
HAL Id: hal-00761118
https://hal.science/hal-00761118v1

Submitted on 5 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hide and New in the Pi-Calculus
Marco Giunti, Catuscia Palamidessi, Frank D. Valencia

To cite this version:
Marco Giunti, Catuscia Palamidessi, Frank D. Valencia. Hide and New in the Pi-Calculus. Combined
19th International Workshop on Expressiveness in Concurrency and 9th Workshop on Structured
Operational Semantics (EXPRESS/SOS 2012), Sep 2012, New Castle upon Tyne, United Kingdom.
pp.65-80, �10.4204/EPTCS.89�. �hal-00761118�

https://hal.science/hal-00761118v1
https://hal.archives-ouvertes.fr

Hide and New in the π-calculus

Marco Giunti
CITI and DI-FCT, Universidade Nova de Lisboa, Portugal∗

Catuscia Palamidessi Frank D. Valencia
INRIA Saclay and LIX, Ecole Polytechnique, France †

In this paper, we enrich the π-calculus with an operator for confidentiality (hide), whose main effect
is to restrict the access to the object of the communication, thus representing confidentiality in a
natural way. The hide operator is meant for local communication, and it differs from new in that
it forbids the extrusion of the name and hence has a static scope. Consequently, a communication
channel in the scope of a hide can be implemented as a dedicated channel, and it is more secure than
one in the scope of a new. To emphasize the difference, we introduce a spy context that represents a
side-channel attack and breaks some of the standard security equations for new. To formally reason
on the security guarantees provided by the hide construct, we introduce an observational theory and
establish stronger equivalences by relying on a proof technique based on bisimulation semantics.

1 Introduction

The restriction operator is present in most process calculi. Its behaviour is crucial for expressiveness
(e.g., for specifying unbounded linked structures, nonce generation and locality). In the π-calculus [18],
it plays a prominent role: It provides for the generation and extrusion of unique names. In CCS [17], it is
also fundamental but it does not provide for name extrusion: It limits the interface of a given process with
its external world. In this paper we shall extend the π-calculus with a hiding operator, called hide, that
behaves similarly to the CCS restriction. The motivation for our work comes from the realm of secrecy
and confidentiality: we shall argue that hide allows us to express and guarantee secret communications.

Motivation. Secrecy and confidentiality are major concerns in most systems of communicating agents.
Either because some of the agents are untrusted, or because the communication uses insecure channels,
there may be the risk of sensitive information being leaked to potentially malicious entities. The price
to pay for such security breaches may also be very high. It is not surprising, therefore, that secrecy and
confidentiality have become central issues in the formal specification and verification of communicating
systems.

The π-calculus and especially its variants enriched with mechanisms to express cryptographic oper-
ations, the spi calculus [5] and the applied π-calculus [3], have become popular formalisms for security
applications. They all feature the operator new (restriction) and make crucial use of it in the definition
of security protocols. The prominent aspects of new are the capability of creating a new channel name,
whose use is restricted within a certain scope, and the possibility of enlarging its scope by communicat-
ing it to other processes. The latter property is central to the most interesting feature of the π-calculus:
the mobility of the communication structure.
∗Work partially supported by the project Liveness, Statically. The work has been done during the period that the author

spent at LIX, Ecole Polytechnique, with the support of an ERCIM postdoc fellowship. The author would like to thank INRIA
and ERCIM for such oppurtunity.

†Work partially supported by the project ANR-09-BLAN-0169-01 PANDA

2 Hide and New in the π-calculus

Although in principle the restriction aspect of new should guarantee that the channel is used for
communication within a secure environment only, the capability of extruding the scope leads to security
problems. In particular, it makes it unnatural to implement the communication using dedicated channels,
and non-dedicated channels are not secure by default. The spi calculus and the applied π-calculus do not
assume, indeed, any security guarantee on the channel, and implement security by using cryptographic
encryption.

Let us illustrate the problem with an example. The following π-calculus process describes a protocol
for the exchange of a confidential information:

P = s〈CreditCard〉 | s(x).ifx = OwnerCard then(p〈Ok〉 | p〈s〉) p 6= s

In this specification, the thread on the left sends a credit card number over the channel s to the thread on
the right which is waiting for an input on the same channel. If the received card number is the expected
one, then the latter both sends an ack and forwards the communication channel s on a public channel p.
The problem is that, while the confidentiality of the information would require the context to be unable
to interfere with the protocol and to steal the credit card number, in fact this is not guaranteed in the
π-calculus where interaction with a parallel process waiting for input on channel s is allowed.

To amend this problem, the idea is to let the channel for the exchange of the secret information
available only to the process P, restricting its scope to P with the declaration: (news)P. The π-calculus
semantics makes the exchange invisible to the context. This is formalized by the following observational
equation stating that no π-calculus context can tell apart P from its continuation:

(news)P∼=obs
π (news)if CreditCard = OwnerCard then(p〈Ok〉 | p〈s〉) (1)

Unfortunately, to preserve such behavioral equations when processes are deployed in untrusted envi-
ronments is difficult, since, as explained above, we cannot rely on dedicated channels for communication
on names created by the new operator. One natural approach to cope with this problem is to map the pri-
vate communication within the scope of the new into open communications protected by cryptography.

For instance, the process (news)P could be implemented in the spi calculus protocol [[(news)P]]
below by using a public-key crypto-scheme. In this implementation the creation of a π-calculus channel
s is mapped into the creation of a couple of spi calculus keys: a public key s+ and a private key s−. The
receiver performs decryption of the crypto-packet {CC}s+ with the private key s−; the operation assigns
the card number to the variable in the conditional test.

[[(news)P]]
def
= (news+,s−)(net〈{CC}s+〉.0 | net(y).decrypt y as {x}s− inQ)

Q def
= ifx = OC thennet〈{Ok}p+〉 | net〈{s+,s−}p+〉

Unfortunately, the naive protocol above suffers from a number of problems, among which the most
serious is the lack of forward secrecy [1]: this property would guarantee that if keys are corrupted at
some time t then the protocol steps occurred before t do preserve secrecy. In particular, forward secrecy
requires that the content of the packet {CC}s+ , which is the credit card number, is not disclosed if at some
step of the computation the context gains the decryption key s−. Stated differently, the implementation
[[·]] should preserve the semantics of equation (1): that is, it should be fully abstract. It is easy to see that
this is not the case since a spi calculus context can first buffer the encrypted packet and subsequently,
whenever it enters in posses of the decryption key, retrieve the confidential information; this breaks
equation (1). While a solution to recover the behavioral theory of π-calculus is available [11], the price
to pay is a complex cryptographic protocol that relies on a set of trusted authorities acting as proxies.

M. Giunti, C. Palamidessi and Frank D.Valencia 3

Based on these considerations, in this paper we argue that the restriction operator of π-calculus does
not adequately ensure confidentiality. To tackle this problem, we introduce an operator to program ex-
plicitly secret communications, called hide. From a programming language point of view, the envisaged
use of the operator is for declaring secret a medium used for local inter-process communication; exam-
ples include pipelines, message queues and IPC mechanisms of microkernels. The operator is static: that
is, we assume that the scope of hidden channels can not be extruded. The motivation is that all processes
using a private channel shall be included in the scope of its hide declaration; processes outside the scope
represent another location, and must not interfere with the protocol. Since the hide cannot extrude the
scope of secret channels, we can use it to directly build specifications that preserves forward secrecy. In
contrast, we regard the restriction operator of the π-calculus, new, as useful to create a new channel for
message passing with scope extrusion, and which does not provide secrecy guarantees.

To emphasize the difference between hide and new, we introduce a spy context that represents a side-
channel attack on the non-dedicated channels. In practice, spy is able to detect whether there has been a
communication on one of the channels not protected by a hide, but is not able to retrieve its content.

Contributions. We introduce the secret π-calculus as an extension of the π-calculus with an operator
representing confidentiality (hide). We develop its structural operational semantics and its observational
theory. In particular, we provide a reduction semantics, a labelled transition semantics and an obser-
vational equivalence. We show that the observational equivalence induced by the reduction semantics
coincides by the labelled transition system semantics. To illustrate the difference between hide and new,
we shall also consider a distinguished process context, called spy, representing a side-channel attack.

Plan of the paper In the next section we introduce the syntax and the reduction semantics of the secret π-
calculus. In Section 3 we present the observational equivalence, and a characterization based on labelled
transition semantics, that we show sound and complete. In Section 4 we introduce the spy process, and
we extend the reduction semantics and bisimulation method accordingly. In Section 5 we discuss some
algebraic equalities and inequalities of the secret π-calculus, and we analyze some interesting examples,
notably an implementation of name matching, and a deployment of mandatory access control. Finally,
Section 6 presents related work and concludes.

2 Secret π-calculus

This section introduces the syntax and the semantics of our calculus, the secret π-calculus. The syntax of
the processes in Figure 1 extends that of the π-calculus by: (1) We consider two binding operators: new ,
which – as we will argue – does not offer enough security guarantees, and hide, which serves to program
secrecy. (2) We use two forms of restricted pattern matching in input, so that we can deny a process to
receive a (possibly empty) set of channels, or we can enforce a process to receive only trusted channels.
When in the first form the set of channels is empty we have the standard input of π-calculus. We use an
infinite set of names N , ranged over by a,b, . . . ,x,y,z, to represent channel names and parameters, i.e.
the subjects and the objects of communication, respectively. We let A,B range over subsets of N .

A process of the form x(y÷B).P represents an input where the name x is the input channel name, y
is a formal parameter which can appear in the continuation P, and B is the set of blocked names that the
process cannot receive. On contrast, an input process of the form x[y : A].P declares the object names that
the process can accept: that is, the process accepts in input a name z only if z∈A. This permits to program
security protocols where only trusted names can be received. The free and the bound names of such
process are defined as follows: fn(x[y÷B].P) = (fn(P)\{y})∪{x}∪B and bn(x[y÷B].P) = {y}∪bn(P),
fn(x(y : A).P) = (fn(P)\{y})∪{x}∪A and bn(x(y : A).P) = {y}∪bn(P).

