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Completions and simpli
ial 
omplexes ∗Gilles BertrandUniversité Paris-Est, Laboratoire d'Informatique Gaspard-MongeESIEE Paris, Cité Des
artes, BP 9993162 Noisy-le-Grand Cedex Fran
eg.bertrand�esiee.frAbstra
tIn this paper, we �rst introdu
e the notion of a 
ompletion. Com-pletions are indu
tive properties whi
h may be expressed in a de
larativeway and whi
h may be 
ombined. In the sequel of the paper, we showthat 
ompletions may be used for des
ribing stru
tures or transformationswhi
h appear in 
ombinatorial topology. We present two 
ompletions,
〈CUP〉 and 〈CAP〉, in order to de�ne, in an axiomati
 way, a remarkable
olle
tion of a
y
li
 
omplexes. We give some basi
 properties of this 
ol-le
tion. Then, we present a theorem whi
h shows the equivalen
e betweenthis 
olle
tion and the 
olle
tion made of all 
omplexes that are a
y
li
 inthe sense of homology theory.Keywords: Completions, simpli
ial 
omplexes, 
ollapse, 
omputerimagery, homology, 
ombinatorial topology.1 Introdu
tionSeveral approa
hes have been proposed for the study of topologi
al propertiesof digital obje
ts in the 
ontext of 
omputer imagery:- The digital topology approa
h introdu
ed by A. Rosenfeld [5℄. Elements of

Z
d are linked by some adja
en
y relations. It is not obvious, in this framework,to de�ne 
ertain topologi
al notions (e.g., a homotopy).- The 
onne
ted ordered topologi
al spa
e (COTS) approa
h introdu
ed byE. Khalimsky [3℄. The smallest neighborhood of ea
h point of Zd di�ers fromone point to another. This allows to re
over the stru
ture of a topology.- The 
ellular 
omplex approa
h. An obje
t is seen as a stru
ture 
onsistingof elements of di�erent dimensions 
alled 
ells. As noti
ed by V. Kovalevsky [4℄,it is also possible, with this approa
h, to re
over the stru
ture of a topology.The underlying topology in the last two approa
hes 
orresponds to anAlexan-dro� spa
e [2℄. An Alexandro� spa
e is a topologi
al spa
e in whi
h the interse
-tion of any arbitrary family (not ne
essarily �nite) of open sets is open. Thereis a deep link between Alexandro� spa
es and preorders, i.e., binary relationsthat are re�exive and transitive. To any Alexandro� spa
e, we may asso
iate
∗This work has been partially supported by the �ANR-2010-BLAN-0205 KIDICO� proje
t.1
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)Figure 1: (a): A simpli
ial 
omplex X , (b): A 
omplex Y ⊆ X , (
): A 
omplex
Z ⊆ Y .a preorder ≤ su
h that x ≤ y if and only if y is 
ontained in all open sets that
ontain x. Conversely, a preorder determines an Alexandro� spa
e: a set O isopen for this spa
e if and only if x ∈ O and x ≤ y implies y ∈ O.A map f between two preordered sets X and Y is monotone if x ≤ y in Ximplies f(x) ≤ f(y) in Y . We have the following result.A map between two preordered sets is monotone if and only if it is a 
ontinuousmap between the 
orresponding Alexandro� spa
es. Conversely, a map betweentwo Alexandro� spa
es is 
ontinuous if and only if it is a monotone map betweenthe 
orresponding preordered sets.Thus, there is a stru
tural equivalen
e between Alexandro� spa
es and pre-orders.Let us 
onsider the (simpli
ial) obje
ts X,Y, Z depi
ted Fig. 1. The obje
t
X is made of 7 verti
es, 8 segments, and 1 triangle. A natural preorder betweenall these elements is the partial order 
orresponding to the relation of in
lusionbetween sets. Thus we have x ≤ y and z ≤ y. Let the map f between X and Ybe su
h that f is the identity on all elements of Y and f(x) = z, f(y) = z. Wenote that f is monotone, for example we have x ≤ y and f(x) ≤ f(y). Thus,
Y may be seen as a 
ontinuous retra
tion of X for the 
orresponding topology.Now, let us try to build a monotone map g between Y and Z su
h that g is theidentity on all elements of Z. We see that this is not possible. For example, ifwe take g(a) = c, g(b) = c, we have d ≤ a, but we have not g(d) ≤ g(a). We alsoobserve that it is possible to build su
h a map between Y and Y ′ = Y \{a}, butnot between Y ′ and Z. Thus, in the 
ontext of this 
onstru
tion, the 
lassi
alaxioms of topology fail to interpret Z as a 
ontinuous retra
tion of Y .In this paper, we propose a stru
tural approa
h for des
ribing 
ertain trans-formations or 
ertain 
olle
tions of obje
ts whi
h appear in 
ombinatorial topol-ogy. This approa
h is based on the notion of a 
ompletion, 
ompletions areindu
tive properties whi
h may be expressed in a de
larative way and whi
hmay be 
ombined.The paper is organized as follows. First, we introdu
e the notion of a 
omple-tion. After some basi
 de�nitions for simpli
ial 
omplexes, we give two examplesof 
ompletions. We re
all some de�nitions relative to the 
ollapse operator whi
hallows to make the two transforms illustrated Fig. 1. We present two 
omple-tions, 〈CUP〉 and 〈CAP〉, in order to de�ne a remarkable 
olle
tion of a
y
li

omplexes. We give few basi
 properties of this 
olle
tion. Then, we present atheorem whi
h shows the equivalen
e between this 
olle
tion and the 
olle
tionmade of all 
omplexes that are a
y
li
 in the sense of homology theory.Note that this paper 
orre
ts a �aw whi
h was in a preliminary version ([6℄, the
ondition for a dendrite to be simply 
onne
ted was omitted in Th. 2).2



