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Completions and simpliial omplexes ∗Gilles BertrandUniversité Paris-Est, Laboratoire d'Informatique Gaspard-MongeESIEE Paris, Cité Desartes, BP 9993162 Noisy-le-Grand Cedex Franeg.bertrand�esiee.frAbstratIn this paper, we �rst introdue the notion of a ompletion. Com-pletions are indutive properties whih may be expressed in a delarativeway and whih may be ombined. In the sequel of the paper, we showthat ompletions may be used for desribing strutures or transformationswhih appear in ombinatorial topology. We present two ompletions,
〈CUP〉 and 〈CAP〉, in order to de�ne, in an axiomati way, a remarkableolletion of ayli omplexes. We give some basi properties of this ol-letion. Then, we present a theorem whih shows the equivalene betweenthis olletion and the olletion made of all omplexes that are ayli inthe sense of homology theory.Keywords: Completions, simpliial omplexes, ollapse, omputerimagery, homology, ombinatorial topology.1 IntrodutionSeveral approahes have been proposed for the study of topologial propertiesof digital objets in the ontext of omputer imagery:- The digital topology approah introdued by A. Rosenfeld [5℄. Elements of

Z
d are linked by some adjaeny relations. It is not obvious, in this framework,to de�ne ertain topologial notions (e.g., a homotopy).- The onneted ordered topologial spae (COTS) approah introdued byE. Khalimsky [3℄. The smallest neighborhood of eah point of Zd di�ers fromone point to another. This allows to reover the struture of a topology.- The ellular omplex approah. An objet is seen as a struture onsistingof elements of di�erent dimensions alled ells. As notied by V. Kovalevsky [4℄,it is also possible, with this approah, to reover the struture of a topology.The underlying topology in the last two approahes orresponds to anAlexan-dro� spae [2℄. An Alexandro� spae is a topologial spae in whih the interse-tion of any arbitrary family (not neessarily �nite) of open sets is open. Thereis a deep link between Alexandro� spaes and preorders, i.e., binary relationsthat are re�exive and transitive. To any Alexandro� spae, we may assoiate
∗This work has been partially supported by the �ANR-2010-BLAN-0205 KIDICO� projet.1
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b(a) (b) ()Figure 1: (a): A simpliial omplex X , (b): A omplex Y ⊆ X , (): A omplex
Z ⊆ Y .a preorder ≤ suh that x ≤ y if and only if y is ontained in all open sets thatontain x. Conversely, a preorder determines an Alexandro� spae: a set O isopen for this spae if and only if x ∈ O and x ≤ y implies y ∈ O.A map f between two preordered sets X and Y is monotone if x ≤ y in Ximplies f(x) ≤ f(y) in Y . We have the following result.A map between two preordered sets is monotone if and only if it is a ontinuousmap between the orresponding Alexandro� spaes. Conversely, a map betweentwo Alexandro� spaes is ontinuous if and only if it is a monotone map betweenthe orresponding preordered sets.Thus, there is a strutural equivalene between Alexandro� spaes and pre-orders.Let us onsider the (simpliial) objets X,Y, Z depited Fig. 1. The objet
X is made of 7 verties, 8 segments, and 1 triangle. A natural preorder betweenall these elements is the partial order orresponding to the relation of inlusionbetween sets. Thus we have x ≤ y and z ≤ y. Let the map f between X and Ybe suh that f is the identity on all elements of Y and f(x) = z, f(y) = z. Wenote that f is monotone, for example we have x ≤ y and f(x) ≤ f(y). Thus,
Y may be seen as a ontinuous retration of X for the orresponding topology.Now, let us try to build a monotone map g between Y and Z suh that g is theidentity on all elements of Z. We see that this is not possible. For example, ifwe take g(a) = c, g(b) = c, we have d ≤ a, but we have not g(d) ≤ g(a). We alsoobserve that it is possible to build suh a map between Y and Y ′ = Y \{a}, butnot between Y ′ and Z. Thus, in the ontext of this onstrution, the lassialaxioms of topology fail to interpret Z as a ontinuous retration of Y .In this paper, we propose a strutural approah for desribing ertain trans-formations or ertain olletions of objets whih appear in ombinatorial topol-ogy. This approah is based on the notion of a ompletion, ompletions areindutive properties whih may be expressed in a delarative way and whihmay be ombined.The paper is organized as follows. First, we introdue the notion of a omple-tion. After some basi de�nitions for simpliial omplexes, we give two examplesof ompletions. We reall some de�nitions relative to the ollapse operator whihallows to make the two transforms illustrated Fig. 1. We present two omple-tions, 〈CUP〉 and 〈CAP〉, in order to de�ne a remarkable olletion of ayliomplexes. We give few basi properties of this olletion. Then, we present atheorem whih shows the equivalene between this olletion and the olletionmade of all omplexes that are ayli in the sense of homology theory.Note that this paper orrets a �aw whih was in a preliminary version ([6℄, theondition for a dendrite to be simply onneted was omitted in Th. 2).2



