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Abstract

We aim to provide a Feynman-Kac type representation for Hamilton-Jacobi-Bellman
equation, in terms of Forward Backward Stochastic Differential Equation (FBSDE) with
a simulatable forward process. For this purpose, we introduce a class of BSDE where
the jumps component of the solution is subject to a partial nonpositive constraint.
Existence and approximation of a unique minimal solution is proved by a penalization
method under mild assumptions. We then show how minimal solution to this BSDE
class provides a new probabilistic representation for nonlinear integro-partial differential
equations (IPDEs) of Hamilton-Jacobi-Bellman (HIB) type, when considering a regime
switching forward SDE in a Markovian framework, and importantly we do not make
any ellipticity condition. Moreover, we state a dual formula of this BSDE minimal
solution involving equivalent change of probability measures. This gives in particular
an original representation for value functions of stochastic control problems including
controlled diffusion coefficient.
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1 Introduction

The classical Feynman-Kac theorem states that the solution to the linear parabolic partial
differential equation (PDE) of second order:

% +b(x).Dyv + %trww(x)D%v) +f@) = 0, (t2)€[0,T) xR,

U(T7$) = 9(517), l‘GRd,

may be probabilistically represented under some general conditions as (see e.g. [12]):

otr) = B[ | s + () (1)

where X% is the solution to the stochastic differential equation (SDE) driven by a d-
dimensional Brownian motion W on a filtered probability space (2, F, (F;)¢, P):

dXs = b(Xs)ds+ o(Xs)dWs,

starting from z € R? at ¢ € [0, T]. By considering the process Y; = v(t, X;), and from Itd’s
formula (when v is smooth) or in general from martingale representation theorem w.r.t. the
Brownian motion W, the Feynman-Kac formula (1)) is formulated equivalently in terms
of (linear) Backward Stochastic Equation:

T T
i = g(X7) +/ f(XS)dS—/ ZsdWs, t<T,
t t

with Z an adapted process, which is identified to: Z; = o7(X;)D,v(t, X;) when v is smooth.
Let us now consider the Hamilton-Jacobi-Bellman (HJB) equation in the form:

% + sup [b(z, a).Dyv + %tr(acﬂ(:n, a)D%v) + f(z,a)] = 0, on[0,T)x RY, (1.2)
acA

U(T7$) = 9(517), l‘ERd,

where A is a subset of R?. It is well-known (see e.g. [25]) that such nonlinear PDE is the
dynamic programming equation associated to the stochastic control problem with value
function defined by:

T
o(tx) = supE] / FOXEP ag)ds + g(X55)] (1.3)
o t
where X% ig the solution to the controlled diffusion:
dXZ = (XS as)ds+ o(XS, as)dWs,

starting from z at ¢, and given a predictable control process « valued in A.

Our main goal is to provide a probabilistic representation for the nonlinear HJB equation
using Backward Stochastic Differential Equation (BSDEs), namely the so-called nonlinear
Feynman-Kac formula, which involves a simulatable forward process. One can then hope



to use such representation for deriving a probabilistic numerical scheme for the solution to
HJB equation, whence the stochastic control problem. Such issues have attracted a lot of
interest and generated an important literature over the recent years. Actually, there is a
crucial distinction between the case where the diffusion coefficient is controlled or not.

Consider first the case where o(x) does not depend on a € A, and assume that oo™ (z)
is of full rank. Denoting by 0(z,a) = o7 (z)(co™(x))"'b(x,a) a solution to o(x)0(z,a) =
b(x,a), we notice that the HJB equation reduces into a semi-linear PDE:

20 4 3r(00"(@) D) + Fla, 0" Dev) = 0, (L4)

where F(x,2) = sup,c4[f(z,a)+0(x,a).z] is the f-Fenchel-Legendre transform of f. In this
case, we know from the seminal works by Pardoux and Peng [20], [21], that the (viscosity)
solution v to the semi-linear PDE (I.4)) is connected to the BSDE:

T T
Yo = g0+ [ PO zds— [ zaw, e<T (1.5)
t t

through the relation Y; = v(t, X?), with a forward diffusion process
dX? = o(X%)aw..

This probabilistic representation leads to a probabilistic numerical scheme for the resolution
to (L)) by discretization and simulation of the BSDE (L)), see [5]. Alternatively, when the
function F(z,z) is of polynomial type on z, the semi-linear PDE (IL4]) can be numerically
solved by a forward Monte-Carlo scheme relying on marked branching diffusion, as recently
pointed out in [14]. Moreover, as showed in [10], the solution to the BSDE (LI) admits a
dual representation in terms of equivalent change of probability measures as:

T
Vi = essswpE”[ [ f(X%an)ds + g(X9)|7], (1.6)
o t
where for a control a, P% is the equivalent probability measure to P under which
dX? = b(X? ay)ds +o(X0)dWe,

with W a P*Brownian motion by Girsanov’s theorem. In other words, the process X° has
the same dynamics under P than the controlled process X® under P, and the representation
(6] can be viewed as a weak formulation (see [9]) of the stochastic control problem (L3])
in the case of uncontrolled diffusion coefficient.