2 CompletionsWe introdu
e the notions of a 
onstru
tor and a 
ompletion. See also Ap-pendix A for more details and for the link with �nitary 
losure operators.In the sequel, the symbol S will denote an arbitrary 
olle
tion. The symbol Kwill denote an arbitrary sub
olle
tion of S, thus we have K ⊆ S.De�nition 1 Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that
K is a 
onstru
tor (on S) if K is �nitary, whi
h means that F is �nite whenever
(F,G) ∈ K. If K is a 
onstru
tor on S, we denote by 〈K〉 the following propertywhi
h is the 
ompletion indu
ed by K:-> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉Let K be a 
onstru
tor on S and let X ⊆ S. We de�ne:

K(X) = ∪{G | there exists (F,G) ∈ K with F ⊆ X} ∪X.We set K
1(X) = K(X) and K

k(X) = K(Kk−1(X)), k ≥ 2.We also set 〈X, K〉 = ∪{Kk(X) | k ≥ 1}.Let 〈K〉 be a property whi
h depends on K. We say that a given 
olle
tion
X ⊆ S satis�es 〈K〉 if the property 〈K〉 is true for K = X.Theorem 1 Let K be a 
onstru
tor on S and let X ⊆ S. There exists, underthe subset ordering, a unique minimal 
olle
tion whi
h 
ontains X and whi
hsatis�es 〈K〉, this 
olle
tion is pre
isely 〈X, K〉.Furthermore, we have 〈X, K〉 = ∩{Y ⊆ S | X ⊆ Y and Y satis�es 〈K〉}.We say that a property 〈K〉 is a 
ompletion (property) if there exists a 
on-stru
tor K su
h that 〈K〉 = 〈K〉 whi
h means that, for ea
h K ⊆ S, 〈K〉 is trueif and only if 〈K〉 is true. If 〈K〉 is a 
ompletion and if X ⊆ S, we write 〈X,K〉for the unique minimal 
olle
tion whi
h 
ontains X and whi
h satis�es 〈K〉.Let 〈K〉 and 〈Q〉 be two 
ompletions indu
ed, respe
tively, by the 
onstru
-tors K and Q. We see that K ∪ Q is a 
onstru
tor and that 〈K〉 ∧ 〈Q〉 is theproperty indu
ed by K ∪ Q, the symbol ∧ standing for the logi
al �and�. Thus,if 〈K〉 and 〈Q〉 are 
ompletions, then 〈K〉 ∧ 〈Q〉 is a 
ompletion.In the sequel of the paper, we write 〈K,Q〉 for the 
ompletion 〈K〉 ∧ 〈Q〉.Thus, if X ⊆ S, the notation 〈X,K,Q〉 stands for the smallest 
olle
tion whi
h
ontains X and whi
h satis�es 〈K〉 ∧ 〈Q〉.Remark 1 We may build a 
ounter-example whi
h shows that, if 〈K〉 and 〈Q〉are 
ompletions, then 〈K〉 ∨ 〈Q〉 is not ne
essarily a 
ompletion, the symbol ∨standing for the logi
al �or�.A 
onstru
tor K is one-to-one if Card(F) = Card(G) = 1 whenever (F,G) ∈
K. If K is a one-to-one 
onstru
tor, we set −K= {(G,F) | (F,G) ∈ K}, the
onstru
tor −K is the inverse of K.It may be seen that, if K and Q are two one-to-one 
onstru
tors, we have 〈K〉 =
〈Q〉 if and only if 〈−K〉 = 〈−Q〉.A one-to-one 
ompletion 〈K〉 is a 
ompletion indu
ed by some one-to-one 
on-stru
tor K, we write 〈−K〉 for the 
ompletion indu
ed by −K. By the pre
edingproperty, this notation is 
onsistent sin
e it does not depend on the 
hoi
e of K.3



3 Basi
 de�nitions for simpli
ial 
omplexesA 
omplex or an hypergraph is a �nite family 
omposed of �nite sets. We denoteby H the 
olle
tion of all 
omplexes.Let X ∈ H. The simpli
ial 
losure of X is the 
omplex X− su
h that
X− = {y ⊆ x | x ∈ X}. The 
omplex X is a simpli
ial 
omplex if X = X−. Wedenote by S the 
olle
tion of all simpli
ial 
omplexes. Observe that ∅ ∈ S and
{∅} ∈ S, ∅ is the void 
omplex, and {∅} is the empty 
omplex.Let X ∈ S. An element of X is a simplex of X or a fa
e of X . A fa
et of Xis a simplex of X whi
h is maximal for in
lusion.A simpli
ial sub
omplex of X ∈ S is any subset Y of X whi
h is a simpli
ial
omplex. If Y is a sub
omplex of X , we write Y � X .A 
omplex A ∈ S is a 
ell if A = ∅ or if A has pre
isely one non-empty fa
et
x, we set A◦ = A \ {x} and ∅◦ = ∅. We write C for the 
olle
tion of all 
ells.Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number ofits elements minus one. The dimension of X , written dim(X), is the largestdimension of its simpli
es, the dimension of ∅ is de�ned to be −1.If X ⊆ S, we set:

X[d] = {X ∈ X | dim(X) = d} and X〈d〉 = {X ∈ X | dim(X) ≤ d}.The ground set of X ∈ H is the set X = ∪{x ∈ X}. Let X,Y ∈ Hsu
h that X ∩ Y = ∅. The join of X and Y is the 
omplex XY su
h that
XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and XY = X if
Y = {∅}.In this paper, if X,Y ∈ H, we impli
itly assume that X and Y have disjointground sets whenever we write XY .If X ∈ S, we say that AX is a simple 
one if A ∈ C[0], and a 
one if A ∈ C.Note that AB ∈ C whenever A ∈ C and B ∈ C.Let X ∈ S, and let A,B ∈ C[0], A 6= B. The suspension of X (by A and B)is the 
omplex AX ∪BX .The (redu
ed) Euler 
hara
teristi
 of X ∈ S is the number χ(X) su
h that
χ(X) =

∑
{(−1)dim(x) | x ∈ X} if X 6= ∅, and χ(∅) = 0. Note that χ(X) isequal to the ordinary Euler 
hara
teristi
 minus one.Let A ∈ C and X � A. The dual of X for A is the simpli
ial 
omplex,written (X ;A)∗, su
h that (X ;A)∗ = {A \ x | x ∈ A \ X}. Thus, we have

(X ;A)∗ = {x ∈ A | (A \ x) 6∈ X}. For any A ∈ C, we have the following:- If X � A, then ((X ;A)∗;A)∗ = X .- If X � A and Y � A, then (X ∪ Y ;A)∗ = (X ;A)∗ ∩ (Y ;A)∗.- If X � A and Y � A, then (X ∩ Y ;A)∗ = (X ;A)∗ ∪ (Y ;A)∗.- We have (∅;A)∗ = A and ({∅};A)∗ = A◦.In the rest of this paper, we set S = S. Thus, we will have K ⊆ S.In the next two se
tions, we give some basi
 examples of 
ompletions on S.4 Conne
tednessThe family 
omposed of all 
onne
ted simpli
ial 
omplexes may be de�ned bymeans of 
ompletions. We de�ne the one-to-one 
ompletion 〈PATH〉 as follows.-> If S ∈ K, then S ∪ C ∈ K whenever C ∈ C, and S ∩C 6= {∅}. 〈PATH〉We may easily verify that 〈PATH〉 is indeed a (one-to-one) 
ompletion. The4



property 〈PATH〉 is the 
ompletion indu
ed by the (one-to-one) 
onstru
tor:
PATH = {({S}, {S ∪ C}) | S ∈ S, C ∈ C and S ∩ C 6= {∅}}.We set Π = 〈C, PATH〉. We say that a 
omplex X ∈ S is 
onne
ted if X ∈ Π.It may be 
he
ked that this de�nition of a 
onne
ted 
omplex is equivalent tothe 
lassi
al de�nition based on paths. Now, let us de�ne the 
ompletion 〈Υ〉as follows.-> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T 6= {∅}. 〈Υ〉Again, we may easily verify that 〈Υ〉 is indeed a 
ompletion. We have thefollowing result whi
h shows that Υ provides another way to generate Π.Proposition 1 We have Π = 〈C,Υ〉A property similar to 〈Υ〉 has been introdu
ed by J. Serra and G. Matheronwho proposed, through the notion of a 
onne
tion, a new set of axioms for
onne
tedness [17℄. The main di�eren
e between a 
onne
tion and 〈C,Υ〉 is thata 
onne
tion may be seen as a �stati
 stru
ture� for modeling 
onne
tedness, onthe 
ontrary Υ is used in 〈C,Υ〉 in a �dynami
 way� for generating all elementsof Π.5 TreesA tree is 
lassi
ally de�ned as a graph whi
h is path-
onne
ted and whi
h doesnot 
ontain any 
y
le. We give here a de�nition based on the following one-to-one 
ompletion 〈TREE〉.We set V = C〈0〉 and E = C[1]. A 
omplex X , X 6= ∅, is a vertex if X ∈ V.A 
omplex X is an edge if X ∈ E.-> If S ∈ K, then S ∪ A ∈ K whenever A ∈ E and S ∩ A ∈ V. 〈TREE〉Let Tree = 〈V, TREE〉. We say that a 
omplex X ∈ S is a tree if X ∈ Tree.It may be 
he
ked that this de�nition of a tree is equivalent to the 
lassi
al one.Through this example, we observe that 
ompletions allow to de�ne a 
olle
tionin a 
onstru
tive way rather by the means of properties of this 
olle
tion.We 
an express, in a 
on
ise manner, a fundamental property of trees.Proposition 2 We have Tree = 〈Tree, −TREE〉.6 CollapseWe now present some 
ompletions related to the 
ollapse operator introdu
edby J.H.C. Whitehead [14℄. Let us re
all a 
lassi
al de�nition of 
ollapse.Let X ∈ S. We say that a fa
e x ∈ X is free for X if x is a proper fa
e ofexa
tly one fa
e y of X , su
h a pair (x, y) is said to be a free pair for X . If (x, y)is a free pair for X , we say that the 
omplex Y = X \ {x, y} is an elementary
ollapse of X or that X is an elementary expansion of Y .We de�ne the one-to-one 
ompletion 〈EXP〉:-> If S ∈ K, then S∪AB ∈ K wheneverA ∈ C[0], AB ∈ C, S∩AB = AB◦.〈EXP〉Observe that, if AB ∈ C, and if A ∈ C[0], then ne
essarilyB ∈ C or B = {∅}.If B = {∅}, B◦ is de�ned to be ∅. 5