4 Hide and New in the π-calculus

P,Q ::= Processes:

x(y÷B).P input (newx)(P) restriction

x[y : A].P trusted input [hidex][P] secrecy

x〈y〉.P output 0 inaction

P | Q composition !P replication

Figure 1: Syntax of the secret π-calculus

Processes x〈y〉.P, (newx)(P), P |Q, !P, and 0 are the pi calculus operators respectively describing an
output of a name y over channel x, restriction of x in P, parallel composition, replication and inaction;
see [20] for more details.

The process [hidex][P] represents a process P in which the name x is regarded as secret, and should
not be accessible to any process external to P. [hidex][P] binds the occurrence of x in P: fn([hidex][P]) =
fn(P)\{x}, and bn([hidex][P]) = {x}∪bn(P).

Contexts are processes containing a hole −. We write C[P] for the process obtained by replacing −
with P in C[−].

C[−] ::= − | C[−] | P | P |C[−] | (newx)[−] | [hidex][−] contexts

We write x(y).P as a short of x(y÷ /0).P, and omit curly brackets in x(y÷{b}).P and x[y : {a}].P.
When no ambiguity is possible, we will remove scope parentheses in (newx)(P) and [hidex][P]. We will
often avoid to indicate trailing 0s.

The combination of the accept and the block construct permits to design processes which are not
subject to interference attacks from the context. We note that their role is dual: the accept operator
prevents the reception (intrusion) of untrusted names from the environment, and its use is specified by
the programmer. The block mechanism prevents another process from sending (extruding) a secret name,
and it is inserted automatically by the system to ensure the protection of such names. One may wonder
whether we could have used just one form of (trusted) input, and declare the names to be blocked by
accepting all names in N but the intended ones. The main reason that guided our choice is that we
believe that our form of input with blocked names can be effectively implemented, for instance by using
blacklists. Also, we think that there is a nice symmetry among processes x(y÷B).P and (newx)P, and
among processes x[y : A].P and [hidex]P.

We embed the block mechanism in the rules for structural congruence through the operation] de-
fined in Figure 2. Blocked names could indeed be introduced both statically and dynamically, i.e. when
structural congruence is performed during the computation. We leave the time when the system blocks
explicitly the name in components as an implementation detail. Note that in the second rule of the first
line the name b is guaranteed to be different from all the names in A, because in the congruence rule for
hide (cfr same Figure) the free names of Q are required to be different from the name we want to hide,
so the alpha conversion should be applied .

Following standard lines, we define the semantics of our calculus via a reduction relation, also spec-
ified in Figure 2. We assume a capture-free substitution operation {z/y}: the process P{z/y} is obtained
from P by substituting all the free occurrences of y by z. As usual, we use a structural congruence ≡
to rearrange processes. Such congruence includes the equivalence induced by alpha-conversion, and the
relations defined in Figure 2. The rules for the π-calculus operators (first line) are the standard ones.

M. Giunti, C. Palamidessi and Frank D.Valencia 5

Rules for blocking a name

(x(y÷B).P)]b def
= x(y÷B∪{b}).(P]b) (x[y : A].P)]b def

= x[y : A].(P]b)

((newx)(P))]b def
= (newx)(P]b)∗ ([hidex][P])]b def

= [hidex][P]b]∗ (∗)b 6= x

(x〈y〉.P)]b def
= x〈y〉.(P]b) (P | Q)]b def

= P]b | Q]b

(!P)]b def
= !(P]b) 0]b def

= 0

Rules for structural congruence

P | Q≡ Q | P (P | Q) | J ≡ P | (Q | J) !P≡ P |!P
(newx)(0)≡ 0 [hidex][0]≡ 0

(newx)(P) | Q≡ (newx)(P | Q) x 6∈ fn(Q)

[hidex][P] | Q≡ [hidex][P | Q] x] x 6∈ fn(Q)

(newx)([hidey][P])≡ [hidey][(newx)(P)] x 6= y

Reduction rules z 6∈ B
x(y÷B).P | x〈z〉.Q → P{z/y} | Q

[R-COM]

z ∈ A
x[y : A].P | x〈z〉.Q → P{z/y} | Q

[R-T-COM]

P → P′

(newx)(P) → (newx)(P′)
P → P′

[hidex][P] → [hidex][P′]
[R-NEW],[R-HIDE]

P → P′

P | Q → P′ | Q
P≡ Q Q → Q′ Q′ ≡ P′

P → P′
[R-PAR],[R-STRUCT]

Figure 2: Reduction semantics

The rules for inaction under a binder follow (second line). We recall that the scope extrusion rule for
new (third line) permits to enlarge the scope of a name and let a process receive it. In contrast, the scope
extrusion rule for hide (fourth line) permits to enlarge the scope of a name, but at the same time it sets the
name to blocked for the process which are being included in the scope, thus preventing them to receive
the name. The last rule (fifth line) permits to swap the two binders.

The first rule for reduction, [R-COM], says that an input process of the form x(y÷B).P is allowed to
synchronize with an output process x〈z〉.Q and receive the name z provided that z is not blocked (z 6∈ B).
The result of the synchronization is the progression of both the receiver and the sender, where the formal
parameter in the input’s continuation is replaced by the name z. Note that whenever B = /0 we have the
standard communication rule of the π-calculus. The main novelty is represented by the rule for trusted
communication [R-T-COM]. This rule says that an output process can send a name z over x to a parallel
process waiting for input on x, provided that z is explicitly declared as accepted (z∈ A) by the receiver. If
this is the case, the name will replace the occurence of the formal parameter in the input’s continuation.
Rules [R-NEW] and [R-HIDE] are for new and for hide respectively, and follow the same schema. The
rules for parallel composition, replication and incorporating structural congruence are standard.

We let P⇒ P′ whenever either (a) P→ ··· → P′, or (b) P′ = P.

6 Hide and New in the π-calculus

Example 2.1. We show how hide can be used to prevent the extrusion of a secret. Consider the process:

P
def
= [hidez][x〈v〉] x 6= z

The process x〈v〉 can be interpreted as an internal attacker trying to leak the name v to a context C[−] def
=

− | x(y).leak〈y〉. By using the structural rule for enlarging the scope of hide in Figure 2 we infer that
C[P]≡ [hidez][x〈v〉 | x(y÷z).leak〈y〉]. Whenever the name v is not declared secret, that is whenever v 6= z,
the leak cannot be prevented: by applying [R-COM],[R-HIDE], and [R-STRUCT] we have C[P] →
leak〈v〉. Conversely, when the name v is protected by hide, that is v = z, we do not have any interaction
and secrecy is preserved.

Example 2.2. The combined use of the accept and block sets permits to avoid interference with the
context. Consider the process below, where n > 0:

P
def
= [hidez1] · · · [hidezn][· · · [x[y : Z].P | x〈zi〉] · · ·] Z ⊆ {z1, · · ·zn}, i ∈ {1, . . . ,n}

Take a context C[−] def
= − | (newy)!x〈y〉 |!x(w). Such context is unable to send the fresh name y to P,

because the input process in P is programmed to accept only trusted names protected by hide. Dually,
the context cannot receive the protected name zi. Therefore C and P cannot interact: C[P] → Q implies
that a) Q≡C[[hidez1] · · · [hidezn][· · · [P{zi/y}] · · ·]] or b) Q≡C[P].

3 Observational equivalence

In this section we define a notion of behavioral equivalence based on observables, or barbs. As the
reader will notice, a distinctive feature of our observational theory is that trusted inputs are visible only
under certain conditions, namely that the context knows at least a name that is declared as accepted.
Conversely, processes trying to send a name protected by an hide declaration are not visible at all. The
choice to work in a synchronous setting permits us to emphasize the differences among our theory and
that of π-calculus. However, the same results would hold for a secret asynchronous π-calculus, while
the contrast would be less explicit as input barbs would not be observable.

We say that a name x is bound in P if x ∈ bn(P). An occurrence of y is hidden in P if such occurrence
of y appears in the scope of a hide operator in P.

Definition 3.1 (Barbs). We define:

• P ↓x whenever P ≡ C[x[y : A].Q] with x not bound in P and A∩ bn(P) 6= A, or whenever P ≡
C[x(y÷B).Q] with x not bound in P.

• P↓x whenever P≡C[x〈y〉.Q] with x not bound in P and y not hidden in P.

Based on this definition, we have that P1
def
= [hidex]z[y : x].Q, P2

def
= (newx)x(y÷B).Q, and P3

def
=

z[y : /0].Q do not exhibit a barb z, written Pi 6↓z for i = 1,2,3. In contrast, when x 6= z and A∩{x} 6= /0 we

have that (newx)z[y : A].P↓z, and when x 6= z we have [hidex]z(y÷B).P. Whenever P def
= [hidey]x〈v〉.Q

with y 6= x, we have P↓x if y 6= v, and P 6↓x otherwise. Weak barbs are defined by ignoring reductions. We
let P⇓x whenever P⇒ P′ and P′ ↓x; similarly P⇓x whenever P⇒ P′ and P′ ↓x.

Following the standard definition of observational equivalence, we are aiming at an equivalence
relation that is sensitive to the barbs, is closed under reduction, and is preserved by certain contexts.

Definition 3.2 (Barb preservation). A relation R over processes is barb preserving if H R K, H ↓x
implies K⇓x, and H ↓x implies K⇓x.