The general case with controlled diffusion coefficient o(z, a) associated to fully nonlinear
PDE is challenging and led to recent theoretical advances. Consider the motivating example
from uncertain volatility model in finance formulated here in dimension 1 for simplicity of
notations:

dX$ = azdWs,

where the control process « is valued in A = [a,a] with 0 < a < @ < oo, and define the
value function of the stochastic control problem:

o(t,x) = sng[g(erp’x’a)], (t,x) € 10,T] x R.
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The associated HJB equation takes the form:

0

8—:+G(D§v) — 0, (ta)e[0,T) xR, v(T,z) = g(z), z€R, (L7
where G(M) = 1 supye 4[a®?M] = a?M T — a>M~. The unique (viscosity) solution to (L)
is represented in terms of the so-called G-Brownian motion B, and G-expectation Eg,
concepts introduced in [23]:

v(t,x) = Eg[g(x+BT_t)].

Moreover, G-expectation is closely related to second order BSDE studied in [28], namely
the process Y; = ov(t, By) satisfies a 2BSDE, which is formulated under a nondominated
family of singular probability measures given by the law of X® under IP. This gives a nice
theory and representation for nonlinear PDE, but it requires a non degeneracy assumption
on the diffusion coefficient, and does not cover general HJB equation (i.e. control both on
drift and diffusion arising for instance in portfolio optimization). On the other hand, it is
not clear how to simulate G-Brownian motion.

We provide here an alternative BSDE representation including general HJB equation,
formulated under a single probability measure (thus avoiding nondominated singular mea-
sures), and under which the forward process can be simulated. The idea, used in [I7]
for quasi variational inequalities arising in impulse control problems, is the following. We
introduce a Poisson random measure pu,(dt,da) on Ry x A with finite intensity measure
A, (da)dt associated to the marked point process (7;,(;)i, independent of W, and consider
the pure jump process (I;); equal to the mark ¢; valued in A between two jump times 7;
and 7;41. We next consider the forward regime switching diffusion process

dX, = b(X,,1)ds + o(Xs, I,)dWs,

and observe that the (uncontrolled) pair process (X, I) is Markov. Let us then consider the
BSDE with jumps w.r.t the Brownian-Poisson filtration F = FW:#a:

Vi = o0+ [0 [ zaw [0 [ @i, 1)

where i, is the compensated measure of ¢ ,. This linear BSDE is the Feynman-Kac formula
for the linear integro-partial differential equation (IPDE):

% +b(x,a).Dyv + %tf(UUT(% a)D3v) (1.9)

+ /A(v(t,x,a') —o(t,z,a))\,(dd") + f(x,a) = 0, (t,z,a) € [0,T) x R x A,
o(T,z,a) = g(z), (z,a)cRYxA, (1.10)

through the relation: Y; = v(t, X¢, It). Now, in order to pass from the above linear IPDE
with the additional auxiliary variable a € A to the nonlinear HIB PDE (2]), we constrain
the jump component to the BSDE (L8] to be nonpositive, i.e.

Ula) < 0, Y(ta). (1.11)



Then, since U;(a) represents the jump of Y; = v(t, Xy, I;) induced by a jump of the random
measure p, i.e of I, and assuming that v is continuous, the constraint (L.II]) means that
Ui(a) = v(t, X¢,a) —v(t, Xy, I;-) < 0 for all (¢,a). This formally implies that v(t, z) should
not depend on a € A. Once we get the non dependence of v in a, the equation ([L.9]) becomes
a PDE on [0,T) x R? with a parameter a € A. By taking the supremum over a € A in
(L)), we then obtain the nonlinear HJB equation (L.2)).

Inspired by the above discussion, we now introduce the following general class of BSDE
with partially nonpositive jumps, which is a non Markovian extension of (L8])-(LII):

Y, = g+/ F(s,0,Ys, Zs,Us)ds + Kp — K (1.12)
—/t ZdW, — / / fa(ds,de), 0<t<T, a.s.
with
Ue) < 0, dP®dt® A(de) a.e.on Qx[0,T] x A. (1.13)

Here p is a Poisson random measure on Ry x E with intensity measure A(de)dt, A a subset
of E, £ an Fr measurable random variable, and F' a generator function. The solution to
this BSDE is a quadruple (Y, Z,U, K) where, besides the usual component (Y, Z,U), the
fourth component K is a predictable nondecreasing process, which makes the A-constraint
(CI3) feasible. We thus look at the minimal solution (Y, Z, U, K) in the sense that for any
other solution (Y, Z,U, K) to (L12)-(TI3]), we must have Y < Y.