It may be seen that, if S and S ∪ AB, with B 6= ∅, ful�ll the above 
onditions,then S is an elementary 
ollapse of S ∪ AB. Conversely, we may formulateany elementary 
ollapse by su
h an expression. Thus 〈EXP〉 is an alternativede�nition of 
ollapse.Let X � Y � A, A ∈ C, with X = Y \ {x, y} where x and y are two distin
tfa
es of Y . If y is the only fa
e of Y whi
h 
ontains x, then A \ x is the onlyfa
e of (X ;A)∗ whi
h 
ontains A \ y. Thus, we have the following result [8℄.Proposition 3 Let A ∈ C, X � A, Y � A. The 
omplex X is an elementary
ollapse of Y if and only if (Y ;A)∗ is an elementary 
ollapse of (X ;A)∗.If X,Y ∈ S, we say that Y 
ollapses onto X if Y ∈ 〈{X}, EXP〉, and Yis simple homotopi
 to X if Y ∈ 〈{X}, EXP,−EXP〉. The 
omplex X ∈ S is
ollapsible if X 
ollapses onto ∅, and X is simply 
ontra
tible if X is simplehomotopi
 to ∅.Let us 
onsider the one-to-one 
ompletion:-> If S ∈ K, then S∪A ∈ K whenever A ∈ C, and A 
ollapses onto S∩A. 〈SIM〉When A satis�es 〈SIM〉, we say that the 
ell A is simple for S. We have
〈SIM〉 = 〈EXP〉. This 
ompletion leads to a notion of simpli
ity introdu
ed inthe 
ontext of 
omputer imagery [18℄ (see also [19, 20℄) where an obje
t is oftenseen as a set of 
ells (e.g., a set of voxels in 3D) rather than a set of fa
es.Nonevasive 
omplexes [21, 22, 9℄ 
onstitute another example of a 
olle
tionwhi
h may be de�ned by means of 
ompletions.Let us 
onsider the 
ompletion 〈NEV〉:-> If S, T ∈ K, then S ∪ AT ∈ K whenever A ∈ C[0] and S ∩AT = T . 〈NEV〉A 
omplex X ∈ S is nonevasive if X ∈ 〈V, NEV〉. Nonevasive 
omplexes are
ollapsible [22℄, the 
onverse being, in general, not true.7 The Cup/Cap 
ompletionsWe introdu
e the notion of a dendrite for de�ning a remarkable 
olle
tion madeof a
y
li
 
omplexes.De�nition 2 We de�ne the two 
ompletions 〈CUP〉 and 〈CAP〉:-> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈CUP〉-> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈CAP〉We set R = 〈C,CUP〉 and D = 〈C,CUP,CAP〉.Ea
h element of R is a rami�
ation and ea
h element of D is a dendrite.Note that we have R ⊆ D ⊆ S. The Bing's house with two rooms [15℄ isa 
lassi
al example of an obje
t whi
h is 
ontra
tible but not 
ollapsible, thisobje
t is depi
ted Fig. 2 (a). Let us 
onsider the two 
omplexes Y and Z of Fig.2 (b) and (
). They are su
h thatX = Y ∪Z. If X is 
orre
tly triangulated, then
Y , Z, and Y ∩Z are rami�
ations. Thus, the Bing's house X is a rami�
ation.It may be easily seen that we have 〈{∅}, EXP〉 ⊆ 〈C,CUP〉, i.e., that any
ollapsible 
omplex is a rami�
ation. Sin
e the Bing's house is not 
ollapsible,this in
lusion is stri
t. 6



(a) (b) (
)Figure 2: (a): A Bing's house X with two rooms, (b): An obje
t Y ⊆ X , (
):An obje
t Z ⊆ X . We have X = Y ∪Z, the obje
t Y ∩Z is outlined in (b) and(
).M. Ho
hster [12℄ (see also [10℄ [11℄) introdu
ed the notion of a 
onstru
tible
omplex. This notion may be expressed using the following 
ompletion:-> If S, T ∈ K[d], then S ∪ T ∈ K whenever S ∩ T ∈ K[d− 1], d ≥ 0. 〈CONS〉A simpli
ial 
omplex is 
onstru
tible if it is an element of 〈C ∪ {{∅}},CONS〉.M. Ha
himori [11℄, [13℄ showed that the Bing's house with two rooms andthe dun
e hat [16℄ are not 
onstru
tible. Observe that we have 〈C,CONS〉 ⊆
〈C,CUP〉. Sin
e the Bing's house is a rami�
ation, the previous in
lusion isstri
t.With the notion of a buildable 
omplex, J. Jonsson [9℄ drops the 
onditionfor dimension whi
h appears in 〈CONS〉. The de�nition of a buildable 
omplex isa re
ursive de�nition of what we 
all a rami�
ation.1 It was shown [9℄ that anybuildable 
omplex is 
ontra
tible, i.e., is homotopy equivalent to a single point.As far as we know, the above de�nition for dendrites has never been proposed.8 Some basi
 propertiesIn this se
tion, we give some basi
 properties whi
h may be derived dire
tlyfrom the de�nitions of R and D using indu
tive arguments. Perhaps the simplestproperty whi
h may be proved in su
h a way is the following.Proposition 4 If X ∈ D, then χ(X) = 0.Proof. We have χ(X) = 0 for ea
h X ∈ C. Sin
e the Euler 
hara
teristi
 issu
h that χ(S∪T ) = χ(S)+χ(T )−χ(S ∩T ), the result follows by indu
tion. �Let us 
onsider the two 
ompletions:-> If S, T ∈ K, then S ∪ T ∈ K. 〈UNION〉-> If S, T ∈ K, then S ∩ T ∈ K. 〈INTER〉Let X ⊆ R. An element of 〈X,UNION〉 is, in general, not ne
essarily a rami-�
ation (nor a dendrite), but this property is true in the following 
ase.Proposition 5 Let X ⊆ R and let Y = 〈X,UNION〉. If 〈Y, INTER〉 = Y, i.e., if
Y satis�es the property 〈INTER〉, then we have Y ⊆ R.Proof. Suppose 〈Y, INTER〉 = Y. We set Yk = {X ∈ Y | Card(X) ≤ k}.i) We have Y0 = ∅ or Y0 = {∅}. In both 
ases Y0 ⊆ R.1We suggest the name �rami�
ation� rather than �buildable 
omplex� sin
e these obje
tsmay be seen as natural extensions of trees. 7