2 CompletionsWe introdue the notions of a onstrutor and a ompletion. See also Ap-pendix A for more details and for the link with �nitary losure operators.In the sequel, the symbol S will denote an arbitrary olletion. The symbol Kwill denote an arbitrary subolletion of S, thus we have K ⊆ S.De�nition 1 Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that
K is a onstrutor (on S) if K is �nitary, whih means that F is �nite whenever
(F,G) ∈ K. If K is a onstrutor on S, we denote by 〈K〉 the following propertywhih is the ompletion indued by K:-> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉Let K be a onstrutor on S and let X ⊆ S. We de�ne:

K(X) = ∪{G | there exists (F,G) ∈ K with F ⊆ X} ∪X.We set K
1(X) = K(X) and K

k(X) = K(Kk−1(X)), k ≥ 2.We also set 〈X, K〉 = ∪{Kk(X) | k ≥ 1}.Let 〈K〉 be a property whih depends on K. We say that a given olletion
X ⊆ S satis�es 〈K〉 if the property 〈K〉 is true for K = X.Theorem 1 Let K be a onstrutor on S and let X ⊆ S. There exists, underthe subset ordering, a unique minimal olletion whih ontains X and whihsatis�es 〈K〉, this olletion is preisely 〈X, K〉.Furthermore, we have 〈X, K〉 = ∩{Y ⊆ S | X ⊆ Y and Y satis�es 〈K〉}.We say that a property 〈K〉 is a ompletion (property) if there exists a on-strutor K suh that 〈K〉 = 〈K〉 whih means that, for eah K ⊆ S, 〈K〉 is trueif and only if 〈K〉 is true. If 〈K〉 is a ompletion and if X ⊆ S, we write 〈X,K〉for the unique minimal olletion whih ontains X and whih satis�es 〈K〉.Let 〈K〉 and 〈Q〉 be two ompletions indued, respetively, by the onstru-tors K and Q. We see that K ∪ Q is a onstrutor and that 〈K〉 ∧ 〈Q〉 is theproperty indued by K ∪ Q, the symbol ∧ standing for the logial �and�. Thus,if 〈K〉 and 〈Q〉 are ompletions, then 〈K〉 ∧ 〈Q〉 is a ompletion.In the sequel of the paper, we write 〈K,Q〉 for the ompletion 〈K〉 ∧ 〈Q〉.Thus, if X ⊆ S, the notation 〈X,K,Q〉 stands for the smallest olletion whihontains X and whih satis�es 〈K〉 ∧ 〈Q〉.Remark 1 We may build a ounter-example whih shows that, if 〈K〉 and 〈Q〉are ompletions, then 〈K〉 ∨ 〈Q〉 is not neessarily a ompletion, the symbol ∨standing for the logial �or�.A onstrutor K is one-to-one if Card(F) = Card(G) = 1 whenever (F,G) ∈
K. If K is a one-to-one onstrutor, we set −K= {(G,F) | (F,G) ∈ K}, theonstrutor −K is the inverse of K.It may be seen that, if K and Q are two one-to-one onstrutors, we have 〈K〉 =
〈Q〉 if and only if 〈−K〉 = 〈−Q〉.A one-to-one ompletion 〈K〉 is a ompletion indued by some one-to-one on-strutor K, we write 〈−K〉 for the ompletion indued by −K. By the preedingproperty, this notation is onsistent sine it does not depend on the hoie of K.3



3 Basi de�nitions for simpliial omplexesA omplex or an hypergraph is a �nite family omposed of �nite sets. We denoteby H the olletion of all omplexes.Let X ∈ H. The simpliial losure of X is the omplex X− suh that
X− = {y ⊆ x | x ∈ X}. The omplex X is a simpliial omplex if X = X−. Wedenote by S the olletion of all simpliial omplexes. Observe that ∅ ∈ S and
{∅} ∈ S, ∅ is the void omplex, and {∅} is the empty omplex.Let X ∈ S. An element of X is a simplex of X or a fae of X . A faet of Xis a simplex of X whih is maximal for inlusion.A simpliial subomplex of X ∈ S is any subset Y of X whih is a simpliialomplex. If Y is a subomplex of X , we write Y � X .A omplex A ∈ S is a ell if A = ∅ or if A has preisely one non-empty faet
x, we set A◦ = A \ {x} and ∅◦ = ∅. We write C for the olletion of all ells.Let X ∈ S. The dimension of x ∈ X , written dim(x), is the number ofits elements minus one. The dimension of X , written dim(X), is the largestdimension of its simplies, the dimension of ∅ is de�ned to be −1.If X ⊆ S, we set:

X[d] = {X ∈ X | dim(X) = d} and X〈d〉 = {X ∈ X | dim(X) ≤ d}.The ground set of X ∈ H is the set X = ∪{x ∈ X}. Let X,Y ∈ Hsuh that X ∩ Y = ∅. The join of X and Y is the omplex XY suh that
XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus, XY = ∅ if Y = ∅ and XY = X if
Y = {∅}.In this paper, if X,Y ∈ H, we impliitly assume that X and Y have disjointground sets whenever we write XY .If X ∈ S, we say that AX is a simple one if A ∈ C[0], and a one if A ∈ C.Note that AB ∈ C whenever A ∈ C and B ∈ C.Let X ∈ S, and let A,B ∈ C[0], A 6= B. The suspension of X (by A and B)is the omplex AX ∪BX .The (redued) Euler harateristi of X ∈ S is the number χ(X) suh that
χ(X) =

∑
{(−1)dim(x) | x ∈ X} if X 6= ∅, and χ(∅) = 0. Note that χ(X) isequal to the ordinary Euler harateristi minus one.Let A ∈ C and X � A. The dual of X for A is the simpliial omplex,written (X ;A)∗, suh that (X ;A)∗ = {A \ x | x ∈ A \ X}. Thus, we have

(X ;A)∗ = {x ∈ A | (A \ x) 6∈ X}. For any A ∈ C, we have the following:- If X � A, then ((X ;A)∗;A)∗ = X .- If X � A and Y � A, then (X ∪ Y ;A)∗ = (X ;A)∗ ∩ (Y ;A)∗.- If X � A and Y � A, then (X ∩ Y ;A)∗ = (X ;A)∗ ∪ (Y ;A)∗.- We have (∅;A)∗ = A and ({∅};A)∗ = A◦.In the rest of this paper, we set S = S. Thus, we will have K ⊆ S.In the next two setions, we give some basi examples of ompletions on S.4 ConnetednessThe family omposed of all onneted simpliial omplexes may be de�ned bymeans of ompletions. We de�ne the one-to-one ompletion 〈PATH〉 as follows.-> If S ∈ K, then S ∪ C ∈ K whenever C ∈ C, and S ∩C 6= {∅}. 〈PATH〉We may easily verify that 〈PATH〉 is indeed a (one-to-one) ompletion. The4



property 〈PATH〉 is the ompletion indued by the (one-to-one) onstrutor:
PATH = {({S}, {S ∪ C}) | S ∈ S, C ∈ C and S ∩ C 6= {∅}}.We set Π = 〈C, PATH〉. We say that a omplex X ∈ S is onneted if X ∈ Π.It may be heked that this de�nition of a onneted omplex is equivalent tothe lassial de�nition based on paths. Now, let us de�ne the ompletion 〈Υ〉as follows.-> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T 6= {∅}. 〈Υ〉Again, we may easily verify that 〈Υ〉 is indeed a ompletion. We have thefollowing result whih shows that Υ provides another way to generate Π.Proposition 1 We have Π = 〈C,Υ〉A property similar to 〈Υ〉 has been introdued by J. Serra and G. Matheronwho proposed, through the notion of a onnetion, a new set of axioms foronnetedness [17℄. The main di�erene between a onnetion and 〈C,Υ〉 is thata onnetion may be seen as a �stati struture� for modeling onnetedness, onthe ontrary Υ is used in 〈C,Υ〉 in a �dynami way� for generating all elementsof Π.5 TreesA tree is lassially de�ned as a graph whih is path-onneted and whih doesnot ontain any yle. We give here a de�nition based on the following one-to-one ompletion 〈TREE〉.We set V = C〈0〉 and E = C[1]. A omplex X , X 6= ∅, is a vertex if X ∈ V.A omplex X is an edge if X ∈ E.-> If S ∈ K, then S ∪ A ∈ K whenever A ∈ E and S ∩ A ∈ V. 〈TREE〉Let Tree = 〈V, TREE〉. We say that a omplex X ∈ S is a tree if X ∈ Tree.It may be heked that this de�nition of a tree is equivalent to the lassial one.Through this example, we observe that ompletions allow to de�ne a olletionin a onstrutive way rather by the means of properties of this olletion.We an express, in a onise manner, a fundamental property of trees.Proposition 2 We have Tree = 〈Tree, −TREE〉.6 CollapseWe now present some ompletions related to the ollapse operator introduedby J.H.C. Whitehead [14℄. Let us reall a lassial de�nition of ollapse.Let X ∈ S. We say that a fae x ∈ X is free for X if x is a proper fae ofexatly one fae y of X , suh a pair (x, y) is said to be a free pair for X . If (x, y)is a free pair for X , we say that the omplex Y = X \ {x, y} is an elementaryollapse of X or that X is an elementary expansion of Y .We de�ne the one-to-one ompletion 〈EXP〉:-> If S ∈ K, then S∪AB ∈ K wheneverA ∈ C[0], AB ∈ C, S∩AB = AB◦.〈EXP〉Observe that, if AB ∈ C, and if A ∈ C[0], then neessarilyB ∈ C or B = {∅}.If B = {∅}, B◦ is de�ned to be ∅. 5