We use a penalization method for constructing an approximating sequence (Y, Z™, U™, K™),,
of BSDEs with jumps, and prove that it converges to the minimal solution that we are
looking for. The proof relies on comparison results, uniform estimates and monotonic con-
vergence theorem for BSDEs with jumps. Notice that compared to [I7], we do not assume
that the intensity measure A of u is finite on the whole set E, but only on the subset A on
which the jump constraint is imposed. Moreover in [I7], the process I does not influence
directly the coefficients of the process X, which is Markov in itself. In contrast, in this
paper, we need to enlarge the state variables by considering the additional state variable
I, which makes Markov the forward regime switching jump-diffusion process (X, ). Our
main result is then to relate the minimal solution to the BSDE with A-nonpositive jumps
to a fully nonlinear IPDE of HJB type:

0v + sup [b( a).Dyvu(t,z) + ltlr(cro”(:zt, a)D2v(t,z))
8t acA 2

+ / [o(t,z + B(z,a,e)) —v(t,z) — B(x,a,€).Dyv(t, z)| A(de)
E\A

—i—f(x,a,v,aT(x,a)va)} = 0, on [0,7) x R%

This equation clearly extends HJB equation (L2]) by incorporating integral terms, and
with a function f depending on v, D,v (actually, we may also allow f to depend on



integral terms). By the Markov property of the forward regime switching jump-diffusion
process, we easily see that the minimal solution to the BSDE with A-nonpositive jumps is
a deterministic function v of (¢,2,a). The main task is to derive the key property that v
does not actually depend on a, as a consequence of the A-nonpositive constrained jumps.
This issue is a novelty with respect to the framework of [I7] where there is a positive cost
at each change of the regime I, while in the current paper, the cost is identically degenerate
to zero. The proof relies on sharp arguments from viscosity solutions, inf-convolution and
semiconcave approximation, as we don’t know a priori any continuity results on v.

In the case where the generator function F' or f does not depend on ¥, z,u, which
corresponds to the stochastic control framework, we provide a dual representation of the
minimal solution to the BSDE by means of a family of equivalent change of probability
measures in the spirit of (LG). This gives in particular an original representation for
value functions of stochastic control problems, and unifies the weak formulation for both
uncontrolled and controlled diffusion coefficient.

We conclude this introduction by pointing out that our results are stated without any
ellipticity assumption on the diffusion coefficient, and includes the case of control affec-
ting independently drift and diffusion, in contrast with the theory of second order BSDE.
Moreover, our probabilistic BSDE representation leads to a new numerical scheme for
HJB equation, based on the simulation of the forward process (X, I) and empirical regres-
sion methods, hence taking advantage of the high dimensional properties of Monte-Carlo
method. Convergence analysis for the discrete time approximation of the BSDE with non-
positive jumps is studied in [I5], while numerous numerical tests illustrate the efficiency of
the method in [16].

The rest of the paper is organized as follows. In Section 2, we give a detailed formulation
of BSDE with partially nonpositive jumps. We develop the penalization approach for
studying the existence and the approximation of a unique minimal solution to our BSDE
class, and give a dual representation of the minimal BSDE solution in the stochastic control
case. We show in Section 3 how the minimal BSDE solution is related by means of viscosity
solutions to the nonlinear IPDE of HJB type. Finally, we conclude in Section 4 by indicating
extensions to our paper, and discussing probabilistic numerical scheme for the resolution
of HJB equations.

2 BSDE with partially nonpositive jumps

2.1 Formulation and assumptions

Let (Q, F,P) be a complete probability space on which are defined a d-dimensional Brownian
motion W = (W})¢>0, and an independent integer valued Poisson random measure p on
Ry x E, where E is a Borelian subset of R?, endowed with its Borel o-field B(F). We
assume that the random measure p has the intensity measure A(de)dt for some o-finite
measure A on (E,B(F)) satisfying

/(1/\|e|2))\(de) < x.
E



We set fi(dt,de) = p(dt,de) — A(de)dt, the compensated martingale measure associated to
i, and denote by F = (F;)¢>0 the completion of the natural filtration generated by W and
L.

We fix a finite time duration 7" < co and we denote by P the o-algebra of F-predictable
subsets of Q x [0,7]. Let us introduce some additional notations. We denote by

e S? the set of real-valued cadlag adapted processes Y = (Y;)o<i<7 such that [|Y]|, =

1
(E[SUPOStST |Yt|2D * < oo

LP(0,T), p> 1, the set of real-valued adapted processes (¢¢)o<t<7 such that E [ fOT |¢t|pdt]
< Q.

LP(W), p > 1, the set of }Rd—wlﬂued P-measurable processes Z = (Z;)o<t<7 such that
120wy = (E|fy 1Zil7dt] )7 < oc.

LP(i1), p > 1, the set of P@B(E)—measurablle maps U : Q x [0,7] x E — R such that
10lo = (LS (Ji 1) PA(de)) ] )7 < oo

1
L2()\) is the set of B(E)-measurable maps u : E — R such that |u|L2(A) = (fE |u(e)|2)\(de)> :
< 00.

K2 the closed subset of 82 consisting of nondecreasing processes K = (Kt)o<t<T with
Ky =0.

We are then given three objects:
1. A terminal condition £, which is an Fp-measurable random variable.

