller scales in which the perceived velocity gradients become less influenced

by rotation progressively when approaching the dissipative scales, with a return to isotropy. The

last panel (c) of figure 3 shows, in addition, the third production term in the strain variance

equation, 〈εi jk�̂i(S ·M) jk〉. For all cases, this term is smaller than the other two, according to

|〈−Tr(S3)〉|> |〈�S�〉|> |〈εi jk�̂i(S ·M) jk〉|.
To sum up the salient scaling properties, the K41 laws are reasonably recovered for the

second- and fourth-order moments of the M tensor. The third-order moments are those that can

New Journal of Physics 14 (2012) 125002 (http://www.njp.org/)



10

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

r
0
/L

<
M

2
(r

)>

 

 

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

r
0
/L

<
M

4
(r

)>

 

 

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

r
0
/L

<
M

4
(r

)>

 

 

(a)

(b) (c)

Figure 2. Scaling laws of the second- and fourth-order moments of the M tensor:

∗, isotropic turbulence; ◦, Ro(L) = 0.12; ⋄, Ro(L) = 0.07. (a) Second-order

moments; blue, 〈�2〉; red, 〈Tr(S2)〉; dashed line, K41 prediction∼ r
−4/3

0 . (b) and

(c) Fourth-order moments; black, 〈(�2)2〉; blue, 〈(Tr(S2)2〉; red, 〈Tr(S2)�2〉;
magenta, 〈�SS�〉; dashed line, K41 prediction ∼ r

−8/3

0 .

be most affected by rotation, through two possible contributions: 〈�̂S�〉 directly proportional

to the rotation rate, and the nonlinear modification of the dynamics of energy transfer that affect

the other third-order moments.

4.2. Joint probability density functions of Q and R

Figure 4 shows the joint probability density function (PDF) of the R and Q invariants for

different values of r0 ranging from L/3 to η, in isotropic turbulence. In agreement with the

literature [16, 19], this PDF is almost symmetric with respect to the R = 0 axis at large scale,

and gets more and more skewed as the scale decreases. For r0 ≈ η, the well-known ‘tear-

drop shape’, with an excess of probability along the R > 0 side of the zero-discriminant line

(Vieillefosse tail), is recovered. The same quantities are plotted in figure 5 for the rotating
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Figure 3. Scaling laws of the third-order moments of the M tensor: ∗, isotropic

turbulence; ◦, Ro(L) = 0.12; ⋄, Ro(L) = 0.07. (a) Blue, 〈�S�〉; red, 〈−Tr(S3)〉.
(b) Blue, 〈�S�〉; red, 〈�̂S�〉. (c) Blue, 〈−Tr(S3)〉; red, 〈�S�〉; magenta,

〈εi jk�̂i(S ·M) jk〉. (d) Skewness of R for the isotropic and rotating cases.

case at Ro(L) = 0.12. Interestingly, the PDFs at small scale are qualitatively very similar to

those obtained in isotropic turbulence (see, e.g., figures 4(d) and 5(d)). This is not the case

at large scale (figures 4(a) and 5(a)), where the PDF measured in rotating turbulence is much

more symmetric with respect to the R = 0 axis, i.e. closer to a Gaussian distribution [16]. In

particular, we found that, in rotating turbulence, the joint PDF of R and Q at scales larger than

ℓZ, the Zeman scale, are much more symmetric than their counterparts in isotropic turbulence,

whereas these quantities at scales smaller than ℓZ are qualitatively very similar to the isotropic

ones. This observation is confirmed by figure 6 at Ro(L) = 0.07, in which all the scales are > ℓZ

and thus are affected significantly by rotation.