It may be seen that, if S and S ∪ AB, with B 6= ∅, ful�ll the above onditions,then S is an elementary ollapse of S ∪ AB. Conversely, we may formulateany elementary ollapse by suh an expression. Thus 〈EXP〉 is an alternativede�nition of ollapse.Let X � Y � A, A ∈ C, with X = Y \ {x, y} where x and y are two distintfaes of Y . If y is the only fae of Y whih ontains x, then A \ x is the onlyfae of (X ;A)∗ whih ontains A \ y. Thus, we have the following result [8℄.Proposition 3 Let A ∈ C, X � A, Y � A. The omplex X is an elementaryollapse of Y if and only if (Y ;A)∗ is an elementary ollapse of (X ;A)∗.If X,Y ∈ S, we say that Y ollapses onto X if Y ∈ 〈{X}, EXP〉, and Yis simple homotopi to X if Y ∈ 〈{X}, EXP,−EXP〉. The omplex X ∈ S isollapsible if X ollapses onto ∅, and X is simply ontratible if X is simplehomotopi to ∅.Let us onsider the one-to-one ompletion:-> If S ∈ K, then S∪A ∈ K whenever A ∈ C, and A ollapses onto S∩A. 〈SIM〉When A satis�es 〈SIM〉, we say that the ell A is simple for S. We have
〈SIM〉 = 〈EXP〉. This ompletion leads to a notion of simpliity introdued inthe ontext of omputer imagery [18℄ (see also [19, 20℄) where an objet is oftenseen as a set of ells (e.g., a set of voxels in 3D) rather than a set of faes.Nonevasive omplexes [21, 22, 9℄ onstitute another example of a olletionwhih may be de�ned by means of ompletions.Let us onsider the ompletion 〈NEV〉:-> If S, T ∈ K, then S ∪ AT ∈ K whenever A ∈ C[0] and S ∩AT = T . 〈NEV〉A omplex X ∈ S is nonevasive if X ∈ 〈V, NEV〉. Nonevasive omplexes areollapsible [22℄, the onverse being, in general, not true.7 The Cup/Cap ompletionsWe introdue the notion of a dendrite for de�ning a remarkable olletion madeof ayli omplexes.De�nition 2 We de�ne the two ompletions 〈CUP〉 and 〈CAP〉:-> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈CUP〉-> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈CAP〉We set R = 〈C,CUP〉 and D = 〈C,CUP,CAP〉.Eah element of R is a rami�ation and eah element of D is a dendrite.Note that we have R ⊆ D ⊆ S. The Bing's house with two rooms [15℄ isa lassial example of an objet whih is ontratible but not ollapsible, thisobjet is depited Fig. 2 (a). Let us onsider the two omplexes Y and Z of Fig.2 (b) and (). They are suh thatX = Y ∪Z. If X is orretly triangulated, then
Y , Z, and Y ∩Z are rami�ations. Thus, the Bing's house X is a rami�ation.It may be easily seen that we have 〈{∅}, EXP〉 ⊆ 〈C,CUP〉, i.e., that anyollapsible omplex is a rami�ation. Sine the Bing's house is not ollapsible,this inlusion is strit. 6



