
HAL Id: hal-00761204
https://hal.science/hal-00761204

Submitted on 5 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Library Migration Graphs
Cédric Teyton, Jean-Rémy Falleri, Xavier Blanc

To cite this version:
Cédric Teyton, Jean-Rémy Falleri, Xavier Blanc. Mining Library Migration Graphs. 19th Working
Conference on Reverse Engineering, WCRE 2012, Kingston, ON, Canada, October 15-18, 2012, Oct
2012, Kingston, Canada. pp.289-298, �10.1109/WCRE.2012.38�. �hal-00761204�

https://hal.science/hal-00761204
https://hal.archives-ouvertes.fr

Mining Library Migration Graphs

Cédric Teyton, Jean-Rémy Falleri, Xavier Blanc

Univ. Bordeaux, LaBRI, UMR 5800

F-33400 Talence, France

Email: name.surname@labri.fr

Abstract—Software systems intensively depend on external
libraries, chosen at conception time. However, relevance of any
library irremediably changes during projects and/or library life
cycle. As a consequence, projects developers must periodically
reconsider the libraries they depend on, and must think about
library migration. When they want to migrate their libraries,
they then have to identify candidate libraries that offer similar
facilities and thus can substitute to each other. They also have to
compare candidates to choose the one that best fits their needs.
Finding a relevant library replacement is a well known tedious
and time-consuming task. In this paper, we propose an approach
that identifies sets of similar libraries and that produces what we
call library migration graphs that show how existing projects have
performed migrations among them. These graphs, constructed
from the observation of a large number of software projects,
ease the discovery and selection of library replacements.

I. INTRODUCTION

Almost all software projects depend on external libraries

that provide useful technical facilities. Examples of such

libraries are JUnit for unit testing or Log4J for logging.

The relevance of a library for a given project irremediably

changes during the project and/or the library life cycle. As a

consequence, projects developers must periodically reconsider

the libraries they depend on, and must think about library

migration when the libraries they depend on are not updated,

or when competing ones appear with more features or better

performances for instance.

Even if library migrations are not so frequent in project life

cycle, we observed that they do exist. By looking at the source

code repository of several thousands of open-source software

projects, the migrations we observed fall into the following

categories:

• Convenience, as expressed by these developers: “changed

from MySQL to HSQLDB, so that it can be built on

any machine”1 and “changed JTA dependency to use

geronimo spec to avoid having to download and install

JTA manually”2.

• Outdated: “switched to using Google Guava library in-

stead of older collections library”3.

• Incompatibilities: “Added Slf4j in favor of Commons-

logging to avoid conflict with Hibernate Validator”4 or

“port logging to slf4j (commons-logging has classloader

issues)”5

1http://code.google.com/p/jlibs/source/detail?r=955
2http://code.google.com/p/mybatis/source/detail?r=1996
3http://code.google.com/p/google-gson/source/detail?r=619
4http://code.google.com/p/sventon/source/detail?r=1681
5http://code.google.com/p/dyuproject/source/detail?r=668

Whatever the category, developers that are looking for

replacement libraries can currently only use general purpose

search engine, such as Google. For example, developers that

want to migrate from the Commons-logging library would

probably query Google with “logging library Java”. Such a

query returns many technical websites that provide partial,

incomplete and out-of-date answers of libraries to migrate to.

Therefore, to not end up in a tedious and time-consuming

process, there is a need for an approach that helps to find

adequate candidate libraries to migrate to, which is the purpose

of this paper.

Library migration raises two main issues. The first one

consists in identifying libraries that offer similar facilities and

thus can substitute to each other. The second one consists to

provide comparison criteria to help developers to choose the

ideal library to migrate to. For example, if a project wants

to migrate from Log4J, it may consider SLF4J or Commons

Logging as they both address logging, and SLF4J may be

preferred as many more projects have chosen SLF4J rather

that Commons-Logging.

In this paper, we propose to address these two issues by

analysing large corpus of software projects to see how their

dependencies evolve in order to exhibit common behaviours.

We assume that if we observe that a large number of projects

migrate from Log4J to SLF4J, it is then relevant for every

project using Log4J to consider SLF4J as a good candidate

to migrate to. We base our analysis on modern software

project management tools that ease specification and mainte-

nance of software dependencies. Whatever the tool, Maven6,

Apache Ivy7, or Gradle8 for instance, their principles are

quite the same. Each project defines its dependencies with

other projects in a configuration file. The tool then checks the

dependencies during the life cycle of the project (compilation,

testing, deployment, etc.). Thanks to such configuration files,

which make dependencies explicit, we can analyse how library

migrations are performed by projects, with the intent to exhibit

common migration rules. Such an analysis is even more simple

when the build management tools propose a central repository

that stores all configuration files of all projects, which is the

case at least for Maven.

Our contribution is twofold. First, we propose a mining

approach that exhibits migration rules and that can be applied

6http://maven.apache.org/
7http://ant.apache.org/ivy/
8http://www.gradle.org/

to any tool that manages library dependencies. Our approach

computes what we call migration graphs that exhibits cate-

gories of similar libraries with relationships representing how

often migrations have been performed between them. Second,

we present the result of our mining approach applied to

the Apache Maven9 project management system. This result

presents several categories such as logging, data base and

XML analysis. We have compared our migration graphs with

usage trends of libraries in order to show that they add valuable

information.