ii) Suppose Yk−1 ⊆ R, for some k ≥ 1. Let X ∈ Yk. If X ∈ X, then X ∈ R. If
X 6∈ X, then there exists S, T ∈ Y su
h that X = S ∪ T , and S 6⊆ T , T 6⊆ S.Thus Card(S) ≤ k−1, Card(T ) ≤ k−1, and Card(S∩T ) ≤ k−1. Furthermore,we have S ∩ T ∈ Y. Therefore, by the indu
tion hypothesis, S, T and S ∩ T arerami�
ations, whi
h means that X is a rami�
ation. It follows that Yk ⊆ R. �Let A ∈ C and let X = {A} ∪ {BA | B ∈ C}. Thus, X ⊆ C. Sin
e
XA∪Y A = (X∪Y )A, it may be seen that we have 〈X,UNION〉 = {XA | X ∈ S}.Furthermore, sin
e XA ∩ Y A = (X ∩ Y )A, 〈X,UNION〉 satis�es the property
〈INTER〉. Therefore, sin
e X ⊆ R, the following is a 
onsequen
e of Prop. 5.Proposition 6 Let X ∈ S and A ∈ C. Then XA is a rami�
ation.The following fa
t will be used for the proof of Prop. 8.Proposition 7 Let A,B ∈ C. Then (AB)◦ = AB◦ ∪ A◦B.Proof. The property is true if A = ∅ or B = ∅. Suppose A 6= ∅ and
B 6= ∅. In this 
ase, we have AB = A ∪ B, thus (AB)◦ = {x ⊂ A ∪ B}. Then
(AB)◦ = {y ∪ z | y ⊆ A, z ⊂ B} ∪{y ∪ z | y ⊂ A, z ⊆ B} = AB◦ ∪ A◦B. �Proposition 8 Let X ∈ S and A ∈ C, A 6= ∅. The 
omplex XA◦ is a dendriteif and only if X is a dendrite.Proof. If A ∈ C[0], we have A◦ = {∅} and XA◦ = X . Suppose the propertyis true for any A ∈ C〈i − 1〉, i ≥ 1. Let Y = XA◦, with X ∈ S and A ∈ C[i].Sin
e i ≥ 1, there exists B,C ∈ C〈i − 1〉, su
h that A = BC. By Prop. 7, wehave Y = XBC◦ ∪XB◦C. By Prop. 6, XBC◦ and XB◦C are dendrites. But
XBC◦ ∩XB◦C = XB◦C◦. By the indu
tion hypothesis, XB◦C◦ is a dendritei� XB◦ is a dendrite, and XB◦ is a dendrite i� X is a dendrite. Thus, by 〈CUP〉and 〈CAP〉, Y is a dendrite i� X is a dendrite. �We now give a property for duality whi
h will be used in the sequel throughtwo 
orollaries.Proposition 9 Let A,B ∈ C, and let X,Y ∈ S su
h that X � A, Y � B.We have (XY ;AB)∗ = A(Y ;B)∗ ∪B(X ;A)∗.Proof. We have (XY ;AB)∗ = {x ∈ AB | (AB \ x) 6∈ XY }.For any x ∈ AB, if we set y = x ∩ A and z = x ∩ B, we have x = y ∪ z and
AB \ x = (A \ y) ∪ (B \ z). Thus we have:
(XY ;AB)∗ = {y ∪ z | y ∈ A, z ∈ B, (A \ y) 6∈ X or (B \ z) 6∈ Y }
= {y ∪ z | y ∈ A, z ∈ B, (A \ y) 6∈ X} ∪ {y ∪ z | y ∈ A, z ∈ B, (B \ z) 6∈ Y }
= {y ∪ z | y ∈ (X ;A)∗, z ∈ B} ∪ {y ∪ z | y ∈ A, z ∈ (Y ;B)∗}
= B(X ;A)∗ ∪ A(Y ;B)∗. �The following 
orollary may be obtained from Prop. 9 by setting X = A. Itshows that the 
olle
tion of 
ones is 
losed by duality. More pre
isely, if we set
K = {AX | A ∈ C, X ∈ S} and K∗ = {(X ;B)∗ | X ∈ K, B ∈ C, X � B}, thenwe have K = K

∗. Note that the 
olle
tion C is not 
losed by duality (By Cor.2 below, we have (A;AB)∗ = B◦A whi
h is not a 
ell).Corollary 1 Let A,B ∈ C, and let X � B. We have (AX ;AB)∗ = A(X ;B)∗.8