M. Giunti, C. Palamidessi and Frank D.Valencia 7

z 6∈ B

x(y÷B).P
x(z)
−−→ P{z/y}

z ∈ A

x[y : A].P
x(z)
−−→ P{z/y}

[L-IN],[L-IN-T]

x〈y〉.P
x〈y〉
−−→ P

P
x〈y〉
−−→ P′ y 6= x

(newy)P
(y)x〈y〉
−−−−→ P′

[L-OUT],[L-OPEN]

P
x(y)
−−→ P′ Q

x〈y〉
−−→ Q′

P | Q
τ

−→ P′ | Q′
[L-COM]

P
x(y)
−−→ P′ Q

(y)x〈y〉
−−−−→ Q′ y 6∈ fn(P)

P | Q
τ

−→ (newy)(P′ | Q′)
[L-CLOSE]

P
α

−→ P′ x 6∈ fn(α)

(newx)P
α

−→ (newx)P′

P
α

−→ P′ x 6∈ fn(α)

[hidex]P
α

−→ [hidex]P′
[L-NEW],[L-HIDE]

P
α

−→ P′ bn(α)∩ fn(Q) = /0

P | Q
α

−→ P′ | Q

P
α

−→ P′

P
α

−→ P′ |!P
[L-PAR],[L-REPL]

Figure 3: Labelled transition system

The requirement of reduction closure is to ensure that the processes maintain their correspondence
through the computation.

Definition 3.3 (Reduction closure). A relation R over processes is reduction-closed if H R K and H→
H ′ implies that K⇒ K′ and H ′R K′.

We require contextuality with respect to the parallel composition, the new and the hide operators (cf.
Section 2).

Definition 3.4 (Contextuality). A relation R over processes is contextual if H R K implies C[H]RC[K].

Definition 3.5 (Observational equivalence). Observational equivalence, noted ∼=, is the largest symmet-
ric relation over processes which is barb preserving, reduction closed and contextual.

Observational equivalence is difficult to establish since it requires quantification over contexts. In the
next section we will introduce labelled transition semantics for the secret π-calculus, and show that the
induced bisimulation coincides with observational equivalence. Besides the theoretical interest, this will
be also of help in proving that two processes are observationally equivalent.

3.1 Characterization

The characterization relies on labelled transitions of the form H
α

−→ H ′, where α is one of the following
actions:

α = x(z) | x〈z〉 | (z)x〈z〉 | τ

8 Hide and New in the π-calculus

We let fn(x(z)) = {x}, fn(x〈z〉) = {x,z}, and fn(z)x〈z〉 = {x}. We define bn(x(z)) = {z}, bn(x〈z〉) = /0
and bn((z)x〈z〉) = {z}. We let fn(τ) = /0 = bn(τ).

The transitions are defined by the rules in Figure 3. Action x(z) represents the receiving of a name
z on a channel x. In rule [L-IN], a process of the form x(y÷B).P can receive a value z over x, provided
that z is is not blocked (z 6∈ B). The received name will replace the formal parameter in the body of the
continuation. Rule [L-IN-T] describes a trusted input, that is a process of the form x[y : A].P that receives
a variable z over x whenever z is accepted (z ∈ A); the variable z will replace all occurrences of y in P.
The action x〈y〉 represents the output of a name y over x. This move is performed in [L-OUT] by the
process x〈y〉.P and leads to the continuation PBB. Communication arises in rule [L-COM] by means of
a τ action obtained by a synchronization of an x(y) action with a x〈y〉 action. Action (y)x〈y〉 is fired when
the name y sent over x is bound by the new operator and its scope is opened by using rule [L-OPEN].
The scope of the new is closed by using rule [L-CLOSE]. In this rule the scope of a name y sent over x
is enlarged to include a process which executes a dual action x(y), giving rise to a synchronization of the
two threads depicted by an action τ . Rule [L-NEW] is standard for restriction. Rule [L-HIDE] says that
process [hidex]H performs an action α inferred from P, provided that the α does not contain x. Therefore
extrusion of hidden channels is not possible, as previously discussed; note indeed that this the unique
rule applicable for hide. Rule [L-REPL] performs a replication.

We have a standard notion of bisimilarity; in the following, we let τ
=⇒ be the reflexive and transitive

closure of
τ

−→ .

Definition 3.6 (Bisimilarity). A symmetric relation R over processes is a bisimulation if whenever

PR Q and P
α

−→ P′ then there exists a process Q′ such that Q τ
=⇒

α̂

−→ τ
=⇒ Q′ and P′R Q′ where τ̂ is

the empty string and α̂ = α otherwise. Bisimilarity, noted ≈, is the largest bisimulation.

The following result establishes that bisimilarity can be used as a proof technique for observational
equivalence; the proof is contained in Appendix A.

Proposition 3.7 (Soundness). If P≈ Q then P∼= Q.

To prove the reverse direction, namely that behaviourally equivalent processes are bisimilar, we
follow the approach of Hennessy [16] and proceed by co-induction relying on contexts Cα which emit
the desired barbs whenever they interact with a process P such that P α

=⇒ P′, and vice versa. Perhaps
interestingly, we can program a context to check if a given name is fresh even if our syntax does not
include a matching construct (cf. [16, 8]); we show how this can be accomplished in Section 5.

Proposition 3.8 (Completeness). If P∼= Q then P≈ Q.

Full abstraction is obtained by Propositions 3.7 and 3.8.

Theorem 3.9 (Full Abstraction). ∼= = ≈.

4 Distrusting communications protected by restriction

In this section we introduce a spy process that represents a side-channel attack against communications
that occur on untrusted channels, that is: channels that are not protected by hide. We assume that the spy
is not able to retrieve the content of an exchange. The spy abstraction models the ability of the context to
detect interactions when the processes are implemented by means of network protocols which do not rely
on dedicated channels, and therefore require some mechanism to enforce the secrecy of the message (e.g.
cryptography). This ability leads to break some of the standard security equations for the new operator,

M. Giunti, C. Palamidessi and Frank D.Valencia 9

New rules for blocking a name

(spy : S.P)]b≡ spy : S.(P]b)

New rules for structural congruence

(newx)(P) | spy.R≡ (newx)(P | spy : x.R) x 6∈ fn(spy.R)

(newx)(P) | spy : y.R≡ (newx)(P | spy : y.R) x 6∈ fn(spy : y.R)

[hidex][P] | spy : S.R≡ [hidex][P | (spy : S.R)] x] x 6∈ fn(spy : S.R)

New reduction rules

z 6∈ B x ∈ A
x(y÷B).P | x〈z〉.Q | spy : x.R → P{z/y} | Q | R

[RS-COM]

z ∈ A x ∈ As

x[y : A].P | x〈z〉.Q | spy : x.R → P{z/y} | Q | R
[RS-T-COM]

Figure 4: Spied process semantics

which can be recovered by re-programming the protocol and making use of the hide operator. We add to
the syntax of the secret π-calculus the following process where we let spy be a reserved keyword. We let
P,Q,R to range over spied processes.

P,Q,R ::= · · · | spy : S.P spied processes

S ::= x | /0 spied set

When in spy : S.P the spied set S is equal to {x}, noted spy : x.P, this permits to make explicit which
(free) reduction the spy shall observe. Note that listening on multiple names can be easily programmed by
putting in parallel several spies. The spy process spy : /0.P, noted spy.P, will be used to detect reductions
protected by restriction. We let the free and bound names of the spy be defined as follows: fn(spy :
S.R) def

= S∪ fn(R) and bn(spy : S.R) def
= bn(R).

The semantics of spied processes is described by adding the communication rules in Figure 4 to those
in Figure 2: The rules describe a form of synchronization among three processes: a sender on channel x,
a receiver on channel x, and a spy on channel x. More in detail, rule [RS-COM] depicts a synchronization
among an input of the form x(y÷B).P, a sender and a spy, while rule [RS-T-COM] describes a similar
three-synchronization but for a trusted input of the form x[y : A].P.

The definition of observational equivalence for spied processes is obtained by extending Defini-

tion 3.5 to the semantics in Figure 4; we indicate the resulting equivalence with
•∼=. This will permit to

study the security of processes in presence of the spy. To make the picture clear, in Figure 5 we introduce
labelled transition semantics for spied processes . We introduce two new rules for the spy, [L-SPY] and
[L-SPY-COM], and re-define the rules for restriction, for hide and for communication of Figure 3. We
assume the existence of variable ν ∈N that cannot occur in the process syntax, and we use it to signal
restricted communications. We consider two new actions ?x and !x corresponding respectively to the
presence of a spy and to a signal of communication.

α ::= · · · |?x |!x

10 Hide and New in the π-calculus

spy : x.P
?x
−→ P spy.P

?ν

−→ P
[L-SPY],[L-SPY-RES]

P
x(y)
−−→ P′ Q

x〈y〉
−−→ Q′

P | Q
!x
−→ P′ | Q′

P
x(y)
−−→ P′ Q

(y)x〈y〉
−−−−→ Q′ y 6∈ fn(P)

P | Q
!x
−→ (newy)(P′ | Q′)

[L-COM],[L-CLOSE]

P
!x
−→ P′ Q

?x
−→ Q′

P | Q
τ

−→ P′ | Q′
[L-SPY-COM]

P
α

−→ P′ x 6∈ subj(α)

(newx)P
(|α|)x
−−→ (newx)P′

P
!x
−→ P′ x 6∈ subj(α)∪obj(α)

[hidex]P
[[α]]x
−−→ [hidex]P′

[L-NEW],[L-HIDE]

Figure 5: Labelled transitions for spied processes

It is convenient to define the notion of (free) subject and object of an action. We let subj(α)
def
= {x}

whenever α = x〈y〉,(y)x〈y〉,x(y), and be empty otherwise. We define obj(α)
def
= {y} whenever α =

x〈y〉,x(y), and obj(α) = /0 otherwise.
In rule [L-SPY] in Figure 5 the process spy : S.P can fire an action ?x and progress to P, provided

that x is accepted, or that x = ν . The dual action, !x, is fired in rules [L-COM] and [L-CLOSE] whenever
a communication occurred on a free channel x. Rule [L-SPY-COM] describes the eaves-dropping of a
communication. In rule [L-NEW] we use a partial function (|·|)x to relabel the action fired underneath
a restriction: we let (|α|)x

def
= α whenever x 6∈ fn(α), (|!x|)x

def
= !ν , (|?x|)x

def
= ?ν . This will be used to

signal restricted communications, as introduced. Differently, in rule [L-HIDE] we use a relabeling partial
function [[·]]x that makes invisible communications that occur under hide. We let [[α]]x

def
= α whenever

x 6∈ fn(α), [[!x]]x
def
= τ and [[?x]]x

def
= τ .