2. A generator function F': Q x [0,7] x R x R? x L2(\) — R, which is a P ® B(R) ®
B(R%) @ B(L2(\))-measurable map.

3. A Borelian subset A of E such that A\(A) < co.
We shall impose the following assumption on these objects:
(HO)

(i) The random variable £ and the generator function F' satisfy the square integrability
condition:

T
E[l¢%] +E[/ |F(t,0,0,0)|2dt] < .
0
(ii) The generator function F' satisfies the uniform Lipschitz condition: there exists a
constant Cr such that
|F(t7y7 Z,’LL) - F(tvy/7 Z/7u/)| < CF(|Z/ - y/| + |Z - Z/| + |u - u/|L2(A)) s

for all t € [0,7], y,9/ € R, 2,2’ € R and u, v’ € LZ(\).



(iii) The generator function F satisfies the monotonicity condition:
F(ty,z,u) = F(t,y,z,u) < / V(s e,y 2, u,u') (ule) —u'(e))A(de)
E

forall t € [0,7], 2 € R% y € R and u,u’ € L2(\), where v : [0,T] x 2 x E xR x RY x
L2(\) xL2(\) = Ris a P B(E) @ B(R) ® B(RY) ® B(L?()\)) ® B(L?(\))-measurable
map satisfying: C1(1 A |e]) < ~v(t,e,y, z,u,u’) < Ca2(1 A |e]), for all e € E, with two
constants —1 < C7 <0 < (.

Let us now introduce our class of Backward Stochastic Differential Equations (BSDE)
with partially nonpositive jumps written in the form:

Y, = g+/ F(s,Ys, Zs,Uy)ds + Kr — K (2.1)
—/t ZdW, — / / ia(ds,de), 0<t<T, a.s.
with
Ue) < 0, dP®dt® A(de) a.e.on Qx[0,T] x A. (2.2)

Definition 2.1 A minimal solution to the BSDE with terminal data/generator (¢, F) and
A-nonpositive jumps is a quadruple of processes (Y, Z,U, K) € 8% x L2(W) x L2(j1) x K2
satisfying @I)-@2) such that for any other quadruple (Y, Z,U, K) € S2xL%(W)xL2(1) x
K2 satisfying @1)-E2), we have

V; < Y, 0<t<T, as.

Remark 2.1 Notice that when it exists, there is a unique minimal solution. Indeed, by
definition, we clearly have uniqueness of the component Y. The uniqueness of Z follows by
identifying the Brownian parts and the finite variation parts, and then the uniqueness of
(U, K) is obtained by identifying the predictable parts and by recalling that the jumps of u

are inaccessible. By misuse of language, we say sometimes that Y (instead of the quadruple
(Y, Z,U, K)) is the minimal solution to (ZI))-(22]). O

In order to ensure that the problem of getting a minimal solution is well-posed, we shall
need to assume:
(H1) There exists a quadruple (Y,Z, K,U) € S% x L2(W) x L2(ji1) x K2 satisfying
ED-@2).

We shall see later in Lemma [B.1] how such condition is satisfied in a Markovian frame-
work.



2.2 Existence and approximation by penalization

In this paragraph, we prove the existence of a minimal solution to (Z.I))-(22)), based on
approximation via penalization. For each n € N, we introduce the penalized BSDE with
jumps

T
Yro— e / F(s, Y7, 20, UM)ds + K} — K7 (2.3)
t

T T
—/ Z0dW, — / / Ul(e)ir(ds,de), 0<t<T,
t t JE

where K™ is the nondecreasing process in K2 defined by

K = n/o A[Ug(e)ﬁ)\(de)ds, 0<t<T.

Here [u]™ = max(u,0) denotes the positive part of u. Notice that this penalized BSDE can
be rewritten as

T T T
Y," = §—|—/ F,(s, Y, Z2, UM )ds —/ ZrdW —/ / Ul(e)in(ds,de), 0<t<T,

t t t JE
where the generator F), is defined by

FE.(t,y,z,u) = F(t,y,z,u)+n/A[u(e)]+)\(de),

for all (t,y,z,u) € [0,T] x R x R x L2(\). Under (HO)(ii)-(iii) and since A\(A4) < oo, we
see that F,, is Lipschitz continuous w.r.t. (y, z,u) for all n € N. Therefore, we obtain from
Lemma 2.4 in [29], that under (HO), BSDE (2.3)) admits a unique solution (Y, 2", U") €
S2 x L2(W) x L2(f1) for any n € N.

Lemma 2.1 Let Assumption (HO) holds. The sequence (Y™),, is nondecreasing, i.e. Y;"

<Y for allt € [0,T] and alln € N.

Proof. Fix n € N, and observe that
Fn(t,e,y,z,u) < Fn+1(t,€,y,Z,U),

for all (t,e,y, z,u) € [0,T] x E x R x R x L2()\). Under Assumption (HO), we can apply
the comparison Theorem 2.5 in [27], which shows that Y;* < Y;"H, 0<t<T, as. O

The next result shows that the sequence (Y™),, is upper-bounded by any solution to the
constrained BSDE.