Rotation has already been identified in the model proposed by Li [15] as responsible for

the modification of the PDF of the passive scalar gradient in turbulence, by strongly reducing

strong events and thus restoring a PDF much closer to Gaussian distribution than in isotropic

turbulence, for sufficiently large rotation rates (Ro(ω) = 0.2 in [15]). Our results presented in

figure 3(d) show the skewness of R, Sk(R)= 〈(R−〈R〉)3〉/〈(R−〈R〉)2〉3/2, as a function of
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(a) (b)

(c) (d)

Figure 4. Joint PDF of the normalized R =−Tr(M3)/3 and Q =−Tr(M2)/2

invariants: R∗ = R/〈(Tr(S2))3/2〉, Q∗ = Q/〈Tr(S2)〉, in isotropic turbulence.

(a) r0 ≈ L/3; (b) r0 ≈ L/11; (c) r0 ≈ L/43≈ 4η; (d) r0 ≈ L/170≈ η. The

isoprobability contours represent the probabilities 10−n, where n is an integer

(see colorbars). The dashed line is the zero-discriminant line: 27R2 + 4Q3 = 0.

scale. Sk(R) is reduced in the inertial range when rotation is sufficiently large at Ro(ω) = 0.55

(also Ro(L) = 0.07), and almost no change is observed between the isotropic and the rotating

case at Ro(ω) = 1.15. (Note that accurate statistical convergence is difficult to reach for these

statistics.) From a phenomenological point of view, inertial waves may be invoked to explain

the Gaussianization of the PDF distribution. For the strongly rotating case of run III, the local

Rossby number at large scales is much smaller than unity, indicating the dominance of rotation

effects over turbulent transport or, in other words, of the linear effect of rotation over nonlinear

advection. Therefore, the velocity field is strongly influenced by the propagation of inertial

waves with only weak nonlinear interactions. To illustrate this, one may consider the linearized

equations (21) applied to an initial Gaussian field. In that case, no departure from Gaussianity

is expected from the propagation of waves. A small departure may be observed for weakly
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(a) (b)

(c) (d)

Figure 5. Joint PDF of the normalized invariants R∗ and Q∗, for Ro(L) = 0.12.

(a) r0 ≈ L/3≈ 18ℓZ; (b) r0 ≈ L/11≈ 5ℓZ; (c) r0 ≈ L/44≈ 3η ≈ ℓZ; (d) r0 ≈
L/180≈ 0.8η ≈ 0.3ℓZ. The same conventions as in figure 4.

interacting waves, whereas the full nonlinear regime is required to produce a non-Gaussian field

with non-zero third-order moments. When rotation is weaker, the Rossby number at large scales

is larger, indicating less effective linear wave propagation against nonlinear transport.

4.3. Densities of second-order moments of M in the (R, Q) plane

More refined information about the local structure of turbulence can be gained by plotting the

densities of dynamical quantities in the (R, Q) plane, defined as the conditional PDF on Q

and R multiplied by the joint PDF of these invariants. This permits us to link the intensity

of the corresponding statistical quantity to the topological structure of the flow, depending on

the location of its concentration with respect to the separatrix and to the R = 0 axis in the

(R, Q)-plane.
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(a) (b)

(c) (d)

Figure 6. Joint PDF of the normalized invariants R∗ and Q∗, for Ro(L) = 0.07.

(a) r0 ≈ L/2; (b) r0 ≈ L/6; (c) r0 ≈ L/21≈ 6η; (d) r0 ≈ L/73≈ 1.5η. All these

scales are larger than ℓZ. The same conventions as in figure 4.

We investigate first the second-order moments of the M tensor. Figures 7 and 8,

respectively, show the densities of strain variance, Tr(S2), and of enstrophy, �2, in the (R,

Q) plane, for several values of the tetrad size r0 and of the Rossby number. These two quantities

are always essentially concentrated around the origin. As expected and already observed in

isotropic turbulence, the enstrophy density mostly extends in the region D > 0, corresponding

to elliptic flows. Rotation does not seem to strongly influence these observables. The strain

variance density is simply more elongated along the R > 0 side of the separatrix D = 0 for

small tetrad sizes and low rotation rate, in accordance with the joint PDF of Q and R.