Definition 4.1 (Bisimilarity). A symmetric relation R over spied processes is a bisimulation if whenever

R1 R R2 and R1
α

−→ R′ then there exists a spied process R′′ such that R2
τ

=⇒
α̂

−→ τ
=⇒ R′′ and R′R R′′

where τ̂ is the empty string, and α̂ = α otherwise. Bisimilarity, noted
•
≈, is the largest bisimulation.

By using the same construction of Section 3.1, we obtain the main result of this section: observational
equivalence for spied processes and bisimilarity coincide. As a by-product, we can also use bisimulation
as a technique to prove that two processes cannot be distinguished by the spy.

Theorem 4.2 (Full Abstraction).
•∼==

•
≈.

5 Properties of the secret π-calculus

In this section we discuss some algebraic properties of the secret π-calculus, and we show how we can
implement the name matching operator. Lastly we provide an example of deployment of a mandatory

M. Giunti, C. Palamidessi and Frank D.Valencia 11

access control policy that is inspired by the D-Bus technology [19]. The proofs for this section are

contained in Appendix C. In the following, we write P 6
•∼= Q to indicate that (P,Q) 6∈

•∼=. We also write x〈〉
and omit to indicate the message in output whenever this is irrelevant, and use the notation [hideB]P to
indicate the process [hideb1] · · · [hidebn]P whenever B = {b1, . . . ,bn}.

Algebraic equalities and inequalities The first inequality illustrates the mechanism of blocked names.

x(y÷B).P 6
•∼= x(y÷B′).P B 6= B′ (2)

To prove (2) let z ∈ B′, z 6∈ B and consider the context C[−] = [hideB,B′][x〈z〉.ω〈〉 | −] with ω free,
ω 6∈ fn(P). By applying [R-COM] followed by applications of [R-HIDE] we have that C[x(y÷B).P] →
[hideB,B′][ω〈〉 | P{z/y}], that is C[x(y).P]⇓ω̄ . In contrast, we have that C[x(y÷B′).P] 6⇓ω̄ , because of
z ∈ B′. The case B′ ⊆ B is analogous.

The next inequality illustrates the discriminating power of the spy.

(newx)(x〈z〉 | x(y)) 6
•∼= 0 (3)

To prove (3), consider the context C[−] = spy.ω〈〉 |−. By applying [RS-COM], [R-NEW] and [R-STRUCT]
we infer C[(newx)(x〈y〉 | x(y))] → ω〈〉: that is, C[(newx)(x〈y〉 | x(y))]⇓ω̄ while C[0] 6⇓ω̄ .

The invisibility of communications protected by using the hide operator is established by means of
the equation below, which is proved by co-induction.

[hidex][x〈z〉 | x(y).Q]
•∼= [hidex][Q{z/y}] (4)

The last equation states the impossibility of extrusion of hidden channels.

[hidex][z〈x〉]
•∼= 0 (5)

Implementing name matching Name matching is not needed as an operator in our calculus (cf. [12]).
We show this by providing a semantics-preserving translation of the if-then-else construct [16]. Consider
the process ifx = y thenPelseQ which reduces to P whenever x = y, and reduces to Q otherwise. Let
Z def

= fn(ifx = y thenPelseQ); therefore there are names z1, . . . ,zn, n ≥ 0, s.t. Z = {x,z1, . . . ,zn}. Let
I = {1, . . . ,n} and assume k fresh. We define:

[[ifx = y thenPelseQ]]Z
def
= [hidek][y[w : k] | x〈k〉.(P] k) |I zi〈k〉.(Q] k)]

Whenever x = y, we have that the only possible reduction arises among the trusted input y[w : k] and
x〈k〉.(P]k), leading to P′ def

= [hidek][P]k |I zi〈k〉.(Q]k)]. Note that P and P′ have the same interactions
with the context, because k is blocked in all threads of P′: therefore Q cannot be unblocked. Formally,
we infer the following equation1:

[[ifx = x thenPelseQ]]Z
∼= P (6)

Consider now the case x 6= y and let y = z1. The matching process reduces to the rearranged process
[hidek][x〈k〉.(P] k) | Q] k |{2,...,n} zi〈k〉(Q] k)], which have the same behaviour of Q:

1Note that observational equivalence is not preserved by input-prefixing; the outlined translation could be indeed sensitive
to name aliasing.

12 Hide and New in the π-calculus

[[ifx = y thenPelseQ]]Z
∼= Q x 6= y (7)

Modeling dedicated channels Security mechanisms based on dedicated channels can be naturally mod-
eled in the secret π-calculus. D-Bus [19] is an IPC system for software applications that is used in many
desktop environments. Applications of each user share a private bus for asynchronous message-passing
communication; a system bus permits to broadcast messages among applications of different users. Ver-
sions smaller than 0.36 contain an erroneous access policy for channels which allows users to send and
listen to messages on another user’s channel if the address of the socket is known. We model this vul-
nerability by means of an internal attacker that leaks the user’s channel. In the specification below, two
applications of an user U1 utilize a private bus to exchange a password; in fact, the password can be
intercepted by the user U2 through the malicious code !sys〈c〉 of U1, which publishes c on the system
bus.

U1
def
= (newc)(!sys〈c〉 | (newpwd)c〈pwd〉 | c(x).P) U2

def
= sys(x).x(ypwd).Q (8)

The patch released by Fedora restricts the access to the user’s bus: only applications with the same
user-id can have access. We stress that this policy is mandatory: that is, the user cannot change it.
By using the secret π-calculus we can easily patch U1 by hiding the bus: U ′ def

= [hidec][!sys〈c〉 |
(newpwd)(c〈pwd〉) | c(x).P]. The following equation, which can be proved co-inductively, states that
the policy is fulfilled even in presence of internal attacks:

U ′
•∼= [hidec][(newpwd)(P{pwd/x})] (9)

6 Related work

Many analysis and programming techniques for security have been developed for process calculi. Among
these, we would mention the security analysis enforced by means of static and dynamic type-checking
(e.g. [13, 15, 10]), the verification of secure implementations and protocols that are protected by cryp-
tographic encryption (e.g. [7, 4, 2, 11]), and programming models that consider a notion of location
(e.g. [16, 21, 14]).

The paper [13] introduces a type system for a π-calculus with groups that permits to control the
distribution of resources: names can be received only by processes in the scope of the group. The intent
is, as in our paper, to preserve the accidental or malicious leakage of secrets, even in the presence of un-
typed opponents. A limitation of [13] is that processes that are not statically type-checked are interpreted
as opponents trying to leak secrets. On contrast, our aim is to consider systems where processes could
dynamically join the system at run-time; this permits us to analyze the secrecy of protocols composed by
trusted sub-systems that can grow in size of the number of the participants. While devising an algorithm
for type checking groups can be non-trivial (cf. [22]), we note that actual systems do not often rely on
types, even for local communications. For instance D-Bus (cf. Section 5) relies on a mandatory access
control policy enforced at the kernel level through process IDs. Our semantics-based approach appears
as adequate to describe such low-level mechanisms.

As discussed in the introduction, concrete implementations of π-calculi models do protect communi-
cations by means of cryptography. The problem of devising a secure, fully abstract implementation has
been first introduced in [1] and subsequently tackled for the join calculus in [4]. The paper [7] introduces
a bisimulation-based technique to prove equivalences of processes using cryptographic primitives; this

M. Giunti, C. Palamidessi and Frank D.Valencia 13

can be used to show that a protocol does preserve secrecy. We follow a similar approach and devise
bisimulation semantics for establishing the secrecy of processes running in an environment where the
distribution of channels is controlled. The presence of a spy in our model is reminiscent of the network
abstraction of [9]. In that paper, the network provides the low-level counter part of the model where
attacks based on bit-string representations, interception, and forward/reply can be formalized.

From the language design point of view, we share some similarity with the ideas behind the boxed
π-calculus [21]. A box in [21] acts as wrapper where we can confine untrusted process; communication
among the box and the context is subject to a fine-grained control that prevents the untrusted process to
harm the protocol. Our hide operator is based on the symmetric principle: processes within the scope of
an hide can run their protocol without be disturbed by the context outside it.

An interesting approach related to ours in spirit – but not in conception or details – is D-fusion [6].
The calculus has two forms of restriction: A ”ν” operator for name generation, and a ”λ” operator that
behaves like an existential quantifier and it can be seen as a generalization of an input binder. Both
operators allow extrusion of the entities they declare but only the former guarantees uniqueness. In
contrast our hide operator is not meant as an existential nor as an input-binder and it prevents the extrusion
of the name it declares.

Acknowledgements We wholeheartedly thank the extremely competent, anonymous reviewers of EX-
PRESS 2012. They went beyond the call of duty in providing excellent reports which have been very
helpful to improve our paper.

References

[1] Martı́n Abadi (1998): Protection in Programming-Language Translations. In: ICALP, LNCS 1443, Springer,
pp. 868–883, doi:10.1007/BFb0055109.

[2] Martı́n Abadi, Bruno Blanchet & Cédric Fournet (2007): Just fast keying in the pi calculus. ACM Trans. Inf.
Syst. Secur. 10(3), doi:10.1145/1266977.1266978.

[3] Martı́n Abadi & Cédric Fournet (2001): Mobile values, new names, and secure communication. In: POPL,
ACM press, pp. 104–115, doi:10.1145/360204.360213.

[4] Martı́n Abadi, Cédric Fournet & Georges Gonthier (2002): Secure Implementation of Channel Abstractions.
Inf. Comput. 174(1), pp. 37–83, doi:10.1006/inco.2002.3086.

