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Abstract

In this paper, we first introduce the notion of a completion. Com-
pletions are inductive properties which may be expressed in a declarative
way and which may be combined. In the sequel of the paper, we show
that completions may be used for describing structures or transformations
which appear in combinatorial topology. We present two completions,
(Cue) and (Car), in order to define, in an axiomatic way, a remarkable
collection of acyclic complexes. We give some basic properties of this col-
lection. Then, we present a theorem which shows the equivalence between
this collection and the collection made of all complexes that are acyclic in
the sense of homology theory.

Keywords: Completions, simplicial complexes, collapse, computer
imagery, homology, combinatorial topology.

1 Introduction

Several approaches have been proposed for the study of topological properties
of digital objects in the context of computer imagery:

- The digital topology approach introduced by A. Rosenfeld [5]. Elements of
Z% are linked by some adjacency relations. It is not obvious, in this framework,
to define certain topological notions (e.g., a homotopy).

- The connected ordered topological space (COTS) approach introduced by
E. Khalimsky [3]. The smallest neighborhood of each point of Z? differs from
one point to another. This allows to recover the structure of a topology.

- The cellular complex approach. An object is seen as a structure consisting
of elements of different dimensions called cells. As noticed by V. Kovalevsky [4],
it is also possible, with this approach, to recover the structure of a topology.

The underlying topology in the last two approaches corresponds to an Alezan-
droff space [2]. An Alexandroff space is a topological space in which the intersec-
tion of any arbitrary family (not necessarily finite) of open sets is open. There
is a deep link between Alexandroff spaces and preorders, i.e., binary relations
that are reflexive and transitive. To any Alexandroff space, we may associate

*This work has been partially supported by the “ANR-2010-BLAN-0205 KIDICO” project.
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Figure 1: (a): A simplicial complex X, (b): A complex Y C X, (c): A complex
ZCY.

a preorder < such that x < y if and only if y is contained in all open sets that
contain z. Conversely, a preorder determines an Alexandroff space: a set O is
open for this space if and only if z € O and x < y implies y € O.

A map f between two preordered sets X and Y is monotone if z < y in X
implies f(z) < f(y) in Y. We have the following result.

A map between two preordered sets is monotone if and only if it is a continuous
map between the corresponding Alexandroff spaces. Conversely, a map between
two Alexandroff spaces is continuous if and only if it is a monotone map between
the corresponding preordered sets.

Thus, there is a structural equivalence between Alexandroff spaces and pre-
orders.

Let us consider the (simplicial) objects X, Y, Z depicted Fig. 1. The object
X is made of 7 vertices, 8 segments, and 1 triangle. A natural preorder between
all these elements is the partial order corresponding to the relation of inclusion
between sets. Thus we have z < y and z < y. Let the map f between X and Y
be such that f is the identity on all elements of Y and f(z) = 2z, f(y) = z. We
note that f is monotone, for example we have x < y and f(z) < f(y). Thus,
Y may be seen as a continuous retraction of X for the corresponding topology.
Now, let, us try to build a monotone map g between Y and Z such that g is the
identity on all elements of Z. We see that this is not possible. For example, if
we take g(a) = ¢, g(b) = ¢, we have d < a, but we have not g(d) < g(a). We also
observe that it is possible to build such a map between Y and Y’ = Y\ {a}, but
not between Y’ and Z. Thus, in the context of this construction, the classical
axioms of topology fail to interpret Z as a continuous retraction of Y.

In this paper, we propose a structural approach for describing certain trans-
formations or certain collections of objects which appear in combinatorial topol-
ogy. This approach is based on the notion of a completion, completions are
inductive properties which may be expressed in a declarative way and which
may be combined.

The paper is organized as follows. First, we introduce the notion of a comple-
tion. After some basic definitions for simplicial complexes, we give two examples
of completions. We recall some definitions relative to the collapse operator which
allows to make the two transforms illustrated Fig. 1. We present two comple-
tions, (Cur) and (Car), in order to define a remarkable collection of acyclic
complexes. We give few basic properties of this collection. Then, we present a
theorem which shows the equivalence between this collection and the collection
made of all complexes that are acyclic in the sense of homology theory.

Note that this paper corrects a flaw which was in a preliminary version ([6], the
condition for a dendrite to be simply connected was omitted in Th. 2).



2 Completions

We introduce the notions of a constructor and a completion. See also Ap-
pendix A for more details and for the link with finitary closure operators.