4.4. Densities of third-order moments of M in the (R, Q)-plane

We expect the effect of rotation to be more significant on statistics related to third-order

moments of M, since previous studies of the dynamics of rotating turbulence in spectral
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Figure 7. Density of Tr(S2) (strain variance), normalized by its average, in the

(R∗, Q∗) plane. Top: isotropic turbulence; bottom: Ro(L) = 0.07. Left: r0 ≈ L/3;

right: r0 ≈ η.

space [28] have indicated that third-order velocity moments are nonlinearly affected by rotation,

which does not alter the spectral energy distribution, a second-order velocity moment.

We consider the strain skewness −Tr(S3) appearing in the strain variance equation, and

plot its conditional PDF in figure 9. As expected, the isotropic case shows a large- and a small-

scale positive concentration which lie along the R > 0 part of the D = 0 separatrix, i.e. along

sheets. At a large scale, regions of negative concentration are visible along the R < 0 part of

the separatrix (filaments), but the net balance 〈−Tr(S3)〉 is positive. In isotropic turbulence,

this quantity is a good approximation of the energy transfer −Tr(M2 M t) [16]. Positive (resp.

negative) concentrations of these quantities therefore correspond to regions of local direct (resp.

inverse) energy cascade. In the strongly rotating case at Ro(L) = 0.07, −Tr(S3) is only very

slightly more concentrated toward R = 0 (this is related to the joint PDF of the R and Q

invariants, qualitatively different in both flows, see figures 4 and 6), but it is clear that the strain

skewness is almost not influenced by rotation throughout all scales.
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Figure 8. Density of enstrophy, �2, normalized by its average, in the (R∗, Q∗)
plane. Top: isotropic turbulence; bottom: Ro(L) = 0.07. Left: r0 ≈ L/3; right:

r0 ≈ η.

The distribution of conditional PDF of the term �S� (enstrophy production in isotropic

turbulence) is plotted in figure 10, for the isotropic and strongly rotating cases. In the left panels,

corresponding to the large scales, �S� is positive in vorticity filaments, and negative in vortex

sheets. The background value is recovered in the hyperbolic zone, below the separatrix in the

(R, Q) plane. In the isotropic case, enstrophy is therefore essentially produced in vorticity

filaments, and destroyed in vortex sheets, as already observed experimentally [39]. At smaller

scales r0 ≈ 4η, rotation seems to modify the �S� distribution very weakly by spreading its

positive and negative peaks, although this trend is blurred by the statistical noise.

The density of the conditional PDF of εi jk�̂i(S ·M) jk (figure 11) shows that it is positive in

filaments of vorticity, and negative in vortex sheets or in strain sheets, and not much influenced

by the rotation rate.

Finally, the density of the conditional PDF of �̂S� is shown in figure 12: the large-scale

plots exhibit a wide negative patch around the origin, which corresponds to a marked ‘sink’ of

enstrophy. The smaller scale distribution shows that this enstrophy production term related to

New Journal of Physics 14 (2012) 125002 (http://www.njp.org/)



17

Figure 9. Density of −Tr(S3) (strain skewness), normalized by the absolute

value of its average, in the (R∗, Q∗) plane. Top: isotropic turbulence; bottom:

Ro(L) = 0.07. Left: r0 ≈ L/3; right: r0 ≈ η.

background rotation is negative in vorticity filaments, and positive for vortex and strain sheets.

Interestingly, this behavior is completely opposite to that of the isotropic enstrophy production

�S� (see figure 10). Overall, this shows that rotation might therefore be able to alter the

enstrophy balance, or enstrophy cascade, between the large and the small scales.