The remainder of this paper is structured as follows. Sec-

tion II explains our process to mine library dependencies in

order to generate library migration graphs. Section III presents

a case study of our approach on the projects located on the

major Maven repository. Section IV exposes the migration

graphs extracted during the case study. Section V discusses

the limitations of our approach. Section VI presents the

related work, while Section VII uncovers the future work and

concludes.

II. APPROACH

In this section, we first present the abstract model we define

to represent evolving software projects. Based on this model,

we present the algorithm we use to extract what we call

migration rules that abstract library migrations performed by

projects. Finally, we present what we call migration graphs

that express categories of similar libraries and that highlight

library migration flow.

A. Dependency Model

In order to be independent of any project management tool,

we propose to abstract the data needed to perform our analysis

in what we call a dependency model. This model is very

simple as it only contains the set of analysed projects, their

list of revisions and, for each revision the associated set of

dependencies. More formally, P is the set of software projects

of the model (we consider that a library is a project too). Each

project p ∈ P has an associated totally ordered set Rp of

project revisions. This set is sorted chronologically according

to the revision dates. For a project revision r ∈ Rp, we define

d(r) : Rp → P(P) the set of its dependencies.

Let us illustrate our model with an example. We as-

sume six projects, two development projects (PA and PB)

and four libraries (JUnit, JMock, Log4J and SLF4J).

Table I presents this dependency model with revisions of

PA : (P1
A
, P2

A
, P3

A
) and of PB : (P1

B
, P2

B
), associated with their

corresponding dependencies.

Based on this model, for a given revision ri, we introduce

rem(ri) = d(ri−1) \ d(ri) and add(ri) = d(ri) \ d(ri−1)
that give respectively the added and removed dependencies

at a given revision with respect to the previous revision.

With our example, we can see that rem(P3
A
) = {Log4J} and

add(P3
A
) = {SLF4J}. These two sets will help us to identify

library migrations performed at a given revision.

9http://maven.apache.org/

Project Revisions / Dependencies

PA P
1

A
P
2

A
P
3

A

{JUnit} {JMock,Log4J} {JMock,SLF4J}

PB P
1

B
P
2

B

{JMock} {JUnit}

TABLE I: Example of projects with their revisions and their

dependencies

B. Mining library migration rules

A project performs a library migration when it exchanges

one of its dependent library by another one. Such migration

includes two libraries with different names, and thus discards

library upgrades. Therefore, if a project updates a dependency

from JUnit 3.8 to JUnit 4.8, this is not considered as a

migration in our approach. More formally, we define a library

migration rule m ∈ M as a couple (s, t) ∈ P 2 with s 6= t. s

is the old library (source) and t is the new library (target). A

migration rule denotes the removal of s in favour of t. Note

that we assume that migration rules are one to one rules. We do

not consider cases where one or several libraries are replaced

by one or more libraries. Thus, n:m migration rules are not

discussed in this paper.

To extract migration rules, we apply a straightforward

algorithm that iterates on revisions of a set of software projects

(see Algorithm 1). For each revision, our algorithm looks at

the dependencies that have been removed and added. It then

creates a candidate migration rule for each element of the

Cartesian product of the removed and added dependencies.

The removed (resp. added) dependencies are the source (resp.

target) of the candidate migration rules.

Once candidate migration rules have been created, we filter

out candidates that are not relevant according to a scoring

function. To that extent, we define the function r(m) :

M → P(
⋃

p∈P

Rp), that returns for a given rule m the set

of revisions that target the rule. We introduce the confidence

conf(m) : M → R as the minimum value between
|r(m)|

|{(s,x)∈M}|

and
|r(m)|

|{(x,t)∈M}| , where m = (s, t), where (s, x) with x ∈ P

that denotes any rule r ∈M having s as a source, and where

(x, t) that denotes any rule r ∈M having t as a target.

With our example, the Cartesian product returns the rules

m1 = (JUnit,JMock), m2 = (JUnit,Log4J), m3 =
(Log4J,SLF4J) and m4 = (JMock,JUnit). Moreover

r(m1) = {P2
A
}, r(m2) = {P2

A
}, r(m3) = {P3

A
} and

r(m4) = {P2
B
}. Since there are two rules having JUnit as

source and one rule having JMock as target, conf(m1) =
min(12 ,

1
1) = 0.5. Similarly, conf(m2) = 0.5, conf(m3) = 1

and conf(m4) = 1. If we set a threshold of confidence of 1,

only the rules m3 and m4 are filtered in.

As our filter may return false positives, candidate rules

are manually checked. The goal of this manual check is to

build the set E of expert rules, which are the rules that

correspond to correct migrations. To help this manual step,

we propose a pseudo automatic analysis of description mes-

Algorithm 1 Our migration rules mining algorithm

for all p ∈ P do

for i = 2→ size(Rp) do

ri = Rp[i]
R = rem(ri)
A = add(ri)
for all r ∈ R do

for all a ∈ A do

m← (r, a)
M ←M ∪m

r(m)← r(m) ∪ ri
end for

end for

end for

end for

sages attached to commit performed while a library migration

occurs. Looking at such messages may provide confidence to

the truth of migration rules. For instance, a commit message

associated to revision a3 saying that the library Log4J has

been replaced by SLF4J provides confidence for the migration

rule m3 =(Log4J,SLF4J). In our example, we consider

that both m3 and m4 have been confirmed to be correct

(E = {m3,m4}).
As a last step, we add to E the rules from M that have

been incorrectly filtered out, but can be deduced from the

rules of E by applying transitivity and symmetry. This step,

called rules augmentation, is described in Algorithm 2. On

our example, Algorithm 2 adds (JUnit,JMock) in E. Finally

E = {m1,m3,m4}.