In the sequel, the symbol S will denote an arbitrary collection. The symbol
will denote an arbitrary subcollection of S, thus we have IC C S.

Definition 1 Let K be a binary relation on 25 thus k C 25 x 28. We say that
K is a constructor (on S) if K is finitary, which means that F is finite whenever
(F,G) e K. If K is a constructor on S, we denote by (K) the following property
which is the completion induced by K:

-> IfF C K, then G C K whenever (F,G) € k. (K)

Let K be a constructor on S and let X C S. We define:
K(X) =U{G | there exists (F,G) € k with F C X} UX.
We set k}(X) = k(X) and k*(X) = k(k*1(X)), k > 2.
We also set (X, k) = U{k*(X) | k > 1}.
Let (K) be a property which depends on K. We say that a given collection
X C S satisfies (K) if the property (K) is true for £ = X.

Theorem 1 Let K be a constructor on S and let X C S. There exists, under
the subset ordering, a unique minimal collection which contains X and which
satisfies (K), this collection is precisely (X, K).

Furthermore, we have (X, K) =N{Y CS | X CY and Y satisfies (K)}.

We say that a property (K) is a completion (property) if there exists a con-
structor K such that (K) = (k) which means that, for each K C S, (K) is true
if and only if (k) is true. If (K) is a completion and if X C S, we write (X, K)
for the unique minimal collection which contains X and which satisfies (K).

Let (K) and (Q) be two completions induced, respectively, by the construc-
tors k and Q. We see that kK U Q is a constructor and that (K) A (Q) is the
property induced by K U qQ, the symbol A standing for the logical “and”. Thus,
if (K) and (Q) are completions, then (K) A (Q) is a completion.

In the sequel of the paper, we write (K, Q) for the completion (K) A (Q).
Thus, if X C S, the notation (X, K, Q) stands for the smallest collection which
contains X and which satisfies (K) A (Q).

Remark 1 We may build a counter-example which shows that, if (K) and (Q)
are completions, then (K) V (Q) is not necessarily a completion, the symbol V
standing for the logical “or”.

A counstructor K is one-to-one if Card(F) = Card(G) = 1 whenever (F,G) €
K. If K is a one-to-one constructor, we set —k= {(G,F) | (F,G) € k}, the
constructor —K is the inverse of K.
It may be seen that, if K and Q are two one-to-one constructors, we have (k) =
(qQ) if and only if (—k) = (—q).
A one-to-one completion (K) is a completion induced by some one-to-one con-
structor K, we write (—K) for the completion induced by —k. By the preceding
property, this notation is consistent since it does not depend on the choice of K.



3 Basic definitions for simplicial complexes

A complez or an hypergraph is a finite family composed of finite sets. We denote
by H the collection of all complexes.

Let X € H. The simplicial closure of X is the complex X~ such that
X~ ={yCa|xze X}. The complex X is a simplicial complex it X = X—. We
denote by S the collection of all simplicial complexes. Observe that ) € S and
{0} €S, 0 is the void complex, and {(} is the empty complex.

Let X € S. An element of X is a simplex of X or a face of X. A facet of X
is a simplex of X which is maximal for inclusion.

A simplicial subcomplex of X € S is any subset Y of X which is a simplicial
complex. If Y is a subcomplex of X, we write ¥ < X.

A complex A € Sis a cell if A= () or if A has precisely one non-empty facet
x, we set A° = A\ {z} and 0° = (). We write C for the collection of all cells.

Let X € S. The dimension of x € X, written dim(z), is the number of
its elements minus one. The dimension of X, written dim(X), is the largest
dimension of its simplices, the dimension of () is defined to be —1.

If X CS, we set:
X[d] ={X e X|dim(X) =d} and X(d) = {X € X | dim(X) < d}.

The ground set of X € H is the set X = U{x € X}. Let X, Y € H
such that X NY = (. The join of X and Y is the complex XY such that
XY ={r Uy|lzeXyeY} Thus, XY =0if Y =0 and XY = X if
Y = {0}.

In this paper, if X,Y € H, we implicitly assume that X and Y have disjoint
ground sets whenever we write XY
If X €8, we say that AX is a simple cone if A € C[0], and a cone if A € C.
Note that AB € C whenever A € C and B € C.

Let X €8, and let A, B € C[0], A # B. The suspension of X (by A and B)
is the complex AX U BX.