The se
ond 
orollary may be obtained from Prop. 9 by setting Y = {∅}.Corollary 2 Let A,B ∈ C, and X � A. We have (X ;AB)∗ = B(X ;A)∗∪B◦A.We see that this last formula allows us to 
al
ulate the dual of an obje
t ina given spa
e (a 
ell) from the dual of this obje
t in a smaller spa
e.Proposition 10 Let A,B ∈ C, and X � A. Then (X ;AB)∗ is a dendrite ifand only if (X ;A)∗ is a dendrite.Proof. Let Y = (X ;AB)∗. By Cor. 2, we have Y = B(X ;A)∗ ∪B◦A. ByProp. 6, B(X ;A)∗ and B◦A are dendrites. Sin
e B(X ;A)∗∩B◦A = B◦(X ;A)∗,by Prop. 8, it follows that Y is a dendrite if and only if (X ;A)∗ a dendrite. �Proposition 11 Let X ∈ S, A ∈ C, with X � A. The 
omplex X is a dendriteif and only if (X ;A)∗ is a dendrite.Proof. Let X ∈ D. There exists a �nite 
olle
tion F ⊆ C su
h that X ∈
〈F,CUP,CAP〉. Let C ∈ C su
h that C 
ontains all 
ells in F. Let F ∈ F. ByCor. 2, (F ;C)∗ = D◦F , with C = DF . Thus, (F ;C)∗ is a 
one and we have
(F ;C)∗ ∈ D. Therefore, sin
e CUP and CAP are dual, by indu
tion we have
(X ;C)∗ ∈ D. The result follows from Prop. 10. �9 Contra
tible and a
y
li
 
omplexesIn this se
tion, we give some results relative to dendrites, simply 
ontra
tible,and a
y
li
 
omplexes.Proposition 12 Let X ∈ D. If Y is simple homotopi
 to X, then Y is adendrite.Proof. Let X ∈ D. The result follows by indu
tion from i) and ii).i) Suppose Y is an elementary expansion of X . Then Y = X ∪ AB, with
A ∈ C[0], AB ∈ C, X ∩ AB = AB◦. By Prop. 6, AB and AB◦ are bothdendrites. Thus, by 〈CUP〉, Y is a dendrite.ii) Suppose Y is an elementary 
ollapse of X . Let C ∈ C su
h that X � C.By Prop. 3, (Y ;C)∗ is an elementary expansion of (X ;C)∗. Furthermore, byProp. 11, (X ;C)∗ is a dendrite. By the pre
eding result, (Y ;C)∗ is a dendrite.Using again Prop. 11, it follows that Y is a dendrite. �Sin
e the void 
omplex is a dendrite, we have the following dire
t 
onse-quen
e of Prop. 12.Corollary 3 Let X ∈ S. If X is simply 
ontra
tible, then X is a dendrite.The following theorem makes 
lear the link between dendrites and 
omplexesthat are a
y
li
 in the sense of integral homology. It is a dire
t 
onsequen
e ofseveral 
lassi
al theorems of algebrai
 topology. Re
all that a a 
omplex X ∈ Sis a
y
li
 (over Z) if its redu
ed integral homology vanishes in all dimensions[23℄. Any 
ontra
tible 
omplex is a
y
li
, the 
onverse is, in general, not true.The pun
tured Poin
aré homology sphere provides an example of a 
omplexwhi
h is a
y
li
 but not simply 
ontra
tible.9



Theorem 2 A simpli
ial 
omplex is a dendrite if and only if it is a
y
li
.Proof.i) A 
omplex is a
y
li
 whenever it is a 
ell ([23℄, Th. 8.2). Suppose S and T area
y
li
 
omplexes, with S, T 6= ∅. The redu
ed Mayer-Vietoris sequen
e yieldsan exa
t sequen
e ([23℄, Th. 25.1)
H̃p(S)⊕ H̃p(T ) → H̃p(S ∪ T ) → H̃p−1(S ∩ T ) → H̃p−1(S)⊕ H̃p−1(T ).Sin
e S and T are a
y
li
, both end terms vanish. Therefore H̃p(S ∪ T ) is iso-morphi
 to H̃p−1(S ∩ T ). Thus, S ∪ T is a
y
li
 if and only if S ∩ T is a
y
li
.By indu
tion on 〈CUP〉 and 〈CAP〉, it follows that any dendrite is a
y
li
.ii) Suppose X is an a
y
li
 
omplex, X 6= ∅. Let Y = AX∪BX be a suspensionof X , thus A,B ∈ C[0], and AX ∩ BX = X . Let Y ′ = A′X ′ ∪ B′X ′ be ageometri
 realization [23℄ of AX ∪BX . The 
omplexes A′ and B′ are 
onne
tedand simply 
onne
ted, and the 
omplex X ′ is 
onne
ted. It follows that, by VanKampen theorem, Y ′ is simply 
onne
ted.By the Hurewi
z theorem ([24℄, Th. 4.32), sin
e Y ′ is a
y
li
 and simply 
on-ne
ted, all homotopy groups of Y ′ are trivial. By Whitehead's theorem ([24℄,Th. 4.5), it implies that Y ′ is homotopy equivalent to a single point, i.e., that

Y ′ is 
ontra
tible ([25℄, Cor. 8.3.11). Then, by the Whitehead's theorem onsimple homotopy ([14℄, Th. 21), the 
omplex Y is simply 
ontra
tible (see also[26℄). By Cor. 3, Y is a dendrite. By 〈CAP〉, sin
e AX , BX , and AX ∪BX aredendrites, the 
omplex X is a dendrite. �A 
omplex is a
y
li
 if and only if its suspension is 
ontra
tible. Thereforewe have the following result whi
h may be derived using the arguments of thepre
eding proof.Theorem 3 A simpli
ial 
omplex is a dendrite if and only if its suspension issimply 
ontra
tible.10 Con
lusionWe have seen that (one-to-one) 
ompletions make possible to formulate re
ur-sive transformations of obje
ts. More remarkably, 
ompletions allow us to de-�ne stru
tures on obje
ts (e.g., a 
onne
tion). We introdu
ed two 
ompletions,
〈CUP〉 and 〈CAP〉, in order to de�ne, in an axiomati
 way, a 
olle
tion of a
y
li