[5] Martı́n Abadi & Andrew D. Gordon (1999): A Calculus for Cryptographic Protocols: The spi Calculus. Inf.
Comput. 148(1), pp. 1–70, doi:10.1006/inco.1998.2740.

[6] Michele Boreale, Maria Grazia Buscemi & Ugo Montanari (2004): D-Fusion: A Distinctive Fusion Calculus.
In: APLAS, pp. 296–310, doi:10.1007/978-3-540-30477-7 20.

[7] Michele Boreale, Rocco De Nicola & Rosario Pugliese (2001): Proof Techniques for Cryptographic Pro-
cesses. SIAM J. Comput. 31(3), pp. 947–986, doi:10.1137/S0097539700377864.

[8] Michele Boreale & Davide Sangiorgi (1998): Bisimulation in Name-Passing Calculi without Matching. In:
LICS, IEEE Computer Society, pp. 165–175, doi:10.1109/LICS.1998.705653.

[9] Michele Bugliesi & Riccardo Focardi (2010): Channel abstractions for network security. Mathematical
Structures in Computer Science 20(1), pp. 3–44, doi:10.1017/S0960129509990247.

[10] Michele Bugliesi & Marco Giunti (2005): Typed Processes in Untyped Contexts. In: TGC, LNCS 3705,
Springer, pp. 19–32, doi:10.1007/11580850 3.

[11] Michele Bugliesi & Marco Giunti (2007): Secure implementations of typed channel abstractions. In: POPL,
ACM press, pp. 251–262, doi:10.1145/1190216.1190253.

http://dx.doi.org/10.1007/BFb0055109
http://dx.doi.org/10.1145/1266977.1266978
http://dx.doi.org/10.1145/360204.360213
http://dx.doi.org/10.1006/inco.2002.3086
http://dx.doi.org/10.1006/inco.1998.2740
http://dx.doi.org/10.1007/978-3-540-30477-7_20
http://dx.doi.org/10.1137/S0097539700377864
http://dx.doi.org/10.1109/LICS.1998.705653
http://dx.doi.org/10.1017/S0960129509990247
http://dx.doi.org/10.1007/11580850_3
http://dx.doi.org/10.1145/1190216.1190253

14 Hide and New in the π-calculus

[12] Marco Carbone & Sergio Maffeis (2003): On the Expressive Power of Polyadic Synchronisation in pi-
calculus. Nord. J. Comput. 10(2), pp. 70–98, doi:10.1016/S1571-0661(05)80361-5.

[13] Luca Cardelli, Giorgio Ghelli & Andrew D. Gordon (2005): Secrecy and group creation. Inf. Comput.
196(2), pp. 127–155, doi:10.1016/j.ic.2004.08.003.

[14] Giuseppe Castagna, Jan Vitek & Francesco Zappa Nardelli (2005): The Seal Calculus. Inf. Comput. 201(1),
pp. 1–54, doi:10.1016/j.ic.2004.11.005.

[15] Matthew Hennessy (2005): The security pi-calculus and non-interference. J. Log. Algebr. Program. 63(1),
pp. 3–34, doi:10.1016/j.jlap.2004.01.003.

[16] Matthew Hennessy (2007): A Distributed Pi-Calculus. Cambridge University Press, New York, NY, USA.

[17] R. Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science 92, Springer-
Verlag.

[18] R. Milner, J. Parrow & D. Walker (1992): A Calculus of Mobile Processes, parts I and II. Inf. Comput.
100(1), pp. 1–77.

[19] Havoc Pennington, Anders Carlsson, Alexander Larsson, Sven Herzberg, Simon McVittie & David Zeuthen:
D-Bus Specification. Available at http://dbus.freedesktop.org.

[20] Davide Sangiorgi & David Walker (2001): The pi-calculus, a theory of mobile processes. Cambridge Uni-
versity Press.

[21] Peter Sewell & Jan Vitek (2003): Secure Composition of Untrusted Code: Box pi, Wrappers, and Causal-
ity. J. Comp. Sec. 11(2), pp. 135–188. Available at http://iospress.metapress.com/content/

6u3ue7xblwqprxhx/.

[22] Vasco T. Vasconcelos & Kohei Honda (1993): Principal Typing Schemes in a Polyadic pi-Calculus. In:
CONCUR, LNCS 715, Springer, pp. 524–538, doi:10.1007/3-540-57208-2 36.

A Proofs for Section 3

The aim of this section of the appendix is to prove that observational equivalence and bisimilarity coin-
cide (cf. Theorem 3.9).

A.1 Soundness

We start by proving Proposition 3.7; we need several results. The first lemma states that structural
congruence is preserved by the labelled semantics.

Lemma A.1. Let P
α

−→ P′ and assume Q≡ P. Then there is Q′ ≡ P′ such that Q
α

−→ Q′.

Proof. By induction on the number of rewriting steps Q ≡ P. We show the base case or one rewriting
step. For the axiom [hidex][P] | Q≡ [hidex][P | Q] x] the interesting case to analyze are rule [L-CLOSE]
and [L-PAR]; rule [L-COM] is analogous to [L-CLOSE], but easier. Assume that [L-CLOSE] holds and

that P | Q
τ

−→ (newy)(P′ | Q′) since P
x(y)
−−→ P′, Q

(y)x〈y〉
−−−−→ Q′. Let Q = [hidez]Q0. Given y 6∈ fn(P), we

have the axiom P |Q≡ [hidez][P]z |Q0]. From Q
(y)x〈y〉
−−−−→ Q′, Q = [hidez]Q0 and [L-HIDE] we infer that

there exists Q1 such that Q0
(y)x〈y〉
−−−−→ Q1 and Q′= [hidez]Q1 where k 6= x,y. Next, from P

x(y)
−−→ P′ and z 6= y

we infer that P] z
x(y)
−−→ P′] z. This can be proved by induction on the length of the inference P

x(y)
−−→ P′.

We apply [L-CLOSE] and infer that P] z | Q0
τ

−→ (newy)(P′] z | Q1). Notice that z 6∈ fn(P′), because

fn(P′) ⊆ fn(P)∪ y. We apply [L-HIDE] and infer [hidez][P] z | Q0]
τ

−→ [hidez][(newy)(P′] z | Q1)].

http://dx.doi.org/10.1016/S1571-0661(05)80361-5
http://dx.doi.org/10.1016/j.ic.2004.08.003
http://dx.doi.org/10.1016/j.ic.2004.11.005
http://dx.doi.org/10.1016/j.jlap.2004.01.003
http://dbus.freedesktop.org
http://iospress.metapress.com/content/6u3ue7xblwqprxhx/
http://iospress.metapress.com/content/6u3ue7xblwqprxhx/
http://dx.doi.org/10.1007/3-540-57208-2_36

M. Giunti, C. Palamidessi and Frank D.Valencia 15

We apply structural congruence and infer that [hidez][(newy)(P′] z | Q1)]≡ (newy)([hidez][P′] z | Q1]).
Since z 6∈ fn(P′), we have that (newy)([hidez][P′] z | Q1)]≡ (newy)(P′ | Q′). From transitivity of ≡ we

obtain the desired result, [hidez][P] z | Q0]
τ

−→ ≡ (newy)(P′ | Q′). The case P = [hidez]P0 is analogous,

but simpler. Assume now case [L-PAR] to hold and let P | Q
α

−→ P′ | Q be inferred from P
α

−→ P′ given
bn(α)∩ fn(Q) = /0. Suppose that Q = [hidex]Q0. We apply structural congruence and infer P | Q ≡
[hidex][P] x | Q0] where x 6∈ fn(P). Next, we have that [hidex][P] x | Q0]

alpha
= [hidez][P] z | Q0{z/x}]

for some z 6∈ fn(α). From P
α

−→ P′ we infer that P] z
α

−→ P′] z. We apply [L-PAR], and [L-HIDE] and

infer that [hidez][P] z | Q0{z/x}]
α

−→ [hidez][P′] z | Q0{z/x}]. From this we deduce that [hidex][P] x |
Q0]

α

−→ [hidez][P′] z | Q0{z/x}]. This is the desired result, since [hidez][P′] z | Q0{z/x}] ≡ P′ | Q.
For the axiom (newx)[hidey]P ≡ [hidey](newx)P we analyze rules [L-NEW],[L-HIDE] and [L-OPEN].

Assume that case [L-NEW] holds and (newx)P
α

−→ (newx)P′ since P
α

−→ P′ with x 6∈ fn(α). Let P =
[hidey]P0. We set x 6= y and swap the two binders by using the axiom: (newx)P≡ [hidey](newx)P0. From

P
α

−→ P′, P= [hidey]P0 and [L-HIDE] we infer that there is P1 such that P0
α

−→ P1 with P′= [hidey]P1 and

y 6∈ fn(α). We apply [L-NEW] and infer (newx)P0
α

−→ (newx)P1. An application of [L-HIDE] give us

the reduction [hidey](newx)P0
α

−→ [hidey](newx)P1, which is the desired result, since [hidey](newx)P1 ≡
(newx)[hidey]P1. Case [L-HIDE] is analogous. Assume [hidex]P

α

−→ [hidex]P′ since P
α

−→ P′ with
x 6∈ fn(α), and let P = (newy)P0. We apply the axiom [hidex]P ≡ (newy)[hidex]P0 and find P1 such

that P0
α

−→ P1 with P′ = (newy)P1 and y 6∈ fn(α). We apply [L-HIDE] and infer [hidex]P0
α

−→ [hidex]P1,

followed by [L-NEW] which give us the expected result: (newy)[hidex]P0
α

−→ (newy)[hidex]P1. Con-

sider now case [L-OPEN] and assume that (newy)P
(y)x〈y〉
−−−−→ P′ has been inferred from P

x〈y〉
−−→ P′. Let

P = [hidez]P0. We have that (newy)P ≡ [hidez](newy)P0. Since P
x〈y〉
−−→ P′ has been inferred by using

[L-HIDE], we infer that there is P1 such hat P0
x〈y〉
−−→ P1 with P′ = [hidez]P1 and z 6= x,y. We apply

[L-OPEN] and infer the reduction: (newy)P0
(y)x〈y〉
−−−−→ P1. An application of [L-HIDE] give us the ex-

pected result: [hidez](newy)P0
(y)x〈y〉
−−−−→ [hidez]P1.