The (reduced) Euler characteristic of X € S is the number x(X) such that
X(X) = {(=1)®@) | 2 € X} if X # 0, and x(0) = 0. Note that y(X) is
equal to the ordinary Euler characteristic minus one.

Let A € Cand X < A. The dual of X for A is the simplicial complex,
written (X;A)*, such that (X;A4)* = {A\z |z € A\ X}. Thus, we have
(X;A)*={xeA|(A\z) € X}. For any A € C, we have the following:

-If X < A, then ((X;A)*;A)* = X.

-EX <AandY <X A, then (XUY;A)* = (X;4) N (Y;A)*.
-EX <AandY <X A, then (X NY;A)* = (X;4)*U(Y;A)".
- We have (0; A)* = A and ({0}; A)* = A°.

In the rest of this paper, we set S = S. Thus, we will have K C S.
In the next two sections, we give some basic examples of completions on S.

4 Connectedness

The family composed of all connected simplicial complexes may be defined by
means of completions. We define the one-to-one completion (PATH) as follows.

->If S e K, then SUC € K whenever C € C, and SNC # {0}. (PATH)
We may easily verify that (PATH) is indeed a (one-to-one) completion. The



property (PATH) is the completion induced by the (one-to-one) constructor:

PATH = {({S},{SUC}) | S€S,CeCand SNC # {0}}.
We set I = (C, pPATH). We say that a complex X € S is connected if X € II.

It may be checked that this definition of a connected complex is equivalent to
the classical definition based on paths. Now, let us define the completion ()
as follows.

> IfS,T € K, then SUT € K whenever SNT # {0}. (1)

Again, we may easily verify that (Y) is indeed a completion. We have the
following result which shows that Y provides another way to generate II.

Proposition 1 We have Il = (C, T)

A property similar to (T) has been introduced by J. Serra and G. Matheron
who proposed, through the notion of a connection, a new set of axioms for
connectedness [17]. The main difference between a connection and (C, T) is that
a connection may be seen as a “static structure” for modeling connectedness, on
the contrary Y is used in (C,Y) in a “dynamic way” for generating all elements
of II.

5 Trees

A tree is classically defined as a graph which is path-connected and which does
not contain any cycle. We give here a definition based on the following one-to-
one completion (TREE).

We set V = C(0) and E = C[1]. A complex X, X # 0, is a vertezif X € V.
A complex X is an edge if X € E.

->1If S € K, then SUA € K whenever Ac Eand SNAeV. (TREE)
Let Tree = (V, TREE). We say that a complex X € S is a tree if X € Tree.

It may be checked that this definition of a tree is equivalent to the classical one.
Through this example, we observe that completions allow to define a collection
in a constructive way rather by the means of properties of this collection.

We can express, in a concise manner, a fundamental property of trees.

Proposition 2 We have Tree = (Tree, —TREE).

6 Collapse

We now present some completions related to the collapse operator introduced
by J.H.C. Whitehead [14]. Let us recall a classical definition of collapse.

Let X € S. We say that a face z € X is free for X if x is a proper face of
exactly one face y of X, such a pair (z,y) is said to be a free pair for X. If (x,y)
is a free pair for X, we say that the complex Y = X \ {z,y} is an elementary
collapse of X or that X is an elementary expansion of Y.

We define the one-to-one completion (EXP):

->1If S € K, then SUAB € K whenever A € C[0], AB € C, SNAB = AB°.(ExP)
Observe that, if AB € C, and if A € C[0], then necessarily B € Cor B = {0}.
If B={0}, B° is defined to be §.



It may be seen that, if S and S U AB, with B # 0, fulfill the above conditions,
then S is an elementary collapse of S U AB. Conversely, we may formulate
any elementary collapse by such an expression. Thus (EXP) is an alternative
definition of collapse.

Let X <Y <A, A€ C, with X =Y \ {z,y} where z and y are two distinct
faces of Y. If y is the only face of Y which contains z, then A\ z is the only
face of (X; A)* which contains A\ y. Thus, we have the following result [§].

Proposition 3 Let A€ C, X < A, Y < A. The complex X is an elementary
collapse of Y if and only if (Y; A)* is an elementary collapse of (X; A)*.

If XY €8S, we say that Y collapses onto X if Y € ({X}, ExpP), and YV
is simple homotopic to X if Y € ({X}, exp, —ExP). The complex X € S is
collapsible if X collapses onto (), and X is simply contractible if X is simple
homotopic to (.