Lemma 2.2 Let Assumption (HO) holds. For any quadruple (Y,Z,U, K) € S2xL2(W) x
L2(1) x K2 satisfying @1)-@2), we have

Y < Y, 0<t<T, neN. (2.4)



Proof. Fix n € N, and consider a quadruple (Y, Z,U, I_() €S2 x L2(W) x L%(1) x K2
solution to (ZI)-Z2). Then, U clearly satisfies fo J4lUs(e)] T A(de)ds = 0 for all ¢ € [0,T7,
and so (Y, Z,U, K) is a supersolution to the penalized BSDE @3), i.e:

T
¥, — §+/ Fo(s, V. 2o, 0y)ds + K — Ky
t

—/ ZydW, — //U fi(ds,de), 0<t<T.
t

By a slight adaptation of the comparison Theorem 2.5 in [27] under (HO), we obtain the
required inequality: Y;" < Y;,0<t<T. O

We now establish a priori uniform estimates on the sequence (Y, 2", U", K"),,.

Lemma 2.3 Under (HO) and (H1), there exists some constant C depending only on T
and the monotonicity condition of F' in (HO) (iii) such that

V™12, + 1272, o + 102, + K2,

L2(W) L2(f1)

T
< C(EKME[/ F(£,0,0,0)Pdt] +E[ sup %)), ¥neN.  (25)
0 0<t<T

Proof. In what follows we shall denote by C' > 0 a generic positive constant depending
only on 7', and the linear growth condition of F' in (HO)(ii), which may vary from line to
line. By applying It6’s formula to |Y;"|?
[ Ul (e)p({t}, de), we have

, and observing that K™ is continuous and AY;" =

T T T
E|¢)? = Ry |2—2E/ Y'F(s, Y, Z", UM ds — 2E/ Y;"ng+E/ |Z"%ds
t t
V[ [ OO - W - 22U e )

T
E\Yt"]QJrE/ \Z;’]stJrE/ /\Ug(e)y2A(de)ds
t t E

T T
—2E/ YIF(s, Y, 21", UM ds — 2E/ YI'dK", 0<t<T.
t t

From (HO)(iii), the inequality ¥;* < Y; by Lemma [Z2 under (H1), and the inequality 2ab
< éa2 + ab? for any constant a > 0, we have:

T T
E|1g"|2+1@/ |zg|2ds+E/ /|Us"(e)|2)\(de)ds
t t E

T
< P+ CE [ Y7 (1P(5.0.0,0) + V41281 + [U21,a,, ) ds
t

1 _
—I-—E[ sup |Ys|2] + oE| K — K2
@ Lselo,1)

10



Using again the inequality ab < % + %, and (HO) (i), we get

1_ (T 1_ (T
E|Y + —E/ |Z§|2ds+—1@/ / U ()2 A(de)ds (2.6)
2 J 2 )i JE
T 1 [T 1 _
< C’IE/ |y;"|2ds+E|§|2+—E/ |F(s,0,0,0)%ds + —E[ sup |Yt|2} + oE|K} — K2
¢ 2 Jo a Lo
Now, from the relation (2.3)), we have:
Kp—KP = Y/ —¢- / F(s, Y7, 20, UT)ds

+/t ZMdW, +/ /U" )i(ds, de).

Thus, there exists some positive constant C; depending only on the linear growth condition
of Fin (HO)(ii) such that

T
BlIG— K717 < Cu(BIEE [ |P(.0.0.0)Pds + B

n|2 n|2 n|2

+E/ (V212 + |22 + U2 2m)ds), 0<t<T. (27)
Hence, by choosing o« > 0 s.t. Cia < %, and plugging into ([2.6]), we get

3 n|2 1 T n|2 1 4 n 2
—E|Y'|"+=E | |Z}|°ds+ =E |U(e)|“\(de)ds
4 4 )i 4 )i JE

T T
5 1 1 _
< CE [ |¥7Pds+ SEIEP+ 5B [ 1F(0,0.00Pds+ SB[ sup [TP], 0<t<T,
t 0 @

s€[0,7T
Thus application of Gronwall’s lemma to t — E|Y}"|? yields:
sup E|Y"|2—|—E/ |Zt|dt+E/ /|Ut ) A(de)dt
0<t<T
< O(BleP +E / [F(1,0,0.0)Pdt + E[ sup [%,]). (2.8)
0 te[0,7

which gives the required uniform estimates (23] for (Z",U™), and also (K™), by (27).
Finally, by writing from (Z3]) that

T
sup [Y7 < |¢l + / F(4, Y7, 2P, UP)dt + K

0<t<T
sup‘/ ‘//U" f(ds,de)|,
0<t<T 0<t<T

we obtain the required uniform estimate (23] for (Y"), by Burkholder-Davis-Gundy in-
equality, linear growth condition in (HO)(ii), and the uniform estimates for (Z™, U™, K™),.
O

We can now state the main result of this paragraph.
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Theorem 2.1 Under (HO) and (H1), there exists a unique minimal solution (Y, Z,U, K)
€ S2x L2(W) x L2(j1) x K2 with K predictable, to @I)-Z2). Y is the increasing limit of
(Y™),, and also in L2(0,T), K; is the weak limit of (KJ*),, in L2(2, F¢,P) for allt € [0,T],
and for any p € [1,2),

12" = 2| +IU" = Ul — 0,

LP(W) LP(f)

as n goes to infinity.