(a) (b) ()Figure 2: (a): A Bing's house X with two rooms, (b): An objet Y ⊆ X , ():An objet Z ⊆ X . We have X = Y ∪Z, the objet Y ∩Z is outlined in (b) and().M. Hohster [12℄ (see also [10℄ [11℄) introdued the notion of a onstrutibleomplex. This notion may be expressed using the following ompletion:-> If S, T ∈ K[d], then S ∪ T ∈ K whenever S ∩ T ∈ K[d− 1], d ≥ 0. 〈CONS〉A simpliial omplex is onstrutible if it is an element of 〈C ∪ {{∅}},CONS〉.M. Hahimori [11℄, [13℄ showed that the Bing's house with two rooms andthe dune hat [16℄ are not onstrutible. Observe that we have 〈C,CONS〉 ⊆
〈C,CUP〉. Sine the Bing's house is a rami�ation, the previous inlusion isstrit.With the notion of a buildable omplex, J. Jonsson [9℄ drops the onditionfor dimension whih appears in 〈CONS〉. The de�nition of a buildable omplex isa reursive de�nition of what we all a rami�ation.1 It was shown [9℄ that anybuildable omplex is ontratible, i.e., is homotopy equivalent to a single point.As far as we know, the above de�nition for dendrites has never been proposed.8 Some basi propertiesIn this setion, we give some basi properties whih may be derived diretlyfrom the de�nitions of R and D using indutive arguments. Perhaps the simplestproperty whih may be proved in suh a way is the following.Proposition 4 If X ∈ D, then χ(X) = 0.Proof. We have χ(X) = 0 for eah X ∈ C. Sine the Euler harateristi issuh that χ(S∪T ) = χ(S)+χ(T )−χ(S ∩T ), the result follows by indution. �Let us onsider the two ompletions:-> If S, T ∈ K, then S ∪ T ∈ K. 〈UNION〉-> If S, T ∈ K, then S ∩ T ∈ K. 〈INTER〉Let X ⊆ R. An element of 〈X,UNION〉 is, in general, not neessarily a rami-�ation (nor a dendrite), but this property is true in the following ase.Proposition 5 Let X ⊆ R and let Y = 〈X,UNION〉. If 〈Y, INTER〉 = Y, i.e., if
Y satis�es the property 〈INTER〉, then we have Y ⊆ R.Proof. Suppose 〈Y, INTER〉 = Y. We set Yk = {X ∈ Y | Card(X) ≤ k}.i) We have Y0 = ∅ or Y0 = {∅}. In both ases Y0 ⊆ R.1We suggest the name �rami�ation� rather than �buildable omplex� sine these objetsmay be seen as natural extensions of trees. 7



ii) Suppose Yk−1 ⊆ R, for some k ≥ 1. Let X ∈ Yk. If X ∈ X, then X ∈ R. If
X 6∈ X, then there exists S, T ∈ Y suh that X = S ∪ T , and S 6⊆ T , T 6⊆ S.Thus Card(S) ≤ k−1, Card(T ) ≤ k−1, and Card(S∩T ) ≤ k−1. Furthermore,we have S ∩ T ∈ Y. Therefore, by the indution hypothesis, S, T and S ∩ T arerami�ations, whih means that X is a rami�ation. It follows that Yk ⊆ R. �Let A ∈ C and let X = {A} ∪ {BA | B ∈ C}. Thus, X ⊆ C. Sine
XA∪Y A = (X∪Y )A, it may be seen that we have 〈X,UNION〉 = {XA | X ∈ S}.Furthermore, sine XA ∩ Y A = (X ∩ Y )A, 〈X,UNION〉 satis�es the property
〈INTER〉. Therefore, sine X ⊆ R, the following is a onsequene of Prop. 5.Proposition 6 Let X ∈ S and A ∈ C. Then XA is a rami�ation.The following fat will be used for the proof of Prop. 8.Proposition 7 Let A,B ∈ C. Then (AB)◦ = AB◦ ∪ A◦B.Proof. The property is true if A = ∅ or B = ∅. Suppose A 6= ∅ and
B 6= ∅. In this ase, we have AB = A ∪ B, thus (AB)◦ = {x ⊂ A ∪ B}. Then
(AB)◦ = {y ∪ z | y ⊆ A, z ⊂ B} ∪{y ∪ z | y ⊂ A, z ⊆ B} = AB◦ ∪ A◦B. �Proposition 8 Let X ∈ S and A ∈ C, A 6= ∅. The omplex XA◦ is a dendriteif and only if X is a dendrite.Proof. If A ∈ C[0], we have A◦ = {∅} and XA◦ = X . Suppose the propertyis true for any A ∈ C〈i − 1〉, i ≥ 1. Let Y = XA◦, with X ∈ S and A ∈ C[i].Sine i ≥ 1, there exists B,C ∈ C〈i − 1〉, suh that A = BC. By Prop. 7, wehave Y = XBC◦ ∪XB◦C. By Prop. 6, XBC◦ and XB◦C are dendrites. But
XBC◦ ∩XB◦C = XB◦C◦. By the indution hypothesis, XB◦C◦ is a dendritei� XB◦ is a dendrite, and XB◦ is a dendrite i� X is a dendrite. Thus, by 〈CUP〉and 〈CAP〉, Y is a dendrite i� X is a dendrite. �We now give a property for duality whih will be used in the sequel throughtwo orollaries.Proposition 9 Let A,B ∈ C, and let X,Y ∈ S suh that X � A, Y � B.We have (XY ;AB)∗ = A(Y ;B)∗ ∪B(X ;A)∗.Proof. We have (XY ;AB)∗ = {x ∈ AB | (AB \ x) 6∈ XY }.For any x ∈ AB, if we set y = x ∩ A and z = x ∩ B, we have x = y ∪ z and
AB \ x = (A \ y) ∪ (B \ z). Thus we have:
(XY ;AB)∗ = {y ∪ z | y ∈ A, z ∈ B, (A \ y) 6∈ X or (B \ z) 6∈ Y }
= {y ∪ z | y ∈ A, z ∈ B, (A \ y) 6∈ X} ∪ {y ∪ z | y ∈ A, z ∈ B, (B \ z) 6∈ Y }
= {y ∪ z | y ∈ (X ;A)∗, z ∈ B} ∪ {y ∪ z | y ∈ A, z ∈ (Y ;B)∗}
= B(X ;A)∗ ∪ A(Y ;B)∗. �The following orollary may be obtained from Prop. 9 by setting X = A. Itshows that the olletion of ones is losed by duality. More preisely, if we set
K = {AX | A ∈ C, X ∈ S} and K∗ = {(X ;B)∗ | X ∈ K, B ∈ C, X � B}, thenwe have K = K