Let us consider the one-to-one completion:

->1If S € K, then SUA € K whenever A € C, and A collapses onto SNA. (sim)

When A satisfies (sim), we say that the cell A is simple for S. We have
(stm) = (ExP). This completion leads to a notion of simplicity introduced in
the context of computer imagery [18] (see also [19, 20]) where an object is often
seen as a set of cells (e.g., a set of vozels in 3D) rather than a set of faces.

Nonevasive complexes [21, 22, 9] constitute another example of a collection
which may be defined by means of completions.

Let us consider the completion (NEV):

->If S,T € K, then SU AT € K whenever A € C[0] and SN AT =T. (NEV)

A complex X € S is nonevasive if X € (V, NEV). Nonevasive complexes are
collapsible [22], the converse being, in general, not true.

7 The Cup/Cap completions

We introduce the notion of a dendrite for defining a remarkable collection made
of acyclic complexes.

Definition 2 We define the two completions (Cur) and (Car):

> IfS, TekK, then SUT € K whenever SNT € K. (Cur)
> IfS, TeK, then SNT € K whenever SUT € K. (Car)
We set R = <(C, CUP> and D = <(C, CUP7 CAP>.

Each element of R is a ramification and each element of D is a dendrite.

Note that we have R C D C S. The Bing’s house with two rooms [15] is
a classical example of an object which is contractible but not collapsible, this
object is depicted Fig. 2 (a). Let us consider the two complexes Y and Z of Fig.
2 (b) and (c). They are such that X = YUZ. If X is correctly triangulated, then
Y, Z, and Y N Z are ramifications. Thus, the Bing’s house X is a ramification.

It may be easily seen that we have ({0}, exp) C (C, Cur), i.e., that any
collapsible complex is a ramification. Since the Bing’s house is not collapsible,
this inclusion is strict.



(a) (b) (c)

Figure 2: (a): A Bing’s house X with two rooms, (b): An object Y C X, (c):
An object Z C X. We have X = Y U Z, the object Y N Z is outlined in (b) and

(c)-

M. Hochster [12] (see also [10] [11]) introduced the notion of a constructible
complex. This notion may be expressed using the following completion:

->1If S, T € K[d], then SUT € K whenever SNT € K[d —1],d > 0. (Cons)

A simplicial complex is constructible if it is an element of (C U {{0}}, Cons).

M. Hachimori [11], [13] showed that the Bing’s house with two rooms and
the dunce hat [16] are not constructible. Observe that we have (C, Cons) C
(C, Cup). Since the Bing’s house is a ramification, the previous inclusion is
strict.

With the notion of a buildable complex, J. Jonsson [9] drops the condition
for dimension which appears in (Cons). The definition of a buildable complex is
a recursive definition of what we call a ramification.’ It was shown [9] that any
buildable complex is contractible, i.e., is homotopy equivalent to a single point.
As far as we know, the above definition for dendrites has never been proposed.

8 Some basic properties

In this section, we give some basic properties which may be derived directly
from the definitions of R and D using inductive arguments. Perhaps the simplest
property which may be proved in such a way is the following.

Proposition 4 If X € D, then x(X) =0.
Proof. We have x(X) = 0 for each X € C. Since the Euler characteristic is
such that x(SUT) = x(S)+ x(T) —x(SNT), the result follows by induction. O
Let us consider the two completions:
> It STek, then SUT € K. <UNION>

> IS, T ek, then SNT € K. <INTER>

Let X C R. An element of (X, Union) is, in general, not necessarily a rami-
fication (nor a dendrite), but this property is true in the following case.

Proposition 5 Let X C R and let Y = (X, Union). If (Y, Inter) =Y, i.e., if
Y satisfies the property (Inver), then we have Y C R.

Proof. Suppose (Y, Inter) = Y. We set Y¥ = {X € Y | Card(X) < k}.
i) We have Y° = () or YV = {()}. In both cases Y° C R.