Proof. By the LemmataZIland22] (Y"),, converges increasingly to some adapted process
Y, satisfying: [|Y||, < oo by the uniform estimate for (Y"), in Lemma 2.3] and Fatou’s
lemma. Moreover by dominated convergence theorem, the convergence of (Y"), to Y also
holds in L2(0,T). Next, by the uniform estimates for (Z", U™, K"),, in Lemma B3 we
can apply the monotonic convergence Theorem 3.1 in [IT], which extends to the jump case
the monotonic convergence theorem of Peng [22] for BSDE. This provides the existence of
(Z,U) € L*(W) x L?(fi), and K predictable, nondecreasing with E[K%] < oo, such that
the sequence (Z", U™, K™),, converges in the sense of Theorem 2.1 to (Z, U, K) satisfying:

T
Y;f = £+/ F(S,}/S,ZS,US)dS—FKT—Kt
t

—/ ZdWy — // f(ds,de), 0<t<T.
¢

Thus, the process Y is the difference of a cad-lag process and the nondecreasing process K,
and by Lemma 2.2 in [22], this implies that ¥ and K are also cad-lag, hence respectively
in S2 and K2. Moreover, from the strong convergence in L!(fi) of (U™), to U and since
A(A) < oo, we have

E/OT/A[US"(e)]*)\(de s — IE/ / o)]* A(de)ds,

as n goes to infinity. Since K} =n fOT [AlU2(e)]" A(de)ds is bounded in L?(€2, Fr,P), this

implies
/ / e)]tA(de)ds = 0,

which means that the A-nonpositive constraint ([2:2)) is satisfied. Hence, (Y, Z, K,U) is a
solution to the constrained BSDE (2.1)-([2.2), and by Lemma[22] Y = lim Y is the minimal
solution. Finally, the uniqueness of the solution (Y, Z, U, K) is given by Remark 211 O

2.3 Dual representation

In this subsection, we consider the case where the generator function F(t,w) does not
depend on y, z, u. Our main goal is to provide a dual representation of the minimal solution
to the BSDE with A-nonpositive jumps in terms of a family of equivalent probability

measures.

12



Let V be the set of P ® B(E)-measurable processes valued in (0,00), and consider for
any v € V, the Doléans-Dade exponential local martingale

//1/8 ) — 1)in(ds de))
— exp //mys (ds, de) //y —1))\(de)ds> 0<t<T. (2.9)

When L” is a true martingale, i.e. E[LY] = 1, it defines a probability measure P equivalent
to P on (Q, Fr) with Radon-Nikodym density:

dPv
dP |7

= LV, 0<t<T, (2.10)

and we denote by E” the expectation operator under P”. Notice that W remains a Brownian
motion under P¥, and the effect of the probability measure P, by Girsanov’s Theorem, is
to change the compensator A(de)dt of p under P to v(e)\(de)dt under P¥. We denote by
@¥ (dt,de) = p(dt,de) — vi(e)A(de)dt the compensated martingale measure of p under P”.
We then introduce the subset V4 of V by:

Vo = {1/ €V, valued in [1,00) and essentially bounded :

ve) =1, ec E\ A, dP®dt® \de) a.e.},
and the subset V' as the elements of v € V4 essentially bounded by n + 1, for n € N.

Lemma 2.4 For any v € V4, LY is a uniformly integrable martingale, and L. is square
integrable.

Proof. Several sufficient criteria for L” to be a uniformly integrable martingale are known.
We refer for example to the recent paper [26], which shows that if

St = exp (/()T/E]Vt(e) — 1‘2)\(de)dt)

is integrable, then L" is uniformly integrable. By definition of V4, we see that for v € V4,

ST = exp (/OT/AM(E) —1|2)\(de)dt),

which is essentially bounded since v is essentially bounded and A(A) < co. Moreover, from
the explicit form 23) of L”, we have |L4|? = L” S¥., and so E|LY[? < ||S%]|o- O

We can then associate to each v € V4 the probability measure P¥ through (2I0). We
first provide a dual representation of the penalized BSDEs in terms of such P”. To this
end, we need the following Lemma.