∗. Note that the olletion C is not losed by duality (By Cor.2 below, we have (A;AB)∗ = B◦A whih is not a ell).Corollary 1 Let A,B ∈ C, and let X � B. We have (AX ;AB)∗ = A(X ;B)∗.8



The seond orollary may be obtained from Prop. 9 by setting Y = {∅}.Corollary 2 Let A,B ∈ C, and X � A. We have (X ;AB)∗ = B(X ;A)∗∪B◦A.We see that this last formula allows us to alulate the dual of an objet ina given spae (a ell) from the dual of this objet in a smaller spae.Proposition 10 Let A,B ∈ C, and X � A. Then (X ;AB)∗ is a dendrite ifand only if (X ;A)∗ is a dendrite.Proof. Let Y = (X ;AB)∗. By Cor. 2, we have Y = B(X ;A)∗ ∪B◦A. ByProp. 6, B(X ;A)∗ and B◦A are dendrites. Sine B(X ;A)∗∩B◦A = B◦(X ;A)∗,by Prop. 8, it follows that Y is a dendrite if and only if (X ;A)∗ a dendrite. �Proposition 11 Let X ∈ S, A ∈ C, with X � A. The omplex X is a dendriteif and only if (X ;A)∗ is a dendrite.Proof. Let X ∈ D. There exists a �nite olletion F ⊆ C suh that X ∈
〈F,CUP,CAP〉. Let C ∈ C suh that C ontains all ells in F. Let F ∈ F. ByCor. 2, (F ;C)∗ = D◦F , with C = DF . Thus, (F ;C)∗ is a one and we have
(F ;C)∗ ∈ D. Therefore, sine CUP and CAP are dual, by indution we have
(X ;C)∗ ∈ D. The result follows from Prop. 10. �9 Contratible and ayli omplexesIn this setion, we give some results relative to dendrites, simply ontratible,and ayli omplexes.Proposition 12 Let X ∈ D. If Y is simple homotopi to X, then Y is adendrite.Proof. Let X ∈ D. The result follows by indution from i) and ii).i) Suppose Y is an elementary expansion of X . Then Y = X ∪ AB, with
A ∈ C[0], AB ∈ C, X ∩ AB = AB◦. By Prop. 6, AB and AB◦ are bothdendrites. Thus, by 〈CUP〉, Y is a dendrite.ii) Suppose Y is an elementary ollapse of X . Let C ∈ C suh that X � C.By Prop. 3, (Y ;C)∗ is an elementary expansion of (X ;C)∗. Furthermore, byProp. 11, (X ;C)∗ is a dendrite. By the preeding result, (Y ;C)∗ is a dendrite.Using again Prop. 11, it follows that Y is a dendrite. �Sine the void omplex is a dendrite, we have the following diret onse-quene of Prop. 12.Corollary 3 Let X ∈ S. If X is simply ontratible, then X is a dendrite.The following theorem makes lear the link between dendrites and omplexesthat are ayli in the sense of integral homology. It is a diret onsequene ofseveral lassial theorems of algebrai topology. Reall that a a omplex X ∈ Sis ayli (over Z) if its redued integral homology vanishes in all dimensions[23℄. Any ontratible omplex is ayli, the onverse is, in general, not true.The puntured Poinaré homology sphere provides an example of a omplexwhih is ayli but not simply ontratible.9