When 2�̂S� is superimposed with the enstrophy production term �S�, one obtains the

total enstrophy production (see equation (20)), plotted in figure 13. The figure shows that at

a small Rossby number, or at a large Rossby number and a large scale (figures 13(a), (c) and

(d))—i.e. when r0 > ℓZ— the distribution of total enstrophy production is very similar to that

of �̂S�, which is therefore the dominant term. Otherwise, at r0 < ℓZ (figure 13(b)), �S� is

dominant and the distribution of the total production is closer to the enstrophy production

distribution observed in isotropic turbulence, positive in vorticity filaments and destructive

(negative) in vortex sheets.

To complete the analysis of the dynamics, we plot in figure 14 the total production of strain

variance (see equation (16)). As expected from figure 3, the contribution of −Tr(S3) is always

larger than the others, so that the distribution of this total production of strain remains similar
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Figure 10. Density of �S� (enstrophy production in the isotropic case),

normalized by the absolute value of its average, in the (R∗, Q∗) plane. Top:

isotropic turbulence; bottom: Ro(L) = 0.07. Left: r0 ≈ L/3; right: r0 ≈ 4η.

to that of isotropic turbulence, since the distribution of this quantity is very weakly dependent

on the Rossby number (see figure 9): the positive contributions are located in vortex sheets

and in strain sheets, and some destruction due to negative contributions is present in filaments,

although the overall net balance is positive; it is thus a net production term.

5. Conclusion

The anisotropy of rotating homogeneous turbulence stems from a rather intricate effect of

rotation, which was shown in previous works to act on energy transfers at the level of third-

order velocity moments, and not directly on the energy distribution, due to the fact that the

Coriolis force does not produce work. Therefore, the statistical analysis of rotating turbulence

is quite complex, since it has to deal with higher-order statistics than energy spectra, and scale-

dependent effects of rotation. The latter have to be parameterized by the Zeman scale, in addition

to the more global Rossby number, either based on the large scales or based on the Taylor
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Figure 11. Density of εi jk�̂i(S ·M) jk , normalized by the absolute value of its

average, in the (R∗, Q∗) plane. Top: Ro(L) = 0.12; bottom: Ro(L) = 0.07. Left:

r0 ≈ L/3; right: r0 ≈ 4η.

microscale. The analysis we have proposed, based on the statistics of the perceived velocity

gradient tensor M, interpolated from the locations and velocities of an isotropic tetrad of fluid

particles of dimension r0, addresses nicely all these constraints: (a) it allows for a multi-scale

analysis, by choosing the coarse-graining scale r0 for the velocity gradient, which we have

mostly set slightly smaller than, or close to, the integral length scale L , or slightly larger than,

or close to, the dissipative Kolmogorov scale η; (b) it permits to compute the production terms in

the enstrophy equation, or in the strain variance equation, and to evaluate their relative strengths.

In addition, the analysis of the invariants of the perceived velocity gradient tensor permits us

to link the peaks of the production terms with the structural features of the flow, since the

(R, Q) plane distribution of the PDF of these dynamical quantities can be examined in specific

topological zones: vortex sheets, strain sheets, vortex filaments, thanks to the D = 0 separatrix

between elliptic and hyperbolic regions and to the R = 0 axis separating one-dimensional

(filaments) from two-dimensional (sheets) structures.

We have performed a statistical analysis of the data from DNS of forced rotating

homogeneous turbulence. The forcing is based on a subset of the Euler equations, coupled
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Figure 12. Density of �̂S�, normalized by the absolute value of its average,

in the (R∗, Q∗) plane. Top: Ro(L) = 0.12; bottom: Ro(L) = 0.07. Left: r0 ≈ L/3;

right: r0 ≈ 4η.

with our Navier–Stokes pseudo-spectral algorithm with Fourier polynomials. The forcing is

therefore ‘natural’ in that it does not introduce any external length or timescale which would

be imposed on the flow. Thus, the obtained rotating turbulence reaches rather high Reynolds

numbers, up to Rλ = 430, and we have chosen a moderately small Rossby number case and

a rapidly rotating case at smaller Rossby number, in addition to the reference isotropic case.