Lemma 2.5 Let ¢ € Lz( ) and € L2(j1). Then for every v € Va, the processes
fo ¢+ dWy and fo fE Yi(e)” (dt, de) are PY-martingales.
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Proof. Fix ¢ € L% W) and v € V4 and denote by M? the process fo ¢ dWy.  Since
W remains a PY-Brownian motion, we know that M? is a PY-local martingale. From
Burkholder-Davis-Gundy and Cauchy Schwarz inequalites, we have

E”LSB%]’W‘] < CE'[\/(M?),| = CE|L}y/ /OTmr?dt}
< C,/E[[Lgpy?} E[/Oqust\?dt] < o0,

since LY, is square integrable by Lemma[2.4] and ¢ € L2(W). This implies that M is PV-
uniformly integrable, and hence a true PY-martingale. The proof for [; [ ¢:(e)i” (dt, de)
follows exactly the same lines and is therefore omitted. O

Proposition 2.1 For all n € N, the solution to the penalized BSDE ([23)) is explicitly
represented as

T
Y = esssupE” [{ +/ F(S)ds‘}}], 0<t<T. (2.11)
t

vevy

Proof. Fix n € N. For any v € V), and by introducing the compensated martingale
measure ¥ (dt,de) = f(dt,de) — (vi(e) — 1)\(de)dt under P, we see that the solution
(Y™, Z™, U™) to the BSDE (Z3)) satisfies:

YP o= e+ /tT [F(s) + /A (nUZ()F = (sle) = DU (e) ) Mde) | ds (2.12)

T T T
_ / / (vs(e) — U™ (e)A(de)ds — / Znaw, — / / U™ (e (ds, de).
t JE\A t t JE
By definition of V4, we have
T
/ / (vs(e) = 1)U (e)A(de)ds = 0, 0<t<T, a.s.
¢ Je\a
By taking expectation in (ZI2]) under P (~ P), we then get from Lemma 2.5
T
o= Ee+ / (Fs)+ /A (U2 ()] = (vsle) = VU (e)) A(de) ) ds| 7] - (2.13)
t
Now, observe that for any v € V', hence valued in [1,n + 1], we have
n[UMe)]T — (n(e) = DUMe) > 0, dP®dt® \de) a.e.
which yields by 2I3)):
T
Y/" > esssupE” {5 +/ F(s)ds‘}"t}. (2.14)
vevy t
On the other hand, let us consider the process v* € V' defined by

vi(e) = leepat (]lUt(e)SO + (n+ 1)]]'Ut(6)>0)]]-6€147 0<t<T,eck.
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By construction, we clearly have
n[UMe)]T — (vf(e) = 1)UMe) = 0, YO<t<T, ecA,
and thus for this choice of v = v* in ([ZI3)):

T
v o— B [5 + / F(s)ds‘ft]
t
Together with (2.I4]), this proves the required representation of Y. O

Remark 2.2 Arguments in the proof of Proposition 2] shows that the relation (ZITI)
holds for general generator function F' depending on (y, z,u), i.e.

T
Yy = esssupE”[é—l—/ F(s, Y, Z2, UY) ds‘}}] ,
veVy

which is in this case an implicit relation for Y. Moreover, the essential supremum in this
dual representation is attained for some v*, which takes extreme values 1 or n+1 depending
on the sign of U™, i.e. of bang-bang form. O

Let us then focus on the limiting behavior of the above dual representation for Y when
n goes to infinity.

Theorem 2.2 Under (H1), the minimal solution to (ZI)-22) is explicitly represented as
T
Y; = esssupE” [5—1—/ F(s)ds‘}}}, 0<t<T. (2.15)
vEV A

Proof. Let (Y, Z,U,K) € be the minimal solution to (ZI)-(Z2). Let us denote by Y the
process defined in the r.h.s of (ZI5). Since V} C Vg, it is clear from the representation
2II) that Y;* < Y, for all n. Recalling from Theorem 1] that Y is the pointwise limit of
Y™ we deduce that Y; = lim,, o, ¥;" < fft, 0<t<T.

Conversely, for any v € Vg4, let us consider the compensated martingale measure
ar(dt, de) = f(dt,de) — (vi(e) — 1)A(de)dt under P¥, and observe that (Y, Z, U, K) satisfies:

Y, = &+ /t ! [F(s) - /A (vs(e) — 1)Us(e)A(de)} ds + Kr — K, (2.16)

. /t ! /E \A(ys(e)—l)Us(e))\(de)ds— /t ZodW, — / / Y(ds, de).

By definition of v € V4, we have: ftT fE\A(VS(e) — 1)Us(e)\(de)ds = 0. Thus, by taking
expectation in (ZI0) under P” from Lemma [25] and recalling that K is nondecreasing, we
have:

. Ey[ﬁ/f (F(s)—/A(us(e)—1)Us(e))\(de))ds‘}}]

> R [g+ /tTF(s)ds‘}}],

since v is valued in [1,00), and U satisfies the nonpositive constraint (Z2]). Since v is
arbitrary in Vg4, this proves the inequality Y; > Y;, and finally the required relation Y =
Y. O
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3 Nonlinear IPDE and Feynman-Kac formula

In this section, we shall show how minimal solutions to our BSDE class with partially
nonpositive jumps provides actually a new probabilistic representation (or Feynman-Kac
formula) to fully nonlinear integro-partial differential equation (IPDE) of Hamilton-Jacobi-
Bellman (HJB) type, when dealing with a suitable Markovian framework.

3.1 The Markovian framework

We are given a compact set A of R?, and a Borelian subset L C R\ {0}, equipped with
respective Borel o-fields B(A) and B(L). We assume that

(HA) The interior set A of A is connex, and A = Adh(A), the closure of its interior.