omplexes. We gave a theorem whi
h shows the equivalen
e between this 
olle
-tion and the 
olle
tion made of 
omplexes that are a
y
li
 in the sense of homol-ogy. In a future work, we will further investigate 
ompletions-based stru
turesfor 
ombinatorial topology.
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Appendix A: 
ompletions and 
losure operatorsIn the sequel, the symbol S denotes an arbitrary 
olle
tion.Let γ be a map from 2S to 2S, su
h a map is said to be an operator (on S).If γ is an operator on S, we set γ1 = γ and γk = γ ◦ γk−1, k ≥ 2. We de�ne
γ̂ to be the operator su
h that, for ea
h X ⊆ S, γ̂(X) = ∪{γk(X) | k ≥ 1}.Let γ be an operator on S. We say that:- γ is extensive if, for all X ⊆ S, we have X ⊆ γ(X).- γ is in
reasing if, whenever X ⊆ Y ⊆ S, we have γ(X) ⊆ γ(Y).- γ is idempotent if, for all X ⊆ S, we have γ2(X) = γ(X).The operator γ is a 
losure operator (on S) if γ is extensive, in
reasing, andidempotent. If γ is a 
losure operator, X ⊆ S is 
losed for γ if γ(X) = X.Let γ be a 
losure operator on S. We have the following result, this is abasi
 property of 
losure operators:For any X ⊆ S, we have γ(X) = ∩{Y ⊆ S | X ⊆ Y and γ(Y) = Y}.Let γ be an operator on S. We say that γ is �nitary if, for all X ⊆ S, wehave γ(X) = ∪{γ(F) | F ⊆ X and F �nite}.Alfred Tarski [7℄ introdu
ed �nitary 
losure operators (also 
alled ��nite
onsequen
e operators�) as an abstra
t theory of logi
al dedu
tions. In this
ontext, the set S represents a set of statements in some language. Given asubset X of S, the set γ(X) represents the set of all statements that may bededu
ed from X.Observe that any �nitary operator is in
reasing. Thus, an operator γ is a�nitary 
losure operator if and only if γ is extensive, �nitary, and idempotent.We say that an operator K is a Λ-operator if K is extensive and �nitary.The following �xed point theorem is essential for our purpose. See [27, 28,29, 30℄ for more general �xed point theorems.Theorem 4 Let K be a Λ-operator. Then, for any X ⊆ S, K̂(X) is a �xedpoint for K, i.e., we have K(K̂(X)) = K̂(X).Proposition 13 If K is a Λ-operator, then K̂ is a �nitary 
losure operator.Remark 2 If γ is an extensive and in
reasing operator (not ne
essarily �ni-tary), then K̂(X) is not ne
essarily a �xed point for K.Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that K isa 
onstru
tor (on S) if K is �nitary, whi
h means that F is �nite whenever
(F,G) ∈ K.Let K be a 
onstru
tor on S. We also denote by K the Λ-operator su
h that,for ea
h X ⊆ S, we have:

K(X) = ∪{G | there exists (F,G) ∈ K with F ⊆ X} ∪X.We say that the operator K is the Λ-operator indu
ed by the 
onstru
tor K.Let K be a Λ-operator on S, the 
onstru
tor indu
ed by K is the 
onstru
tor
K su
h that K = {(F, K(F)) | F is a �nite subset of S}.The following result is a dire
t 
onsequen
e of the above de�nitions. It showsthat spe
ifying a Λ-operator is (in a 
ertain sense) equivalent to spe
ifying a
onstru
tor. 11



Proposition 14 Let K be a Λ-operator, and let K be the 
onstru
tor indu
edby K. The two Λ-operators K and K are equal.Let K be a 
onstru
tor on S, and let K be the 
onstru
tor indu
ed by the Λ-operator K. The two Λ-operators K and K are equal.Let K be a 
onstru
tor. We say that K is many-to-one if Card(G) = 1whenever (F,G) ∈ K.To ea
h arbitrary 
onstru
tor K we may asso
iate a many-to-one 
onstru
tor
K, we de�ne K to be {(F, {x}) | there exists (F,G) ∈ K and x ∈ G}. We seethat the two Λ-operators K and K are equal. Thus, spe
ifying a 
onstru
tor isequivalent to spe
ifying a many-to-one 
onstru
tor.Remark 3 Let K be a binary relation over 2S and S, thus K ⊆ 2S × S. Wesay that K is �nitary if F is �nite whenever (F,x) ∈ K. It may be seen thatspe
ifying a many-to-one 
onstru
tor is equivalent to spe
ifying su
h a relation.In the sequel, the symbol K will denote an arbitrary sub
olle
tion of S, thuswe have K ⊆ S.If K is a 
onstru
tor on S, we denote by 〈K〉 the following property whi
h is the
ompletion indu
ed by K:-> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉Let 〈K〉 be a property whi
h depends on K. We say that a given 
olle
tion
X ⊆ S satis�es 〈K〉 if the property 〈K〉 is true for K = X.Thus, if K is a 
onstru
tor, a 
olle
tion X ⊆ S satis�es 〈K〉 if and only if
K(X) = X.The following propositions are dire
t 
onsequen
es of Th. 4 and Prop. 13.Prop. 15 and 16 are equivalent to Th. 1 given in se
tion 2. The 
olle
tion
〈X,K〉 of Th. 1 is equal to K̂(X).Proposition 15 Let K be a 
onstru
tor on S and let X ⊆ S. Then K̂(X) is,under the subset ordering, the unique minimal 
olle
tion whi
h 
ontains X andwhi
h satis�es 〈K〉.Let 〈K〉 be a property whi
h depends on K.If X ⊆ S, we set ∆(X,K) = ∩{Y ⊆ S | X ⊆ Y and Y satis�es 〈K〉}.Proposition 16 If K is a 
onstru
tor on S and if X ⊆ S, then K̂(X) =
∆(X,K).We say that a property 〈K〉 is a 
ompletion (property) if there exists a 
on-stru
tor K su
h that 〈K〉 = 〈K〉 whi
h means that, for ea
h K ⊆ S, 〈K〉 is trueif and only if 〈K〉 is true.Proposition 17 Let 〈K〉 be a property whi
h depends on K. The property 〈K〉is a 
ompletion if and only if, for ea
h X ⊆ S:i) ∆(X,K) satis�es 〈K〉, andii) ∆(X,K) = ∪{∆(F,K) | F ⊆ X and F �nite}.12