Algorithm 2 Rules augmentation

for all m = (s, t) ∈M \ E do

if ((s, y) ∈ E ∨ (y, s) ∈ E, y 6= s) and ((y, t) ∈ E ∨
(t, y) ∈ E) then

E = E ∪m

else if ((t, y) ∈ E ∨ (y, t) ∈ E, z 6= t) and ((z, s) ∈
E ∨ (s, z) ∈ E) then

E = E ∪m

else if (t, s) ∈ E then

E = E ∪m

end if

end for

C. Building migration graphs

After having identified migration rules, we compute what

we call a migration graph. The nodes of this graph are projects

that have been either source or target of at least one migration

rule. Nodes of a migration graph are then library projects that

have been migrated. A directed arc exists between two nodes

if there is at least a migration rule between the two nodes. To

indicate the flow of migration between the different libraries,

the arcs are labelled using r(m) (an arc m = (s, t) is labelled

with |r(m)|).

JUnit JMock
1
1

Fig. 1: A category of our example

To extract categories of similar libraries, we compute the

connected components on the migration graph. Each connected

component is a category, whose software projects of the cate-

gory are the union of the projects contained in the connected

component. An example of category is shown in Figure 1.

This category shows that JUnit and JMock are similar and

that projects have performed migration in the two sides.

III. CASE STUDY : MAVEN CENTRAL REPOSITORY

For practical reasons, we have realized our case study on

projects managed under Maven because 1) it has a centralized

repository system of almost 40 000 projects 2) there is a web-

based REST API enabling to easily retrieve information from

this repository.

A. Extracting dependencies from Maven

Maven is a build and dependencies management system

for Java software projects. Each project managed by Maven

requires a so-called POM (Project Object Model) XML file

that contains three mandatory tags: a groupId that defines

the group owning the project, an artifactId that is the unique

name of the project under the groupId, and a version number.

POM file also contains a dependencies tag where a set of

dependencies can be specified, each one by the groupId of the

dependency, its artifactId and optionally its version. Figure 2

shows an excerpt of the POM file of JUnit in its 4.10 version.

Project dependencies are stored on a Maven repository.

These dependencies are Maven projects as well, and have

therefore a POM file as well. The Maven Central Repository10

(MCR) is the official Maven repository. It serves over 70

millions downloads every week11. It is a relevant data source

for our case study for two reasons: 1) the set of projects located

on the MCR is large and 2) the dependencies are specified with

consistency and can be easily retrieved across projects, which

allows us to concentrate on extracting the migration rules.

We now detail how we instantiate our model from the data

present on the MCR. First of all, P is the set of projects located

on the MCR. A project p ∈ P is identified as an element

groupId:artifactId according to the tags included in its POM

file. Each project p has an associated set Rp containing all its

versions. This set is ordered using the versioning scheme used

by Maven12 applied on the tag. To obtain a list of dependencies

d(r), r ∈ Rp, we investigate the dependencies section of the

POM file. It contains several dependency tags, from which

we extract the groupId and artifactId tags. This process is

illustrated in Figure 2.

10http://search.maven.org/
11http://www.sonatype.com/people/2010/12/now-available-central-

download-statistics-for-oss-projects/
12http://docs.codehaus.org/display/MAVEN/Versioning

<project>

 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 ...

 <dependencies>

 <dependency>

 <groupId>org.harmcrest</groupId>
 <artifactId>hamcrest-core</artifactId>
 <version>1.1</version>
 </dependency>

 </dependencies>

 ...

</project>

Fig. 2: An excerpt of JUNIT 4.10 POM file

B. Filters to improve rule generation

Within Maven, a same project can exist under several

identities, whereas it should be perceived as a unique one.

For example, one project can make use of either junit or

junit-dep, with both referring to the junit project. In

our opinion, if a project updates its dependency junit to

junit-dep, it is not relevant to consider this as a migration

rule. Also, the project hsqldb can be found under both

groupId org.hsqldb and hsqldb. If a project decides to

change only the groupId of a dependency, we should not con-

sider it as a migration. This situation can lead to the case where

two different rules exist but with a similar semantic. For ex-

ample, (org.hsqldb:hsqldb,com.h2database:h2)

and (hsqldb:hsqldb,com.h2database:h2) should

be merged as a unique rule.

To tackle these issues, we propose a four-step process to

finally produce migration rule :

1) We apply a post-processing step after the computation of

the sets rem(ri) and add(ri). Its objective is to remove

from these sets the projects that fall into the previous

situations. Our solution is to consider only the artifactId

of the projects from rem(ri) and add(ri), regardless the

groupId.

2) For each element p that both belongs to rem(ri) and

add(ri), we remove p from those two sets. From now,

projects dependencies are only seen with their artifactId.