L1We suggest the name “ramification” rather than “buildable complex” since these objects
may be seen as natural extensions of trees.



ii) Suppose Y*=! C R, for some k > 1. Let X € Y*. If X € X, then X € R. If
X ¢ X, then there exists S,7 € Y such that X = SUT,and ST, T £ S.
Thus Card(S) < k—1, Card(T) < k—1, and Card(SNT) < k—1. Furthermore,
we have SNT € Y. Therefore, by the induction hypothesis, S,T and SNT are
ramifications, which means that X is a ramification. It follows that Y* C R. O

Let A € C and let X = {A} U{BA | B € C}. Thus, X C C. Since
XAUY A = (XUY)A, it may be seen that we have (X, Union) = {XA | X € S}.
Furthermore, since XANYA = (X NY)A, (X, Union) satisfies the property
(Inter). Therefore, since X C R, the following is a consequence of Prop. 5.

Proposition 6 Let X € S and A € C. Then X A is a ramification.
The following fact will be used for the proof of Prop. 8.
Proposition 7 Let A,B € C. Then (AB)° = AB° U A°B.

Proof. The property is true if A = () or B = (). Suppose A # ) and
B # (). In this case, we have AB = AU B, thus (AB)° = {x C AU B}. Then
(AB)° ={yUz|yCAzCc B} U{yUz|yCAz2C B} =AB°UA°B. O

Proposition 8 Let X € S and A€ C, A# 0. The complex X A° is a dendrite
if and only if X is a dendrite.

Proof. If A € C[0], we have A° = {0} and X A° = X. Suppose the property
is true for any A € C(i — 1), > 1. Let Y = X A°, with X € S and A € C[7].
Since ¢ > 1, there exists B,C € C(i — 1), such that A = BC. By Prop. 7, we
have Y = XBC° U XB°C. By Prop. 6, XBC®° and X B°C' are dendrites. But
XBC°NXB°C = XB°C°. By the induction hypothesis, X B°C*® is a dendrite
iff X B° is a dendrite, and X B® is a dendrite iff X is a dendrite. Thus, by (Cur)
and (Car), Y is a dendrite iff X is a dendrite. O

We now give a property for duality which will be used in the sequel through
two corollaries.

Proposition 9 Let A,B € C, and let X,Y €S such that X <A, Y < B.
We have (XY; AB)* = A(Y; B)* U B(X; A)*.

Proof. We have (XY;AB)* ={x € AB | (AB\z) ¢ XY}.
For any x € AB, if weset y = 2N A and z = N B, we have x = y U z and
AB\z=(A\y)U(B\ z). Thus we have:
(XY;AB)* ={yUz|ye A zeB,(A\y) ¢ X or (B\2) €Y}
={yuzlyeAdzeB (A\y) ¢ X}U{yUz|ye A ze B (B\2)¢Y}
={yUzlye (X;A)",z€ BjU{yUz|ye A ze (Y;B)*}
= B(X; A UA(Y; B)*. O

The following corollary may be obtained from Prop. 9 by setting X = A. It
shows that the collection of cones is closed by duality. More precisely, if we set
K={AX |AeC, X eS}and K*={(X;B)"| X €K,B € C, X < B}, then
we have K = K*. Note that the collection C is not closed by duality (By Cor.
2 below, we have (A; AB)* = B°A which is not a cell).

Corollary 1 Let A,B € C, and let X < B. We have (AX; AB)* = A(X; B)*.



The second corollary may be obtained from Prop. 9 by setting Y = {(}.
Corollary 2 Let A,B € C, and X < A. We have (X; AB)* = B(X; A)*UB°A.

We see that this last formula allows us to calculate the dual of an object in
a given space (a cell) from the dual of this object in a smaller space.

Proposition 10 Let A,B € C, and X < A. Then (X; AB)* is a dendrite if
and only if (X; A)* is a dendrite.

Proof. Let Y = (X; AB)*. By Cor. 2, we have Y = B(X; A)* UB°A. By
Prop. 6, B(X; A)* and B°A are dendrites. Since B(X; A)*NB°A = B°(X; A)*,
by Prop. 8, it follows that Y is a dendrite if and only if (X; A)* a dendrite. O

Proposition 11 Let X € S, A € C, with X < A. The complex X is a dendrite
if and only if (X; A)* is a dendrite.

Proof. Let X € D. There exists a finite collection F C C such that X €
(F, Cup, Car). Let C € C such that C contains all cells in F. Let F € F. By
Cor. 2, (F;C)* = D°F, with C = DF. Thus, (F;C)* is a cone and we have
(F;C)* € D. Therefore, since Cur and Car are dual, by induction we have
(X;C)* € D. The result follows from Prop. 10. O

9 Contractible and acyclic complexes

In this section, we give some results relative to dendrites, simply contractible,
and acyclic complexes.