The rotating flow structure we present is clearly strongly anisotropic, with features in horizontal

planes strongly resembling two-dimensional turbulence, but with strong vertical gradients when

examining vertical plane cuts of the velocity field. Thanks to the achieved Reynolds numbers,

we were able to recover scaling laws for the second- and fourth-order moments of M consistent

with the prediction by Kolmogorov [40], uniformly for the rotating and non-rotating cases.

Unlike its even-order moments, the third-order moment of M is shown to be influenced by

rotation and may even become negative depending on the non-dimensional parameters and the

scale.

The joint probability distribution function of the invariants R and Q of M recover the

elongation along the ‘Vieillefosse’ tail for the small scales already observed in isotropic
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(a) (b)

(c) (d)

Figure 13. Density of (� + 2�̂)S� (total enstrophy production in rotating

turbulence), normalized by the absolute value of its average, in the (R∗, Q∗)
plane. Top: Ro(L) = 0.12; bottom: Ro(L) = 0.07. Left: r0 ≈ L/3; right: r0 ≈ 4η.

turbulence, leading to the ‘tear-drop-shaped’ distribution. In rotating flows, no significant

modification of this distribution is observed at scales smaller than the Zeman one. But at scales

larger than ℓZ (i.e. at all scales at small Rossby number Ro(L) = 0.07, and at the largest scales

only at moderate rotation rate, where Ro(L) = 0.12), the distribution is more symmetric with

respect to the R = 0 axis, a signature of a Gaussian distribution, than the one measured in

isotropic turbulence. A possible explanation is the increased presence and effect of inertial

waves, rendering the dynamics closer to that of wave turbulence, in which the closeness to

Gaussianity is a feature of the velocity field, with less important nonlinearity in the energy

transfers.

In order to investigate further the sources of these dynamical modifications due to

rotation, we have presented PDFs of statistical terms appearing in the strain variance and

enstrophy equations, conditioned by the R, Q distribution. As expected, the influence of rotation

on the strain variance itself and the enstrophy (second-order moments) is rather weak at both

the presented scales L/3 and η (and at all the computed scales not plotted here). Regarding

the production terms (third-order moments), not all are noticeably affected by rotation, such
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Figure 14. Density of −Tr(S3)− 1

4
�S� + 2εi jk�̂i(S ·M) jk (total production of

strain variance in rotating turbulence), normalized by the absolute value of its

average, in the (R∗, Q∗) plane. Top: Ro(L) = 0.12; bottom: Ro(L) = 0.07. Left:

r0 ≈ L/3; right: r0 ≈ 4η.

as the strain skewness term −Tr(S3). The distribution in the (R, Q) plane of enstrophy

production �S� is moderately changed by rotation at all scales, and retains its isotropic

shape, as does the total production in the strain variance equation. When combined with the

production due to background rotation �̂ to yield the total enstrophy production in rotating

turbulence (� + 2�̂)S�, it shows the importance of the relative amplitude of the tetrad scale

r0 with respect to the Zeman scale ℓZ. The latter therefore appears as a fixture in rotating

homogeneous turbulence, although it needs to be discussed along with dynamical terms—e.g.

production terms in the enstrophy equation or third-order velocity structure function in the

Kármán–Howarth equation or spectral energy transfer in the Lin equation—in order to complete

the analysis of the full Eulerian properties of rotating homogeneous turbulence.

It is also important to note that the distribution of the total production of strain variance

(figure 14) is a rather robust feature, since, in rotating turbulence, it remains very close at all

scales to that of isotropic turbulence.
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In this work, we have focused on fixed tetrads of fluid particles, but the same approach will

be used in a forthcoming study by following the trajectory of each fluid particle of the initial

tetrad and thus gaining access to Lagrangian statistics of the ρ and M tensors.
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