3) We detect the similar remaining elements from these

two sets that must be discarded from the analysis.

To that purpose, we compute Tp the set of tokens

appearing in the artifactId of a project p. For instance

Tp = {junit,dep} for junit-dep. The segmentation

is done using non-alphanumeric characters and Camel-

Case. Then p and p′ are removed from resp. rem(ri)
and add(ri) iff p ∈ rem(ri) and p′ ∈ add(ri) with

Tp ∩ Tp′ 6= ∅.
4) The Cartesian product can now compute the migration

rules.

An example of this straightforward process is detailed in

Figure 3. This example highlights the removal of misleading

migration rules. For instance, thanks to our process, the rule

(junit:junit-dep) is not returned.

As a last point, we introduce |g(m)| as the set of distinct

groupIds of projects on which m ∈M has been observed. This

value intervenes as it may happen that several sub-projects

within a similar groupId perform the same migration. This

can be due to a lack of modularity in the project organization.

It results that, if a migration rule is observed in 10 sub-projects

simultaneously, its score is increased of 10 as well. However,

we think that such situation bias the actual score of a migration

rule. We therefore decide to compute the value |g(m)| since it

is a better indicator than |r(m)| to estimate the popularity of a

migration rule. For instance if r(m) = {g1:a1, g1:b2, g2:c1},
g(m) = {g1, g2}. In the remainder of the article, we use

|g(m)| instead of |r(m)| to evaluate the popularity of a

migration rule.

C. Results

The MCR provides a Web REST API to ease the access

to the projects it contains. We have used this API to set-

up an automatic process and to collect 38588 projects and

310571 projects releases. Looking for every p ∈ P and their

associated Rp on the repository took about 2 hours. Mining

every associated POM file takes about 35 hours. Computing

the rules from every successive couple of set of dependencies

d(r1), d(r2) takes 2 minutes. Before filtering, we obtain a list

of 925 migration rules that constitute the set M .

Among the generated 925 rules, we need to filter the

incorrect rules as much as possible to reduce the manual work

when building the expert rules E that we finally deliver. To

that purpose, we first use the previously introduced g(m). We

include in E only rules having a value |g(m)| ≥ 2. The idea

behind this statement is that a migration rule gains confidence

if it has been observed on several unrelated projects, here at

least 2. This filter builds a subset M ′ ∈M of 385 rules.

We decide to retain only rules that have a sufficient con-

fidence value conf(m). We therefore introduce a threshold of

confidence value tc that must be fixed. In order to optimize the

threshold tc, we run our tool against the previously computed

set M ′ with different values for tc. Then we manually rate

the migration rules found, either as correct or wrong. We aim

at maximizing the number of true positives while reducing as

much as possible the number of false positives. Results are

reported in Figure 4. Note that manually reviewing a rule

is usually an easy task as it only requires to look at the

websites of the projects to see if they target the same domain.

Nevertheless, it is possible that a few false positive were not

removed due to a misunderstanding of the libraries features.

The whole task of removing the false positives took about 2

hours for rating the 385 rules.

According to the results reported in Figure 4, we choose

to set tc to 0.06 so that we achieve a precision of 0.67,

containing 57 correct rules and 27 incorrect rules. Using the

57 correct rules, we apply the rule augmentation technique

described in Algorithm 2. This technique managed to extend

E from 57 to 80 rules. This set of 80 rules is the definitive

set of expert migration rules E. Table II shows the 15 most

observed migrations. The whole set E is available online13.

13http://www.labri.fr/perso/cteyton/index.php?page name=rules

org.eclipse.jdt:junit

org.slf4j:slf4j-api

org.hsqldb:hsqldb

junit:junit-dep

log4j:log4j

hsqldb:hsqldb

rem(i)

add(i)
1 Keep only artefactId

junit-dep

log4j

hsqldb

junit

slf4j-api

hsqldb

2 Remove duplicates

junit

slf4j-api

junit-dep

log4j

3 Token-based filter

(slf4j-api,log4j)

4 Cartesian product

junit and junit-dep

must be removed

Fig. 3: Maven-specific filter to improve rule generation. From two sets of 3 dependencies, only one rule is kept after the

cartesian product.

0.04 0.05 0.06 0.07 0.08 0.09 0.1

False Positive
True Positive

Threshold

R
ul

es
 fo

un
d

0
20

40
60

80
10

0
12

0
14

0

Fig. 4: Precision evaluation on tc variations

Rule

Source Target |g(m)|

commons-logging slf4j-api 44

commons-logging slf4j-log4j12 21

junit testng 20

google-collections guava 16

servletapi servlet-api 13

testng junit 13

slf4j-log4j12 logback-classic 13

log4j slf4j-api 11

log4j logback-classic 11

xbean xmlbeans 10

commons-logging slf4j-simple 8

hsqldb h2 6

gfprobe-provider-client management-api 6

commons-logging log4j 5

js rhino 5

xmlParserAPIs xml-apis 5

TABLE II: The 15 most observed migrations from E

Computing the rule association graph leads to 34 connected

components which means that we found 34 categories.

D. Valuable information from commits logs

As stated previously, we had to manually assign as either

correct or wrong each migration rule found. Basically, one can

search quickly over the internet the validity of the migration.

But we consider that the developers are also willing to check

the reasons why developers previously performed a migration.