Proposition 12 Let X € D. IfY is simple homotopic to X, then Y is a
dendrite.

Proof. Let X € D. The result follows by induction from i) and ii).

i) Suppose Y is an elementary expansion of X. Then ¥ = X U AB, with
A € C[0], AB € C, XN AB = AB°. By Prop. 6, AB and AB° are both
dendrites. Thus, by (Cue), Y is a dendrite.

ii) Suppose Y is an elementary collapse of X. Let C' € C such that X < C.
By Prop. 3, (Y;C)* is an elementary expansion of (X;C)*. Furthermore, by
Prop. 11, (X;C)* is a dendrite. By the preceding result, (Y;C)* is a dendrite.
Using again Prop. 11, it follows that Y is a dendrite. [J

Since the void complex is a dendrite, we have the following direct conse-
quence of Prop. 12.

Corollary 3 Let X € S. If X is simply contractible, then X is a dendrite.

The following theorem makes clear the link between dendrites and complexes
that are acyclic in the sense of integral homology. It is a direct consequence of
several classical theorems of algebraic topology. Recall that a a complex X € S
is acyclic (over Z) if its reduced integral homology vanishes in all dimensions
[23]. Any contractible complex is acyclic, the converse is, in general, not true.
The punctured Poincaré homology sphere provides an example of a complex
which is acyclic but not simply contractible.



Theorem 2 A simplicial complex is a dendrite if and only if it is acyclic.

Proof.
i) A complex is acyclic whenever it is a cell ([23], Th. 8.2). Suppose S and T are
acyclic complexes, with S, T # (). The reduced Mayer-Vietoris sequence yields
an exact sequence ([23], Th. 25.1) } }

H,(S)® Hy(T) » Hy(SUT) - Hpy1(SNT) = Hy_1(S) ® Hyp—1(T).
Since S and T are acyclic, both end terms vanish. Therefore H,(S U T) is iso-
morphic to ﬁp_l(s NT). Thus, SUT is acyclic if and only if SN T is acyclic.
By induction on (Cur) and (Car), it follows that any dendrite is acyclic.

ii) Suppose X is an acyclic complex, X # (). Let Y = AX UBX be a suspension
of X, thus A,B € C[0], and AXNBX = X. Let Y/ = A/X'UBX’ be a
geometric realization [23] of AX UBX. The complexes A" and B’ are connected
and simply connected, and the complex X’ is connected. It follows that, by Van
Kampen theorem, Y’ is simply connected.

By the Hurewicz theorem (|24], Th. 4.32), since Y” is acyclic and simply con-
nected, all homotopy groups of Y’ are trivial. By Whitehead’s theorem ([24],
Th. 4.5), it implies that Y’ is homotopy equivalent to a single point, i.e., that
Y’ is contractible ([25], Cor. 8.3.11). Then, by the Whitehead’s theorem on
simple homotopy ([14], Th. 21), the complex Y is simply contractible (see also
[26]). By Cor. 3,Y is a dendrite. By (Car), since AX, BX, and AX UBX are
dendrites, the complex X is a dendrite. [J

A complex is acyclic if and only if its suspension is contractible. Therefore
we have the following result which may be derived using the arguments of the
preceding proof.

Theorem 3 A simplicial complex is a dendrite if and only if its suspension is
simply contractible.

10 Conclusion

We have seen that (one-to-one) completions make possible to formulate recur-
sive transformations of objects. More remarkably, completions allow us to de-
fine structures on objects (e.g., a connection). We introduced two completions,
(Cur) and (Car), in order to define, in an axiomatic way, a collection of acyclic
complexes. We gave a theorem which shows the equivalence between this collec-
tion and the collection made of complexes that are acyclic in the sense of homol-
ogy. In a future work, we will further investigate completions-based structures
for combinatorial topology.
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Appendix A: completions and closure operators

In the sequel, the symbol S denotes an arbitrary collection.
Let v be a map from 25 to 25, such a map is said to be an operator (on S).
If v is an operator on S, we set ! = v and v¥ = yo~y*~1, k > 2. We define
4 to be the operator such that, for each X C S, 7(X) = U{y*(X) | k > 1}.
Let v be an operator on S. We say that:
- v is extensive if, for all X C S, we have X C v(X).
- 7 is increasing if, whenever X CY C S, we have 7(X) C v(Y).
- v is idempotent if, for all X C S, we have 72(X) = ~(X).
The operator v is a closure operator (on S) if -y is extensive, increasing, and
idempotent. If v is a closure operator, X C S is closed for v if v(X) = X.