The next lemma establishes the correspondence among the reduction relation defined in Figure 2 and

the τ action in Figure 3. We write P
τ

−→ ≡ P′ to indicate that there is P′′ ≡ P′ such that P
τ

−→ P′′.

Lemma A.2. P → P′ if and only if P
τ

−→ ≡ P′.

Proof. We first prove the left direction. Assume P → P′. We proceed by induction on the length of the
inference. Assume case [R-COM] holds since z 6∈ B and x(y÷B).Q | x〈z〉.P → Q{z/y} | P. By applying

[L-OUT] and [L-IN] we infer respectively x〈z〉.P
x〈z〉
−−→ P and x(y÷B).Q

x(z)
−−→ QB, because of z 6∈ B.

We apply [L-COM] and deduce x(y÷B).Q | x〈z〉.P
τ

−→ Q{z/y} | P. The case [R-T-COM] is similar.
Assume now that case [R-STRUCT] holds since P → P′ is inferred from P ≡ Q, Q → Q′ and Q′ ≡ P′.

By I.H. we infer that Q
τ

−→ Q′′ ≡ Q′. We apply Lemma A.1 and infer P
τ

−→ P′ ≡ Q′′. By transitivity

of ≡ we infer the desired result, Q
τ

−→ ≡ Q′. The remaining cases are obtained by induction. We omit

all the details. To see the right to the left direction, assume P
τ

−→ ≡ P′. We proceed by induction on

16 Hide and New in the π-calculus

the length of the inference, eventually inferring the shape of P. Assume case [L-CLOSE] holds since

P | Q
τ

−→ (newz)(P′ | Q′) is inferred from P
x(z)
−−→ P′ and Q

(z)x〈z〉
−−−−→ Q′ where z 6∈ fn(P). Therefore or (i)

P | Q ≡ (newz)C[x(y÷B).P1 | x〈z〉.Q1] or (ii) P | Q ≡ (newz)C[x[y : A].P1 | x〈z〉.Q1], for some context
C, process P1,Q1 and name set A,B. In both cases we have that P′ | Q′ ≡ (newz)C[P1{z/y} | Q1]. In
case (i) by applications of [R-COM],[R-NEW], followed by applications of [R-PAR], [R-NEW] and
[R-STRUCT] we infer P | Q → (newz)C[P1{z/y} | Q1]. Another application of [R-STRUCT] gives us
the desired result, P | Q → (newz)(P′ | Q′). In case (ii) we apply [R-T-COM] and rules for restriction,
parallel composition, and structural rearrangements and we obtain the same result. The remaining cases
are obtained straightforwardly by induction.

Using Lemma A.1, we can also define a variation of the proof technique. We let P′ ≡ R ≡ Q′

whenever there are P′′ ≡ P′ and Q′′ ≡ Q′ such that P′′R Q′′.

Definition A.3 (Bisimulation up to structural congruence). A symmetric relation R over extended pro-

cesses is a bisimulation up to structural congruence if whenever PR Q and P
α

−→ P′ then there exists

a process Q′ such that Q τ
=⇒

α̂

−→ τ
=⇒ Q′ and P′ ≡ R ≡ Q′ where τ̂ is the empty string and α̂ = α

otherwise.

Proposition A.4. If R is a bisimulation up to structural congruence then R ⊆≈.

The next lemmas say that bisimilarity is closed under the new and the hide operators.

Lemma A.5 (Closure under new). If P≈ Q then (newx)P≈ (newx)Q.

Lemma A.6 (Closure under hide). If P≈ Q then [hidex]P≈ [hidex]Q.

The next result says that bisimilarity is closed under composition.

Lemma A.7 (Closure under composition). If P≈ Q then P | J ≈ Q | J.

Proof. Let (new ã)(P | J)R (new ã)(Q | J) whenever P≈Q with ã is a possible empty sequence of names

a1, . . . ,an, such that if i ≥ 1 then (new ã) = (newa1) · · ·(newan). Assume that (new ã)P | J
α

−→ M. We
proceed by induction on the length of the inference and show that R is included in ≈. There are
many cases. The most interesting cases arise when the reduction is inferred by interaction of P and J. To

illustrate, assume that [L-COM] has been applied since ã= ε , P
x(y)
−−→ P′, J

x〈y〉
−−→ J′, and M =P′ | J′. From

P≈Q we find Q0,Q1 and Q′ such that Q τ
=⇒ Q0

x(y)
−−→ Q1

τ
=⇒ Q′ with P′ ≈Q′. Applications of [L-PAR],

followed by [L-COM], and applications of [L-PAR], let us infer: Q | J τ
=⇒ Q0 | J

τ

−→ Q1 | J′
τ

=⇒ Q′ |

J′. As a further communication example, assume that [L-CLOSE] applied since ã = ε , P
(y)x〈y〉
−−−−→ P′,

J
x(y)
−−→ J′, and M =(newy)(P′ | J′). From P≈Q we find Q0,Q1,Q′ such that Q τ

=⇒ Q0
(z)x〈z〉
−−−−→ Q1

τ
=⇒ Q′

with P′ ≈ Q′. Applications of [L-PAR], followed by [L-CLOSE], and applications of [L-PAR], give us

the expected result (up-to alpha renaming): Q | J τ
=⇒ Q0 | J

τ

−→ Q1 | J′
τ

=⇒ (newz)(Q′ | J′). Now assume

that (newa)(P | J)
α

−→ M has been inferred by using [L-NEW]. We infer that M = (newa)M′ for some M′

such that P | J
α

−→ M′ with a 6∈ fn(α). By I.H. there is N′ such that Q | J τ
=⇒

α

−→ τ
=⇒ N′ with M′R N′.

By applications of [L-NEW] we infer (newa)(Q | J) τ
=⇒

α

−→ τ
=⇒ (newa)N′. By definition of R we

infer that (newa)M′R (newa)N′, as desired.

M. Giunti, C. Palamidessi and Frank D.Valencia 17

Given the properties of the labelled transition semantics established with the previous lemmas, we
are able to prove that bisimilar processes are behaviourally equivalent.

Proof of Proposition 3.7 Let PR Q whenever P≈ Q. We show that R is an observational equivalence
up to structural congruence, which implies that R is included in observational equivalence. The proof of
this fact is straightforwardly obtained by a diagram chasing argument. To see reduction closure, assume

P → P′. By Lemma A.2 we infer P
τ

−→ P′′ ≡ P′. Since P ≈ Q, we let Q match this move by finding
Q′′ ≈ P′′ such that Q τ

=⇒ Q′′. Take Q′ ≡ Q′′. By multiple applications of Lemma A.2 we infer that here
is Q1 ≡ Q′ such Q⇒ Q1. This is what we need, since P′ ≡ R ≡ Q′.

To see barb preservation, assume P↓x. There are two cases corresponding to (i) P ≡ C[x(y : A).P1]
with x free in P and A∩bn(P) = /0 and (ii) P≡C[x[y÷B].P1] with x free in P.

To see case (i), let z ∈ A. By applications or [L-NEW],[L-HIDE],[L-PAR] and [L-IN] we infer

P
x(z)
−−→ C[P1{z/y}]

We exploit P≈ Q and infer the shape of the redex Q0 of Q:

Q τ
=⇒ Q0

x(z)
−−→ τ

=⇒ Q′ C[P1{z/y}BB]≈ Q′

(1) Q0 ≡ D[x(y : A′).Q1] x 6∈ bn(Q0),A′∩bn(Q0) = /0

(2) Q0 ≡ D[x[y÷B′].Q1] x 6∈ bn(Q0)

In both cases we infer Q0 ↓x and in turn Q⇓x. Case (ii) is analogous. Assume now P ↓x. We have
P≡C[x〈y〉.P1] with x free and y not hidden in C. We first draw the case whether the output y is bound by
a new in C, that is C = (newy)C′. By applications or [L-NEW], [L-HIDE],[L-PAR], and [L-OPEN] we
infer

C[x〈y〉.P1]
(y)x〈y〉
−−−−→C′[P1]

We exploit P≈ Q and infer the shape of the redex Q0 of Q:

Q τ
=⇒ Q0

(y)x〈y〉
−−−−→ τ

=⇒ Q′ C[x〈y〉.P]
(y)x〈y〉
−−−−→ ≈ Q′

Q0 ≡ (newz)D[x〈z〉.Q1] x ∈ fn(Q0)

We conclude that Q0 ↓x̄ and in turn Q⇓x̄, as required.
Next assume P ≡ C[x〈y〉.P1] with x,y free in P. By applications or [L-NEW], [L-HIDE],[L-PAR],

and [L-OUT] we infer

C[x〈y〉.P1]
x〈y〉
−−→ C[P1]

We exploit P≈ Q and infer the shape of the redex Q0 of Q:

Q τ
=⇒ Q0

x〈y〉
−−→ τ

=⇒ Q′ C[P]≈ Q′

Q0 ≡ D[x〈y〉.Q1] {x,y} ⊆ fn(Q0)

We conclude that Q0 ↓x̄ and in turn Q⇓x, as required. Lastly contextuality of R is obtained by using
Lemmas A.5–A.7.

18 Hide and New in the π-calculus

A.2 Completeness

To obtain the reverse direction, namely that observationally equivalent processes are bisimilar, we attack
the following lemmas. The first lemma says that observationally equivalent processes have the same
weak barbs.