In a second time, they want to obtain additional information

that support them to perform a migration.

To that purpose, we chose to mine commits logs of a

wide set of Java open source projects. The idea is to look

for commit logs that match both the source and the target

of a given migration rule. Then, the results expose existing

commit logs that explicit the migration and/or an associated

justification. We arbitrarily selected from four open-source

platforms, 5340 projects from Google Code14, 16000 from

SourceForge15, 12308 from Github16 and 1063 from Apache17.

We have collected the commits log of total of 34688 projects,

resulting in around 3,9M of commit messages.

We provide on the web page18 a search engine that returns

a list of commits that can be relevant for the recommendation.

To show that this tool can provide assistance for developers

when they deal with migration rules, we explicit in Table III

an excerpt of commits of interest for Logging and Database

facilities. These migrations are discussed in Section IV.

To make sure about the invalidity of a migration rule, the

absence of relevant results in the search engine is a solid argu-

ment. However, those messages must be used for indications

only. There is no guarantee that a sound migration rule will

match necessarily at least one meaningful commit log. The set

of projects in the database has been chosen arbitrarily with no

assumption about the quality of the registered commit logs.

However, users are likely to find at least few results against a

true migration rule.

14http://code.google.com/
15http://sourceforge.net/
16www.github.com
17http://svn.apache.org/repos/asf/
18http://www.labri.fr/perso/cteyton/search.php

Logging

• ”logger api changed from sfl4j-log4j to
logback-classic”

• ”change logging system from using log4j directly to using
commons-logging”

• ”changed to use commons-logging instead of log4j directly”
• ”moved ordi from log4j to slf4j-api to be more easily

embeddable”
• ”replaced commons-logging with slf4j-log4j12”
• ”say goodbye log4j. welcome slf4j-simple”
• ”loggers should be of type org.slf4j not logback-classic”

Database

• ”replace h2 w/hsqldb 2.0 for now”
• ”changed database from mysql to hsqldb 2”
• ”changed default database from mysql to derby”
• ”use derby instead of h2 database”
• ”removed derby in favour of hsqldb”
• ”move sql changes from h2 to mysql engine”

TABLE III: Commit logs for assistance in rule validation (7

commits log for logging utilities and 6 for database facilities)

IV. EXPLOITATION OF THE RESULTS

A. Analysis of the migration graphs

In this section we analyse the migration graphs extracted

in Section III, and discuss the results we obtained regarding

library migration. We compare the conclusion drawn from the

graphs with the one that could be drawn from the plot of

the evolution of the use of the libraries (this information is

computed from the MCR). We show that our migration graphs

offer an interesting complement of information and allow to

detect interesting libraries which do not really stand out from

the evolution plots. Then, we detail four visual patterns that

help reading our migration graphs.

For sake of place, we present the analysis of five migration

graphs attached to three domains : logging, database and XML.

Those categories appear to be among the most utility libraries

used in software projects. We have used JUNG19 to draw them.

As explained in Section III, we used |g(m)| instead of |r(m)|
to label the arcs. Moreover, in the figures the size of the arcs

is proportional to |g(m)|. Finally, the number of users of a

library is indicated using the color of its node. A dark node

indicates that the library is heavily used while a white node

indicates that it has only few users. This number of users is

relative to the library uses of a category, and is not related to

the total number of projects we study.

1) Logging: Figure 5 shows a migration graph of li-

braries targeting the logging domain, containing 9 libraries.

We can notice that a significant number of migrations go

from Commons-logging20 (80 departures) and Log4J21(34).

Inversely, the library SLF4J22 appears to be a leader and is

19http://jung.sourceforge.net/
20http://commons.apache.org/logging/
21http://logging.apache.org/log4j/
22http://www.slf4j.org/

5

2

13

2

3

11

4

3

2
3

2

2

44

5

8

4

11

2

2

21

pax-swissbox-optional-jcl

slf4j-api

slf4j-simple

logback-core

de.huxhorn.sulky.io

log4j

logback-classic
commons-logging

slf4j-log4j12

Fig. 5: Migration graphs for Logging libraries

the target of a high number of migrations. This is even more

significant considering that SLF4J library is declined in several

sub-libraries that appear in the graph with different nodes (e.g.,

slf4j-simple). Also, by computing the score of its respective

ingoing edges, it turns out that 30 groupIds have migrated to

LOGBack23 and only 2 times from, targeting SLF4J. This may

be an indication that projects that migrate to LOGBack are

globally satisfied. Using this graph, we could recommend to

the developers to consider dropping the Commons-logging and

Log4J libraries, and to replace them by SLF4J or LOGBack.

On the web pages of these two libraries we can read “The

logback-classic module can be assimilated to a significantly

improved version of log4j” and “The Simple Logging Facade

for Java or (SLF4J) serves as a simple facade or abstraction

for various logging frameworks, e.g. java.util.logging, log4j

and logback, allowing the end user to plug in the desired

logging framework at deployment time“. It clearly seems that

they aim to replace logging libraries such as Commons-logging

and Log4J.

Figure 6 shows the evolution of the use of the four most-

used logging libraries. In this figure, we can notice that SLF4J

stands out from the other ones, which strengthens the con-

clusion drawn from the migration graph. However, LOGBack

does not appear as particularly interesting and would probably

not be seriously considered using only this plot.