Let v be a closure operator on S. We have the following result, this is a
basic property of closure operators:
For any X C S, we have y(X) =n{Y CS | X CY and v(Y) =Y}.
Let v be an operator on S. We say that v is finitary if, for all X C S, we
have 7(X) = U{y(F) | F C X and F finite}.

Alfred Tarski [7] introduced finitary closure operators (also called “finite
consequence operators”) as an abstract theory of logical deductions. In this
context, the set S represents a set of statements in some language. Given a
subset X of S, the set v(X) represents the set of all statements that may be
deduced from X.

Observe that any finitary operator is increasing. Thus, an operator v is a
finitary closure operator if and only if ~ is extensive, finitary, and idempotent.

We say that an operator K is a A-operator if K is extensive and finitary.

The following fixed point theorem is essential for our purpose. See [27, 28,
29, 30] for more general fixed point theorems.

Theorem 4 Let K be a A-operator. Then, for any X C S, K(X) is a fixed
point for K, i.e., we have K(K(X)) = K(X).

Proposition 13 If K is a A-operator, then K is a finitary closure operator.

Remark 2 If v is an extensive and increasing operator (not necessarily fini-
tary), then K(X) is not necessarily a fized point for K.

Let kK be a binary relation on 25, thus k C 25 x 25. We say that x is
a constructor (on S) if K is finitary, which means that F is finite whenever
(F,G) e k.
Let K be a constructor on S. We also denote by K the A-operator such that,
for each X C S, we have:
K(X) = U{G | there exists (F,G) € k with F C X} U X.
We say that the operator K is the A-operator induced by the constructor K.

Let x be a A-operator on S, the constructor induced by K is the constructor
K such that Kk = {(F, x(F)) | F is a finite subset of S}.

The following result is a direct consequence of the above definitions. It shows
that specifying a A-operator is (in a certain sense) equivalent to specifying a
constructor.

11



Proposition 14 Let K be a A-operator, and let K be the constructor induced
by . The two A-operators K and K are equal.

Let X be a constructor on S, and let K be the constructor induced by the A-
operator K. The two A-operators K and K are equal.

Let ¥ be a constructor. We say that K is many-to-one if Card(G) = 1
whenever (F,G) € k.

To each arbitrary constructor K we may associate a many-to-one constructor
K, we define k to be {(F,{x}) | there exists (F,G) € xk and z € G}. We see
that the two A-operators k and K are equal. Thus, specifying a constructor is
equivalent to specifying a many-to-one constructor.

Remark 3 Let K be a binary relation over 25 and S, thus k C 25 x S. We
say that K is finitary if F is finite whenever (F,x) € K. It may be seen that
specifying a many-to-one constructor is equivalent to specifying such a relation.

In the sequel, the symbol K will denote an arbitrary subcollection of S, thus
we have K C S.

If K is a constructor on S, we denote by (k) the following property which is the
completion induced by K:

->If F C K, then G C K whenever (F,G) € k. ()

Let (K) be a property which depends on . We say that a given collection
X C S satisfies (K) if the property (K) is true for £ = X.

Thus, if K is a constructor, a collection X C S satisfies (k) if and only if
K(X) =X.

The following propositions are direct consequences of Th. 4 and Prop. 13.
Prop. 15 and 16 are equivalent to Th. 1 given in section 2. The collection
(X, K) of Th. 1 is equal to K(X).

Proposition 15 Let K be a constructor on S and let X C S. Then K(X) is,
under the subset ordering, the unique minimal collection which contains X and
which satisfies (K).

Let (K) be a property which depends on K.
EXCS, weset AX,K)=n{Y CS|XCY and Y satisfies (K)}.

Proposition 16 If K is a constructor on S and if X C S, then K(X) =
A(X,K).

We say that a property (K) is a completion (property) if there exists a con-
structor K such that (K) = (k) which means that, for each K C S, (K) is true
if and only if (k) is true.

Proposition 17 Let (K) be a property which depends on K. The property (K)
is a completion if and only if, for each X C S:

i) A(X,K) satisfies (K), and

it) A(X,K) = U{AF,K) | F C X and F finite}.

12
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