Lemma A.8. Let P∼= Q. Then

• P⇓x iff Q⇓x

• P⇓x iff Q⇓x

• P 6⇓ x iff Q 6⇓ x

• P 6⇓x iff Q 6⇓x

Proof. Assume P∼= Q. The first item is obtained by applying symmetry and reduction closure of ∼=. To
see the left to the right direction. Assume P⇓x. Therefore there is P⇒ P′ with (i) P′ ≡ C[x(y : A).P1]
with x free in P′ and A∩ fn(P′) 6= /0 or (ii) P′ ≡C[x[y÷B].P1] with x free in P′. In both cases by reduction
closure we infer that there is Q′ such that Q⇒ Q′ with P′ ∼= Q′. From P′ ↓x we infer Q′⇓x, as required.
The opposite direction is obtained by symmetry and induction. If Q⇒ Q′ and (iii) Q′ ≡C[x(y : A).Q1]
with x free in Q′ and A∩ fn(Q′) 6= /0 or (iv) Q′ ≡C[x[y÷B].Q1] with x free in Q′, then from P ∼= Q we
infer Q ∼= P. We proceed by induction on the number of reductions Q⇒ Q′ and shows that there exists
P′ such that P⇒ P′ with Q′ ∼= P′. Hence P′⇓x, as required. The second item is analogous. For the third
item, to see the left to the right direction assume that P 6⇓x. Therefore there not exists P⇒ P′ such that (a)
P′ ≡C[x(y : A).P1] with x∈ fn(P′) and A∩bn(P′) 6= or (b) P′ ≡C[x[y÷B].P1] with x free in P′. Now the
first item applied to the hypotheses Q⇓x and Q∼= P (by symmetry of∼=) would imply P⇓x, contradiction.
Therefore Q 6⇓x, as requested. To see the opposite direction, assume Q 6⇓x. If we apply the first item to
P ∼= Q and the hypothesis P⇓x we can proceed as in the other direction and infer Q⇓x, contradiction.
Therefore P 6⇓ x. The fourth item is analogous.

To prove Proposition 3.8, we associate a context Cα to each label α different from τ (cf. [16]). Let
A = {a1, . . . ,an} be a set of names such that fn(α) ⊆ A, and assume that there are names ω,ψ1, . . . ,ψn

such that {ω,ψ1, . . . ,ψn}∩A = /0. We define:

CA
x(y)[−]

def
= − | x〈y〉.ω〈〉 y 6= ω

CA
α [−]

def
= − | [hidek][x(z).(z[w : k] | ω〈〉) | a1〈k〉.ψ1〈〉 | · · · | an〈k〉.ψn〈〉]

α = x〈y〉,(y)x〈y〉

We also define

C′y
def
= [hidek][y[w : k] | ω〈〉 | a1〈k〉.ψ1〈〉 | · · · | an〈k〉.ψn〈〉] ∀i ∈ 1, . . . ,n .y 6= ai

C′′y
def
= [hidek][ω〈〉 | ψl〈〉 | ai〈k〉.ψi〈〉 | · · · | a j〈k〉.ψ j〈〉]

where in C′′y we assume that the sequence l, i . . . j is a permutation of 1, . . . ,n such that al = y.

Lemma A.9. Let P be a process s.t. fn(P) = {a1, . . . ,an}
def
= A, with n > 0. The following hold.

M. Giunti, C. Palamidessi and Frank D.Valencia 19

1. If P
x(y)
−−→ P′ then CA

x(y)[P]
τ

−→ P′ | ω〈〉

2. If P
x〈y〉
−−→ P′ then CA

x〈y〉[P]
τ

=⇒ ≡ P′ |C′′y

3. If P
(y)x〈y〉
−−−−→ P′ then CA

(y)x〈y〉[P] =⇒CP
def
= (newy)(P′ |C′y) and CP 6⇓ψ̄i for all i = 1, . . . ,n

4. If CA
x(y)[P]⇓ω̄ then CA

x(y)[P]
τ

=⇒ P′ | ω〈〉 and P
x(y)
==⇒ P′

5. Assume CA
x〈y〉[P]⇓ω̄ ,⇓ψ̄l

. Then CA
x〈y〉[P]

τ
=⇒ ≡ P′ |C′′y and P

x〈y〉
==⇒ P′

6. Assume CA
(y)x〈y〉[P]⇓ω̄ ,6⇓ψ̄i for i= 1, . . . ,n. Then CA

(y)x〈y〉[P] =⇒ (newy)(P′ |C′y) where y 6∈ fn(CA
(y)x〈y〉[0])

and P
(y)x〈y〉
====⇒ P′

Proof. 1) is obtained by applying [L-COM]. To see 2), assume that P
x〈y〉
−−→ P′. Since y is free in P, there

is al ∈ A such that y = al . We apply [L-IN], [L-PAR] followed by [L-HIDE] and infer

CA
x〈y〉[0]

x(y)
−−→ C′y

We apply [L-COM] and infer CA
x〈y〉[P]

τ

−→ P′ | C′y. Since y = al , we can apply [L-COM] followed by

[L-HIDE] and infer C′y
τ

−→ [hidek][0 |ω〈〉 |ψl〈〉 | ai〈k〉.ψi〈〉 | · · · | an〈k〉.ψ j〈〉]. The result then follows by
applying [L-PAR] and structural congruence.

To see 3), assume P
(y)x〈y〉
−−−−→ P′. Therefore there is not ai ∈ A such that ai = y. We proceed as in the

previous case and infer CA
x〈y〉[P]

τ

−→ (newy)(P′ |C′y) by applying [L-IN], [L-PAR],[L-HIDE] followed by
[L-CLOSE]. Now since ai 6= y for all i = 1, . . . ,n we cannot apply [L-COM] in order to unblock some
output ψi〈〉.Therefore (newy)(P′ |C′y) 6⇓ ψi, as required.

For the reverse direction, consider case 4) and assume that CA
x(y)[P]⇓ω̄ . Since ω is not in the free

names of P, it needs to be that CA
x(y)[P]

τ
=⇒ P′ | ω〈〉 with ω〈〉 unblocked by interaction of P and CA

x(y)[−]

over x. We have that CA
x(y)[P]

τ
=⇒ P0 | x〈y〉.ω〈〉 and [L-COM] is applied with the hypothesis P0

x(y)
−−→ P1

and x〈y〉.ω〈〉
x〈y〉
−−→ ω〈〉 and P1 |ω〈〉

τ
=⇒ P′ |ω〈〉. From the hypothesis CA

x(y)[P]
τ

=⇒ P0 | x〈y〉.ω〈〉 we infer

that P τ
=⇒ P0. From P1 | ω〈〉

τ
=⇒ P′ | ω〈〉 and ω not occurring in the free names of P (which contain

those of P1), and ω 6= y, we infer that the reductions are not inferred by interaction on channel ω , that is:
P1

τ
=⇒ P′. The result then follows by concatenating the reductions for P,P0,P1.
To see 5), assume CA

x〈y〉[P]⇓ω̄ ,⇓ψ̄l
. Since ω,ψl are not in the free names of P, it needs to be that

there is a redex with a very specific form: CA
x〈y〉[P]

τ
=⇒CP1

def
= P1 | [hidek][0 | ω〈〉 | ψl〈〉 | ai〈k〉.ψi〈〉 |

· · · | a j〈k〉.ψ j〈〉] with l, i . . . j a permutation of 1, . . . ,n such that al = y. Indeed, the output ω〈〉 has been

unblocked by interaction of CA
x〈y〉[−] and P. Note that CP1 ≡ C′′y . We infer that there is P

x〈z〉
==⇒ P′ such

that
CA

x〈y〉[P]
τ

=⇒CP′
def
= P′ | [hidek][z[w : k] | ω〈〉 | a1〈k〉.ψ1〈〉 | · · · | an〈k〉.ψn〈〉]

Indeed, z cannot be bound in P, since this would imply CA
x〈y〉[P] 6⇓ψ̄i for all i ∈ 1, . . . ,n, contradiction.

Consider process CP′ . Process P′ cannot interfere with the process protected by the hide, because z[w : k]

20 Hide and New in the π-calculus

does accept only the secret name k, and because the threads ai〈k〉.ψi〈〉 cannot extrude the scope of k (cf.
the encoding of matching in Section 5). From these results we infer that

P′ τ
=⇒ P1 and there exists al = z such that

[hidek][z[w : k] | ω〈〉 | a1〈k〉.ψ1〈〉 | · · · | an〈k〉.ψn〈〉]
τ

−→ ≡
[hidek][ω〈〉 | ψl〈〉 | ai〈k〉.ψi〈〉 | · · · | a j〈k〉.ψ j〈〉]

with l, i . . . j a permutation of 1, . . . ,n. By applications of [L-PAR] we obtain CP′
τ

=⇒CP1 , as required.
Lastly we show 6). Assume that CA

(y)x〈y〉[P]⇓ω̄ ,6⇓ψ̄i for i = 1, . . . ,n. To unblock the barb on omega, the

redex must be of a very specific form: CA
(y)x〈y〉[P]

τ
=⇒ CP1 ≡ (newy)(P1 | [hidek][z[w : k] |ω〈〉 | a1〈k〉.ψ1〈〉 |

· · · | an〈k〉.ψn〈〉]) where we assume y occurring in P′ and z sent from P to the context. Now the hypothesis
z ∈ fn(P) leads to a contradiction, because in such case there would exist al ∈ A such that ai = z which
would imply CA

(y)x〈y〉[P]⇓ψ̄l
. Therefore z is fresh, that is: z is bound by the (newy) declaration. We infer

that there is P′ such that P
(y)x〈y〉
====⇒ P′ and CA

x〈y〉[P]
τ

=⇒CP′ where:

CP′
def
= (newy)(P′ |C′y)

As in the previous case, we infer that P′ and the process protected by the hide cannot interact, because the
protected process cannot both intrude names from the context and extrude the secret name to the context.
Therefore P′ τ

=⇒ P1. By applications of [L-PAR], followed by [L-NEW], the result then follows.