2) Database: Within the database category, we observe

several balanced migrations between HSQLDB24, Derby25, and

23http://logback.qos.ch/
24http://hsqldb.org/
25http://db.apache.org/derby/

2006 2007 2008 2009 2010 2011 2012

0
50

0
10

00
15

00
20

00

Time

C
lie

nt
s

slf4j−api
commons−logging
logback−classic
log4j

Fig. 6: Evolution of the use of the logging libraries

6

34

3 4

mysql-connector-java
hsqldb

h2

derby

Fig. 7: Migration graph for the database libraries

MySQL26. We also notice that 6 groupIds have migrated from

HSQLDB to H227, and nobody did migrate from H2. By

looking to this graph, we could recommend to the projects

to seriously consider using H2. By looking on the web page

of H2, it seems that it has more features28 than its competitors,

and very good performances29. Interestingly, we did perform

a migration from HSQLDB to H2 in one of our own software

projects30 when seeing these figures, with a significant gain in

features and performances.

In contradiction to our approach, Figure 8 presents a classic

evolution of the use of the database libraries. We can observe

that MySQL interest is a bit slowing down, and that HSQLDB

stands as the leader. Using only this plot, the H2 library

would not arise as interesting since it has less users than its

competitors.

3) XML: Figure 9 shows the three migration graphs that

can be attached to the XML domain. XMLBeans31 looks like

an emerging library as it underwent a migration from within

26http://www.mysql.com/
27http://www.h2database.com/html/main.html
28http://www.h2database.com/html/features.html
29http://www.h2database.com/html/performance.html
30http://harmony.googlecode.com
31http://xmlbeans.apache.org/

2006 2007 2008 2009 2010 2011 2012

0
10

0
20

0
30

0
40

0
50

0
60

0

Time

C
lie

nt
s

mysql−connector−java
hsqldb
derby
h2

Fig. 8: Evolution of the use of the database libraries

2

10

2

5
3

xbean xmlbeans

stax

wstx-asl

sjsxpxmlParserAPIs
xml-apis

Fig. 9: Migration graph of the three XML categories

10 distinct groupIds. It seems to be the preferred target of

the users of XBeans32. By looking to their websites, we did

not understand the reason for this migration, although we

have evidence in the SVN commit logs that it is not a false

positive. xml-apis is preferred to xmlParsersAPI. By looking

in the Maven repository, we noticed that in fact it is the same

library, that was not eliminated by our text-mining techniques.

Nevertheless, xmlParsersAPI is the outdated one. Finally,

SJSXP and Woodstox33 (wstx) are two STAX-compliant XML

processors. As there are few users of SJSXP, and as some

of them are migrating to Woodstox, the later seems to be the

library of choice in for STAX compliant parsers. This intuition

is strengthened when looking at Figure 10, which shows that

wstx is the largest used STAX-compliant XML found with our

migration rules.

B. Visual Patterns

To assist the analysis of a migration graph, we propose

four visual patterns that can be quickly observed. These

patterns allow to characterize some specific migrations. First,

the Gold Rush pattern is observed when a library has many

input migrations and few output ones. This clearly means that

many projects migrate to this one. We believe this library

32http://www.xbeans.org/
33http://woodstox.codehaus.org/

2006 2007 2008 2009 2010 2011 2012

0
50

10
0

15
0

20
0

Time

C
lie

nt
s

wstx−asl
stax
sjsxp

Fig. 10: Evolution of the use of stax-compliants libraries

has certainly more advantages than the other ones. As a

consequence, the Gold Rush pattern can be used as a choice

criteria to choose the right library to migrate to. On the

contrary, we would not recommend projects that match the

target of the exodus pattern, such as commons-logging. The

Pong pattern refers to a bi-directional migration, that does not

promote a project more than an other. The Challenger denotes

a recent but promising candidate, as it has been adopted widely

in a short period of time.

Table IV briefly summarizes these patterns. For each pattern,

it explains how to observe the pattern, and provides an advice

for developers that think about migrating their libraries.

V. LIMITS AND DISCUSSION

In this section, we discuss several important insights we

gathered by performing our study.

Frequency of migrations: With regards to the data gener-

ated during the case study, we observe that library migrations

happen along software life cycle. On the other hand, this

phenomenon is not that frequent if we relate it to the total

number of projects. It supports the idea that a large set of

data is definitively necessary for a study similar to ours.

False positives: Even though we show confidence when

we claim that two libraries can be employed for the same

usage, the limited number of rules (80) classifies only a small

part of the projects contained in the MCR that can be used

as third-party libraries. However, more true rules are available

in the initial set of 925 rules E, but except using a manual

review, it seems hard to automatize a filter for them. Indeed,

we observed many times in the low-ranked rules the rare

rule syndrome: relevant rules appearing only once or twice.

Recovering these rules would probably require additional in-

formation sources such as code source or documentation anal-

ysis. Also, a post-processing could be used to refine migration

rules found using a software categorization technique, such as

MudaBlue[1]. This could potentially eliminate a significant

range of false positives.

Validation of the migration graphs: We did not perform

an empirical validation of our migration graphs with devel-

opers. For the future, we plan to propose such graphs to

developers and ask them to evaluate the usefulness of our

recommendations.