Referen
es[1℄ A
zel, P.: An introdu
tion to indu
tive de�nitions, Handbook of Mathemat-i
al Logi
, J. Barwise (ed.), 739-782(1977)[2℄ Alexandro�, P.: Diskrete Räume, Mat. Sbornik 2, 501�518 (1937)[3℄ Khalimsky, E.D.: On topologies of generalized segments, Soviet Math. Dok-lady 10, 1508�1511 (1969)[4℄ Kovalevsky, V. : Finite topology as applied to image analysis, Comp. VisionGraphi
s, and Im. Pro
. 46, 141�161 (1989)[5℄ Rosenfeld, A.: Digital topology, Amer. Math. Monthly, 621�630 (1979)[6℄ Bertrand, G.: Completions and simpli
ial 
omplexes, LNCS 6607, SpringerVerlag, 129�140 (2011)[7℄ Tarski, A.: Logi
, Semanti
s and Metamathemati
s, Oxford University Press(1956)[8℄ Kalai, G.: Enumeration of Q-a
y
li
 simpli
ial 
omplexes, Israel Journal ofMathemati
s, Vol. 45, No 4, 337�351 (1983)[9℄ Jonsson, J.: Simpli
ial Complexes of Graphs, Springer Verlag (2008)[10℄ Björner, A.: Topologi
al methods, Handbook of Combinatori
s, R. Gra-ham, M. Gröts
hel and L. Lovász (eds), North-Holland, Amsterdam, 1819�1872 (1995)[11℄ Ha
himori, M.: Combinatori
s of 
onstru
tible 
omplexes, PhD Thesis,Tokyo University (2000)[12℄ Ho
hster, M.: Rings of invariant of tori, Cohen-Ma
aulay rings generatedby monomials, and polytopes, Ann. Math. 96, 318�337 (1972)[13℄ Ha
himori, M.: Non
onstru
tible simpli
ial balls and a way of testing 
on-tru
tibility, Dis
rete Comp. Geom., Vol. 22, 223-230 (1999)[14℄ Whitehead, J.H.C.: Simpli
ial spa
es, nu
lei, and m-groups, Pro
. LondonMath. So
. (2), 45, 243�327 (1939)[15℄ Bing, R.H.: Some aspe
ts of the topology of 3-manifolds related to thePoin
aré Conje
ture, Le
tures on Modern Mathemati
s II, Ed. T.L. Saasty,Wiley, 93�128 (1964)[16℄ Zeeman, E.C.: On the dun
e hat, Topology Vol. 2, 341�358 (1964)[17℄ Serra, J.: Image Analysis and Mathemati
al Morphology, part II: theoret-i
al advan
es, A
ademi
 Press, London (1988)[18℄ Bertrand, G.: On 
riti
al kernels, Comptes Rendus de l'A
adémie des S
i-en
es, Série Math. I (345), 363�367, (2007)[19℄ Couprie, M., Bertrand, G.: New 
hara
terizations of simple points in 2D,3D and 4D dis
rete spa
es, IEEE Transa
tions on PAMI, 31 (4), 637�648(2009) 13



[20℄ Kong, T.Y., Rosenfeld, A.: Digital topology: introdu
tion and survey,Comp. Vision, Graphi
s and Image Pro
. 48, 357�393 (1989)[21℄ Welker, V.: Constru
tions preserving evasiveness and 
ollapsibility, Dis-
rete Math. 207, 243�255 (1999)[22℄ Kahn, J., Saks, M., Sturtevant, D.: A topologi
al approa
h to evasiveness,Combinatori
a 4, 297�306 (1984)[23℄ Munkres, J.R.: Elements of Algebrai
 Topology, Addison Wesley (1984)[24℄ Hat
her, A.H.: Algebrai
 Topology, Cambridge University Press (2001)[25℄ Maunder, C.R.F.: Algebrai
 Topology, Dover (1996)[26℄ Cohen, M.M.: A Course in Simple-Homotopy Theory, Springer-Verlag(1973)[27℄ Knaster, B.: Un théorème sur les fon
tions d'ensembles, Ann. So
. Pol.Math 6, 133-134 (1928)[28℄ Tarski, A.: A latti
e theoreti
al �xed point theorem and its appli
ations,Pa
i�
 J. Math. 5, 285-309 (1955)[29℄ Kleene, S.C.: Introdu
tion to Meta Mathemati
s, Van Nostrand, New-York(1962)[30℄ Lassez, J.-L., Nguyen, V.L., Sonenberg, E.A.: Fixed point theorems andsemanti
s: a folk tale, Information Pro
. Letters 14, 3 (1982)

14