Proof of Proposition 3.8 Let PR Q whenever P∼= Q and assume that P
α

−→ P′. We show that there is Q′

such that Q α̂
=⇒ Q′ and P′ ≡ R ≡Q′; Proposition A.4. then implies the desired result. Whenever α = τ ,

we use reduction-closure of ∼= to find Q′ such that Q =⇒ Q′ with P′ ∼= Q′. By repeated applications of
Lemma A.2 we infer Q τ

=⇒ Q′, which is the desired result since P′R Q′. Otherwise assume α 6= τ . We
exploit contextuality of ∼= and infer that CA

α [P]∼=CA
α [Q] where we let A = fn(P)∪ fn(Q). We proceed by

systematic application of Lemma A.9.

(case α = x(y)). By Lemma A.9(1) we have Cα [P]
τ

−→ P′ | ω〈〉. From reduction closure we infer that
Cα [Q]

τ
=⇒CQ ∼= P′ | ω〈〉. By barb preservation (Lemma A.8) we infer CQ⇓ω̄ . By Lemma A.9(3)

we infer that CQ
τ

=⇒ Q′ | ω〈〉 and Q α
=⇒ Q′. Now, by reduction closure and barb preservation we

obtain P′ | ω〈〉 ∼= Q′ | ω〈〉. From this we obtain that P′ ∼= Q′, because of ω 6∈ fn(P,Q). The formal
proof is by co-induction (cf. [16]): we omit all the details. Therefore P′R Q′, as desired.

(case α = x〈y〉). By Lemma A.9(2) we have Cα [P]
τ

−→ P′ |C′′y . We find CQ such that Cα [Q]
τ

=⇒CQ∼=P′ |
C′′y . Since P′ |C′′y ↓ ψl , from P∼= Q and Lemma A.8 we infer that CQ⇓ψl

. We apply Lemma A.9(5)

and infer CQ
τ

=⇒ Q′ | C′′y and Q
x〈y〉
==⇒ Q′. From reduction closure and barb preservation we infer

P′ | C′′y ∼= Q′ | C′′y . By definition of C′′y we have that C′′y does not interact with P′,Q′, because the
threads ai〈k〉.ψi〈〉 | · · · | a j〈k〉.ψ j〈〉 are protected by the hide. As in the previous case, we conclude
that P′ ∼= Q′, and in turn P′R Q′, as requested.

(case α = (y)x〈y〉). By Lemma A.9(3) we have that CA
α [P] =⇒CP

def
= (newy)(P′ | C′y) with CP ↓ω and

CP 6⇓ψi , for all i ∈ 1, . . . ,n. By reduction closure we find CQ such that CA
α [P] =⇒CQ ∼= CP. In

M. Giunti, C. Palamidessi and Frank D.Valencia 21

particular, because of Lemma A.8 we deduce that CQ ⇓ω̄ and CQ 6⇓ψi . We apply Lemma A.9(6)

and infer that CQ =⇒ (newy)(Q′ |C′y) with y not in the context and Q
(y)x〈y〉
====⇒ Q1. We deduce that

(newy)(P′ |C′y)∼= (newy)(Q′ |C′y), because C′y cannot interact both with P′ and Q′. Moreover, we
have that (1) P′⇓y iff Q′⇓y and (2) P′⇓ȳ iff Q′⇓ȳ. As an example of the proof of this claim, we show
(2); (1) is analogous. Indeed given an fresh name φ we define the context D[−] =− | x(z).z(w).φ〈〉
such that D[P]⇓φ̄ iff P′ ⇓ȳ. This implies D[Q]⇓φ̄ iff Q′ ⇓ȳ. As in the previous cases, from these
results we infer that P′ ∼= Q′, and in turn P′R Q′, as requested.

B Proofs for Section 4

In order to prove Theorem 4.2, or the characterization of observational equivalence for spied processes in
terms of bisimilarity, we start by establishing that the latter relation is contained in the former. The first
step is to show a correspondence among the two semantics. We need the following technical lemmas.

Lemma B.1. Let P
α

−→ ≡ P′ and let α ∈ {!x,?x,τ}.

1. If α =!x then

(a) P≡C[x(y÷B).P1 | x〈z〉.Q] and z 6∈ B and P′ ≡C[P1{z/y} | Q] or

(b) P≡C[x[y : A].P1 | x〈z〉.Q] and z ∈ A and P′ ≡C[P1{z/y} | Q]

Moreover, if x = ν then x ∈ bn(P) otherwise x ∈ fn(P).

2. if α =?x then P≡C[spy : x.R] and P′ ≡C[R]

3. If α = τ then

(a) P≡C[x(y÷B).P1 | x〈z〉.Q | spy : x.R] and z 6∈ B and and P′ ≡C[P1{z/y} | Q | R] or

(b) P≡C[x[y : A].P1 | x〈z〉.Q | spy : x.R] and z ∈ A and P′ ≡C[P1{z/y} | Q | R]
(c) P≡ [hidex]C[x(y÷B).P1 | x〈z〉.Q] and z 6∈ B and P′ ≡ [hidex]C[P1{z/y} | Q]

(d) P≡ [hidex]C[x[y : A].P1 | x〈z〉.Q] and z ∈ A and P′ ≡ [hidex]C[P1{z/y} | Q]

The next lemma establishes a correspondence among reductions and τ-reductions for spied pro-
cesses.

Lemma B.2. The following hold.

• If R → R′ then R
τ

−→ R′;

• If R
τ

−→ ≡ R′ then R → R′.

Sketch. Similar to the proof of Lemma A.2. We proceed by induction and we sistematically apply
Lemma B.1.

The next result says that bisimilarity is included in observtional equivalence for spied processes.

Proposition B.3 (Soundness). If P
•
≈ Q then P

•∼= Q.

22 Hide and New in the π-calculus

Proof. We follow the same schema of the proof of of Proposition 3.7 in Appendix A. Let PR Q whenever
P≈ Q. We show that R is an observational equivalence up to structural congruence, which implies that
R is included in observational equivalence. Barb preservation is unchanged since we have the same
observables of Section 3. Reduction closure is provided by Lemma B.2. Contextuality is provided by
showing that

•≈ is closed w.r.t. restriction, hide, and parallel composition. As an example of the last
claim, let (new ã)(P | J)R (new ã)(Q | J) whenever P ≈ Q and ã is a possible empty sequence of names
a1, . . . ,an, such that if i ≥ 1 then (new ã) = (newa1) · · ·(newan). We then show that R is included in ≈
by proceeding by induction on the length of the inference (new ã)(P | J)

α

−→ M (cf. Proposition A.7).

Here the interesting case is α = τ inferred from (a) P
!x
−→ P′ and J

?x
−→ J′ or (b) P

?x
−→ P′ and J

!x
−→ J′.

Assume case (a); thefore from P≈ Q we infer Q !x
=⇒ Q′ for some Q′

•
≈ P′. This let us infer that there is

N such that (new ã)(Q | J) =⇒ N ≡ (new ã)(Q′ | J′) and M R N, as required. Case (b) is analogous.

Next we tackle the completeness direction of Theorem 4.2.

Proposition B.4 (Completeness). If P
•∼= Q then P

•
≈ Q.

Proof. We extend the syntax of processes Cα defined in Appendix A to actions !x,?x. Given an action α

different from τ , let A be a set of names such that fn(α)⊆ A and ω 6∈ A, and define

CA
α [−]

def
= ... Appendix A α = x(y),x〈y〉,(y)x〈y〉

CA
!x[−]

def
= spy : x.ω〈〉 x 6= ν

CA
?x[−]

def
= x(y).ω〈〉 | x〈〉 x 6= ν

CA
!ν [−]

def
= spy.ω〈〉

CA
?ν [−]

def
= (newx)(x(y).ω〈〉 | x〈〉)

Let PR Q whenever P
•∼= Q. We show that R is a bisimulation up-to structural congruence. Assume

P
α

−→ P′. We need the following result (cf. Lemma A.9).

1. P
!x
−→ P′ implies CA

!x[P] =⇒ P′ | ω〈〉

2. P
?x
−→ P′ implies CA

?x[P] =⇒ P′ | ω〈〉

3. CA
!x[P]⇓ω̄ implies CA

!x[P] =⇒ P′ | ω〈〉 and P !x
=⇒ P′

4. CA
?x[P]⇓ω̄ implies CA

?x[P] =⇒ P′ | ω〈〉 and P ?x
=⇒ P′

where fn(P) ⊆ B. Then the proof proceed by following the schema of Proposition 3.8: we omit all
details.

Proof of Theorem 4.2 Apply propositions B.3 and B.4.

M. Giunti, C. Palamidessi and Frank D.Valencia 23

C Proofs from Section 5

To illustrate our method, we prove equation (4): [hidex][x〈z〉 | x(y).Q]
•∼= [hidex][Q{z/y}]. To show this

result we consider the relation R such that R1 R R2 whenever a) R1 = [hidex][x〈z〉 | x(y).Q] and R2 =
[hidex][Q{z/y}] or b) R1 = R2, and we show that is a bisimulation up to structural congruence, which

implies R ⊆
•
≈ (cf. Proposition A.4). From

•
≈=

•∼= the result then follows. The proof is easy, since
the thread on the left can only fire an action labeled with τ via [L-HIDE] and in turn move to process

[hidex][0 | Q] which is congruent to [hidex][Q]. For the other direction, whenever [hidex][Q]
α

−→ Q we

know that Q = [hidex]Q′ for some Q′ such that Q
α

−→ Q′ and x 6∈ fn(α). We match this move with

[hidex][x〈z〉.0 | x(y).Q]
τ

−→
α

−→ [hidex][0 | Q′].
As a further example, we have that equation (5) holds since both [hidex][z〈x〉] and 0 have no labelled

transitions.
Lastly equation (9), which describes that the patch for D-Bus is effective, can be easily proved by

relying on equations (4) and (5).

	Introduction
	Secret -calculus
	Observational equivalence
	Characterization

	Distrusting communications protected by restriction
	Properties of the secret -calculus
	Related work
	Proofs for Section 3
	Soundness
	Completeness

	Proofs for Section 4
	Proofs from Section 5