Bi-directional patterns: A migration rule classified as

Pong according to Table IV may reveal a situation where

several projects migrate back and forth between two libraries.

Currently, our approach does not correlate migration with time,

but it could provide an useful additional indicator.

Impact of time: The mining of the migration rules is

sensitive to the time. Indeed “recent” migrations necessarily

have a lower score than the ones that took place over a long

time period. Anyway it is not hard to overcome this issue by

setting a threshold on the release date of the project release

taken in consideration.

Incremental mining: It is possible to refresh the results

of our mining approach periodically. Moreover it is possible to

take advantage of the manual review of the rules to eliminate

many false positives in the subsequent analyses. Indeed, if an

expert rules exists among the candidates of a rule, it is possible

to remove them from the candidates. Also, if a manually

filtered rule is extracted, it is possible to not increment its

score.

VI. RELATED WORK

Research work related to our concern falls in the domain of

API migration and evolution.

Library categorization: Research has been done on soft-

ware project categorization to allow searching for similar soft-

ware. This problem is usually resolved by computing similarity

score based on specific attributes, such as keyword identifiers

as MudeBlue [1] does or API calls [2]. Those techniques

require either the source code or the binaries versions of

a set of libraries to compute similarity scores among them.

Regarding our concern, the main limitation of such a work is

that there is no guarantee than one library can be used instead

of another one. For example, two software that perform XML

operations could be seen as similar even if their intended usage

is not.

Large-scale API usage: Mileva et al. have observed

evolution of dependencies on 250 Apache projects along 2

years to mine usage of API versions [3]. The study shows the

usage trends of different versions of a same project. It also was

interested in cases where clients switched back to a previous

version of a library. We reused the idea of usage trends in

Section IV. While it offers valuable information, we have

shown that several interesting libraries cannot be identified

with just this piece of information.

Lämmel et al. propose a large-scale study on AST-based

API-usage over a large set of open-source projects [4] . Their

work provides an insight on how a specific API is globally

used by client projects. In particular, they categorize whether

NAME TARGET DESCRIPTION EXAMPLE

Gold Rush Library A library has many input migrations and few output ones. Developers
should consider migrating to it.

SLF4J-API

Exodus Library A library has many output migrations and few input ones. Developers
should consider to stop using it.

COMMONS-LOGGING

Challenger Library A library that is the target of a significant number of migrations
originating from the most used library. Developers should consider
migrating to it.

H2

Pong Migration Bi-directional migration rules with similar occurrences, no conclusion
can be drawn from this pattern.

(HSQLDB,DERBY)

TABLE IV: Visual patterns observed in the migration graphs

the client calls the API (library-like usage) or if it inherits from

it (framework-like usage). It may be interesting to integrate

such an information in our library migration graph as some

libraries may be better than other ones depending of client

usage.

API Wrapping: During a library migration, the API-level

challenge is to transform the code so that it becomes compliant

with the new library. This domain aims at answering the

question ”How to replace a library X with Y ?”. Bartolomei

et Al. have addressed this problem and studied the design of

API Wrappers, which are objects that adapt and delegate the

previous source code instructions towards the new API [5], [6].

The mappings are manually identified and their concern is to

design such wrapper in order to obtain a compliant version

of the new source code. Our approach is useful for such a

problem as it identifies which libraries are source and target

of migrations. It can then be used as a source of validation for

the wrapper. Our approach does not study this particular aspect

of research, but can help to identify projects that performed a

particular migration.

API Upgrade: The problem of updating a library has also

been studied in the literature. A challenge w.r.t. to library usage

is to provide relevant snippets of code source according to the

programmer’s context. We distinguish two main techniques to

that extent. The first one mines code that already performed an

update. For instance, Schafer et Al. [7] examined code instan-

tiations of two versions of a framework. This code is included

with the release as test or example code. Also, SemDiff [8] is a

client-server connected to a framework source code repository

that mines the changes and recommends modifications for a

client migration. The second variety of approach requires only

internal code of two API versions and applies origin analysis

techniques. Hence, a graph-based representation of the code

based on dependencies allows for element matchings from the

two versions. Some promising results have been achieved in

this area [9][10]. Whatever the technique, our approach can

be used as a mass source of data to get real library migrations

and to get references of real projects that do have performed

migrations. Such a mass of data can be used to validate the

proposed approaches.

Language migration: Zhong et al. proposed a Mining

API Mapping approach that detects relations from two versions

of an API written in different languages[11]. The idea is

to get client-code from the two versions and to build a

transformation graph that represents the API-usage migration

from one language to another. Zheng et al. propose a cross-

library recommendation tool based on Web queries [12]. The

idea is to inquire Web search engines and to mine results

proposed from the query. One example of query could be

”HashMap C#” when looking for the equivalent for standard

Java HashMap for C#. The results are computed one by one

and candidates are ranked by relevance, mainly according

to their frequency of appearance. For the moment this work

provides only preliminary results and queries proposed are of

a coarse grain. Also, it strongly lies on Web search engines

such as Google, and requires manual query writing, which can

highly influence the results. Regarding our approach, this work

can be used to merge equivalent libraries and then to improve

library migration graphs.