Theorem 2 A simpliial omplex is a dendrite if and only if it is ayli.Proof.i) A omplex is ayli whenever it is a ell ([23℄, Th. 8.2). Suppose S and T areayli omplexes, with S, T 6= ∅. The redued Mayer-Vietoris sequene yieldsan exat sequene ([23℄, Th. 25.1)
H̃p(S)⊕ H̃p(T ) → H̃p(S ∪ T ) → H̃p−1(S ∩ T ) → H̃p−1(S)⊕ H̃p−1(T ).Sine S and T are ayli, both end terms vanish. Therefore H̃p(S ∪ T ) is iso-morphi to H̃p−1(S ∩ T ). Thus, S ∪ T is ayli if and only if S ∩ T is ayli.By indution on 〈CUP〉 and 〈CAP〉, it follows that any dendrite is ayli.ii) Suppose X is an ayli omplex, X 6= ∅. Let Y = AX∪BX be a suspensionof X , thus A,B ∈ C[0], and AX ∩ BX = X . Let Y ′ = A′X ′ ∪ B′X ′ be ageometri realization [23℄ of AX ∪BX . The omplexes A′ and B′ are onnetedand simply onneted, and the omplex X ′ is onneted. It follows that, by VanKampen theorem, Y ′ is simply onneted.By the Hurewiz theorem ([24℄, Th. 4.32), sine Y ′ is ayli and simply on-neted, all homotopy groups of Y ′ are trivial. By Whitehead's theorem ([24℄,Th. 4.5), it implies that Y ′ is homotopy equivalent to a single point, i.e., that

Y ′ is ontratible ([25℄, Cor. 8.3.11). Then, by the Whitehead's theorem onsimple homotopy ([14℄, Th. 21), the omplex Y is simply ontratible (see also[26℄). By Cor. 3, Y is a dendrite. By 〈CAP〉, sine AX , BX , and AX ∪BX aredendrites, the omplex X is a dendrite. �A omplex is ayli if and only if its suspension is ontratible. Thereforewe have the following result whih may be derived using the arguments of thepreeding proof.Theorem 3 A simpliial omplex is a dendrite if and only if its suspension issimply ontratible.10 ConlusionWe have seen that (one-to-one) ompletions make possible to formulate reur-sive transformations of objets. More remarkably, ompletions allow us to de-�ne strutures on objets (e.g., a onnetion). We introdued two ompletions,
〈CUP〉 and 〈CAP〉, in order to de�ne, in an axiomati way, a olletion of ayliomplexes. We gave a theorem whih shows the equivalene between this olle-tion and the olletion made of omplexes that are ayli in the sense of homol-ogy. In a future work, we will further investigate ompletions-based struturesfor ombinatorial topology.
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Appendix A: ompletions and losure operatorsIn the sequel, the symbol S denotes an arbitrary olletion.Let γ be a map from 2S to 2S, suh a map is said to be an operator (on S).If γ is an operator on S, we set γ1 = γ and γk = γ ◦ γk−1, k ≥ 2. We de�ne
γ̂ to be the operator suh that, for eah X ⊆ S, γ̂(X) = ∪{γk(X) | k ≥ 1}.Let γ be an operator on S. We say that:- γ is extensive if, for all X ⊆ S, we have X ⊆ γ(X).- γ is inreasing if, whenever X ⊆ Y ⊆ S, we have γ(X) ⊆ γ(Y).- γ is idempotent if, for all X ⊆ S, we have γ2(X) = γ(X).The operator γ is a losure operator (on S) if γ is extensive, inreasing, andidempotent. If γ is a losure operator, X ⊆ S is losed for γ if γ(X) = X.Let γ be a losure operator on S. We have the following result, this is abasi property of losure operators:For any X ⊆ S, we have γ(X) = ∩{Y ⊆ S | X ⊆ Y and γ(Y) = Y}.Let γ be an operator on S. We say that γ is �nitary if, for all X ⊆ S, wehave γ(X) = ∪{γ(F) | F ⊆ X and F �nite}.Alfred Tarski [7℄ introdued �nitary losure operators (also alled ��niteonsequene operators�) as an abstrat theory of logial dedutions. In thisontext, the set S represents a set of statements in some language. Given asubset X of S, the set γ(X) represents the set of all statements that may bededued from X.Observe that any �nitary operator is inreasing. Thus, an operator γ is a�nitary losure operator if and only if γ is extensive, �nitary, and idempotent.We say that an operator K is a Λ-operator if K is extensive and �nitary.The following �xed point theorem is essential for our purpose. See [27, 28,29, 30℄ for more general �xed point theorems.Theorem 4 Let K be a Λ-operator. Then, for any X ⊆ S, K̂(X) is a �xedpoint for K, i.e., we have K(K̂(X)) = K̂(X).Proposition 13 If K is a Λ-operator, then K̂ is a �nitary losure operator.Remark 2 If γ is an extensive and inreasing operator (not neessarily �ni-tary), then K̂(X) is not neessarily a �xed point for K.Let K be a binary relation on 2S, thus K ⊆ 2S × 2S. We say that K isa onstrutor (on S) if K is �nitary, whih means that F is �nite whenever
(F,G) ∈ K.Let K be a onstrutor on S. We also denote by K the Λ-operator suh that,for eah X ⊆ S, we have:

K(X) = ∪{G | there exists (F,G) ∈ K with F ⊆ X} ∪X.We say that the operator K is the Λ-operator indued by the onstrutor K.Let K be a Λ-operator on S, the onstrutor indued by K is the onstrutor
K suh that K = {(F, K(F)) | F is a �nite subset of S}.The following result is a diret onsequene of the above de�nitions. It showsthat speifying a Λ-operator is (in a ertain sense) equivalent to speifying aonstrutor. 11



Proposition 14 Let K be a Λ-operator, and let K be the onstrutor induedby K. The two Λ-operators K and K are equal.Let K be a onstrutor on S, and let K be the onstrutor indued by the Λ-operator K. The two Λ-operators K and K are equal.Let K be a onstrutor. We say that K is many-to-one if Card(G) = 1whenever (F,G) ∈ K.To eah arbitrary onstrutor K we may assoiate a many-to-one onstrutor
K, we de�ne K to be {(F, {x}) | there exists (F,G) ∈ K and x ∈ G}. We seethat the two Λ-operators K and K are equal. Thus, speifying a onstrutor isequivalent to speifying a many-to-one onstrutor.Remark 3 Let K be a binary relation over 2S and S, thus K ⊆ 2S × S. Wesay that K is �nitary if F is �nite whenever (F,x) ∈ K. It may be seen thatspeifying a many-to-one onstrutor is equivalent to speifying suh a relation.In the sequel, the symbol K will denote an arbitrary subolletion of S, thuswe have K ⊆ S.If K is a onstrutor on S, we denote by 〈K〉 the following property whih is theompletion indued by K:-> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉Let 〈K〉 be a property whih depends on K. We say that a given olletion
X ⊆ S satis�es 〈K〉 if the property 〈K〉 is true for K = X.Thus, if K is a onstrutor, a olletion X ⊆ S satis�es 〈K〉 if and only if
K(X) = X.The following propositions are diret onsequenes of Th. 4 and Prop. 13.Prop. 15 and 16 are equivalent to Th. 1 given in setion 2. The olletion
〈X,K〉 of Th. 1 is equal to K̂(X).Proposition 15 Let K be a onstrutor on S and let X ⊆ S. Then K̂(X) is,under the subset ordering, the unique minimal olletion whih ontains X andwhih satis�es 〈K〉.Let 〈K〉 be a property whih depends on K.If X ⊆ S, we set ∆(X,K) = ∩{Y ⊆ S | X ⊆ Y and Y satis�es 〈K〉}.Proposition 16 If K is a onstrutor on S and if X ⊆ S, then K̂(X) =
∆(X,K).We say that a property 〈K〉 is a ompletion (property) if there exists a on-strutor K suh that 〈K〉 = 〈K〉 whih means that, for eah K ⊆ S, 〈K〉 is trueif and only if 〈K〉 is true.Proposition 17 Let 〈K〉 be a property whih depends on K. The property 〈K〉is a ompletion if and only if, for eah X ⊆ S:i) ∆(X,K) satis�es 〈K〉, andii) ∆(X,K) = ∪{∆(F,K) | F ⊆ X and F �nite}.12
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