VII. CONCLUSION AND FUTURE WORK

In this paper we address the issues raised by library mi-

gration, which is a mandatory task during the life cycle of

any project that depends on open source libraries. When a

project has to replace one of the libraries it depends on, two

issues have to be addressed. First, all libraries that provide

similar facilities have to be identified. Second, the substitute

candidate that fits the project’s needs has to be chosen among

the identified libraries.

To face these two issues we propose a mining process that

is based on library dependencies and their evolutions. We

provide what we call migration graphs that show categories of

similar libraries and that exhibit how projects migrate between

them. Thanks to these graphs, one can quickly identifies which

libraries are candidates to migrate to and how many projects

have chosen them to migrate from.

As a validation, we have applied our process on the Maven

Central Repository that tracks the dependencies of a large

number of projects. We have generated migration graphs for

the different categories of libraries. For sake of place, we have

presented only graphs that correspond to the logging, database

and XML categories. Those graphs present libraries of these

technical domains and clearly show which are the preferred

libraries to migrate to. A deep analysis of these graphs show

the insights they provide for library migration in comparison

to classical measures such as usage trends.

The work presented in this paper uncovered the fact that

library migration is not a frequent phenomenon through open

source software life cycle. In our opinion, this is mainly due

to two points. First, the cost of performing the migration by

updating the project source code base. Second, the lack of

existing build automation tools to propose migration recom-

mendations. This raises the developers level of uncertainty to

assess the benefits of choosing a new library for their project.

As a further work, we first plan to apply our process on

other sources of data. In particular, we can extend our study

to the entire open source software world, similar to large-scale

repositories mining approaches proposed with SourcererDB

[?] or SeCOLD [?]. Moreover, tuning our approach the commit

granularity level of version control systems would allow to

target more precisely migration rules.

We plan to apply our study to other dependencies manage-

ment systems, to show that the proposed approach can be gen-

eralized. For instance, Ubuntu packages34 offer a convenient

way to access their list of dependencies. As packages evolve

across Ubuntu versions, we should reproduce our experiment

on such system. Such a study should lead to package migration

graphs that would show migrations of packages along Ubuntu

releases.

Finally, we plan to use our approach to assist developers

while they migrate their code to become compliant with a

new library. As our approach identifies existing projects that

already did the migration task, we plan to analyse the source

code of these projects before and after the migration in order

to detect migration patterns. Such patterns abstract refactoring

actions that must be performed to be compliant with the new

library. The goal is then to automatically apply them in new

projects that are migrating.

REFERENCES

[1] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “Mudablue:
an automatic categorization system for open source repositories,” J.

Syst. Softw., vol. 79, no. 7, pp. 939–953, Jul. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2005.06.044

[2] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and M. Grechanik,
“Categorizing software applications for maintenance,” in Proceedings of

the 2011 27th IEEE International Conference on Software Maintenance,
ser. ICSM ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 343–352. [Online]. Available: http://dx.doi.org/10.1109/ICSM.2011.
6080801

[3] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in Proceedings of the joint international and annual

ERCIM workshops on Principles of software evolution (IWPSE) and

software evolution (Evol) workshops, ser. IWPSE-Evol ’09. New York,
NY, USA: ACM, 2009, pp. 57–62.

[4] R. Lämmel, E. Pek, and J. Starek, “Large-scale, ast-based api-usage
analysis of open-source java projects,” in Proceedings of the 2011

ACM Symposium on Applied Computing, ser. SAC ’11. New
York, NY, USA: ACM, 2011, pp. 1317–1324. [Online]. Available:
http://doi.acm.org/10.1145/1982185.1982471

[5] T. Tonelli Bartolomei, K. Czarnecki, R. Lämmel, and T. van der Storm,
“Study of an api migration for two xml apis,” in 2nd International

Conference on Software Language Engineering (SLE), vol. 5969/2010,
Denver, USA, 10/2009 2009, pp. 42–61.

[6] T. Tonelli Bartolomei, K. Czarnecki, and R. Lämmel, “Swing to swt
and back: Patterns for api migration by wrapping,” in 26th IEEE

International Conference on Software Maintenance (ICSM), Timisoara,
Romania, 09/2010 2010.

34http://packages.ubuntu.com/

[7] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage
changes from instantiation code,” in Proceedings of the 30th

international conference on Software engineering, ser. ICSE ’08.
New York, NY, USA: ACM, 2008, pp. 471–480. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368153

[8] B. Dagenais and M. P. Robillard, “Recommending adaptive changes
for framework evolution,” in Proceedings of the 30th international

conference on Software engineering, ser. ICSE ’08. New York,
NY, USA: ACM, 2008, pp. 481–490. [Online]. Available: http:
//doi.acm.org/10.1145/1368088.1368154

[9] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume

1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 325–334.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806848

[10] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen,
M. Kim, and T. N. Nguyen, “A graph-based approach to api usage
adaptation,” SIGPLAN Not., vol. 45, pp. 302–321, October 2010.
[Online]. Available: http://doi.acm.org/10.1145/1932682.1869486

[11] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining
api mapping for language migration,” in Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume

1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 195–204.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806831

[12] W. Zheng, Q. Zhang, and M. Lyu, “Cross-library api recommendation
using web search engines,” in Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of

software engineering, ser. ESEC/FSE ’11. New York, NY, USA:
ACM, 2011, pp. 480–483. [Online]. Available: http://doi.acm.org/10.
1145/2025113.2025197