We consider the case where F = L U A and we may assume w.l.o.g. that LN A = ()
by identifying A and L respectively with the sets A x {0} and {0} x L in R? x Rl. We
consider two independent Poisson random measures ¢ and 7 defined respectively on Ry x L
and Ry x A. We suppose that ¥ and 7 have respective intensity measures \yg(df)dt and
Ar(da)dt where Ay and A, are two o-finite measures with respective supports L and A, and
satisfying

/(1/\]6\2))\19(%) < oo and [, Ar(da) < o0,
L

and we denote by 9(dt, dl) = 9(dt,dl) — \g(d0)dt and 7(dt,da) = n(dt,da) — Ay(da)dt the
compensated martingale measures of 9 and 7 respectively. We also assume that

(HAx)

(i) The measure A, supports the whole set A: for any a € A and any open neighborhood
O of a in R? we have \(O N A) > 0.

(ii) The boundary of A: 9A = A\ A, is negligible w.r.t. Ay, i.e. Ar(0A) = 0.

In this context, by taking a random measure g on Ry x F in the form, y = 9 + 7, we
notice that it remains a Poisson random measure with intensity measure \(de)dt given by

/E p(e)\(de) = /L (O (dl) + / (a)An(da)

A

for any measurable function ¢ from E to R, and we have the following identifications
L%(i) = L*(0) x L*(®), L*(\) = L(\g) x L2 (A1), (3.1)

where
e L2(1) is the set of P ® B(L)-measurable maps U : Q x [0,T] x L — R such that

1Vl = (E] /OT [ wioasana)’ < o,
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e L2(7) is the set of P ® B(A)-measurable maps R : Q x [0,T] x A — R such that

Rl = (&[ [ [ 1R@PAaar]) <o

e L2()\y) is the set of B(L)-measurable maps u : L — R such that

oy = ([ luOP@]) <o

e L2()\,) is the set of B(A)-measurable maps 7 : A — R such that

R (/A|r(a)|2)\7r(da)>%<oo.

Given some measurable functions b : R x R? — R% ¢ : R? x RY — R4 and 3 :
R? x R? x L — R% we introduce the forward Markov regime-switching jump-diffusion
process (X, I) governed by:

dX, = b(X,, I)ds+ o(Xg, I,)dW, + / B(X—, I,—, 0)0(ds,dl), (3.2)
L

dly = /A(a—Is)ﬂ(ds,da). (3.3)

In other words, [ is the pure jump process valued in A associated to the Poisson random
measure 7, which changes the coefficients of jump-diffusion process X. We make the usual
assumptions on the forward jump-diffusion coefficients:

(HFC)
(i) There exists a constant C' such that
|b(z,a) —b(z',ad")| + |o(x,a) —o(2’,d")] < C’(|:17 — 2| +a— a'|),
for all z,2' € R? and a,d’ € RY.
(ii) There exists a constant C' such that

‘5(:1:,&,5)‘ < C(1+ |:17|)(1 A |€|),
|B(z,a,0) = B(a',d, )] < C(lz—2|+|a—d[) (1A,

for all z,2’ € R% a,a’ € R? and ¢ € L.

Remark 3.1 We do not make any ellipticity assumption on ¢. In particular, some lines
and columns of o may be equal to zero, and so there is no loss of generality by considering
that the dimension of X and W are equal. We can also make the coeflicients b, and
depend on time with the following standard procedure: we introduce the time variable as
a state component ©; = t, and consider the forward Markov system:

dX, = b(Xs,(%s,Is)ds+0(Xs,®s,ls)dWs+/B(Xs,@S,Is,é)ﬁ(ds,dé),
L
do, = ds
dly = /(a—[s)ﬂ(ds,da).
A

17



which is of the form given above, but with an enlarged state (X,©,I) (with degenerate
noise), and with the resulting assumptions on b(z, 0, a), o(z,0,a) and 5(x,0,a,?). O

Under these conditions, existence and uniqueness of a solution (Xﬁ’m’a,lﬁ’a)tgsgﬂ to
B2)-B3) starting from (z,a) € R? x RY at time s = t € [0, 7], is well-known, and we have
the standard estimate: for all p > 2, there exists some positive constant C), s.t.

E| sup |X07P + 1P < Cyp(1+alf +al?) , (3.4)
t<s<T

for all (t,z,a) € [0,T] x R? x RY.

In this Markovian framework, the terminal data and generator of our class of BSDE are
given by two continuous functions g: R x R? — R and f : R x R? x R x R x L2(\y) — R.
We make the following assumptions on the BSDE coefficients:

(HBC1)

(i) The functions g and f(.,0,0,0) satisfy a polynomial growth condition:

9(z,a)| +[f(z,a,0,0,0)]
sup m m
z€R, a€RY 1+ "T‘ + ’a‘

m?
for some m > 0.
(ii) There exists some constant C' s.t.
|f($7 a,y, z, U) - f($/7 CL/, y/7 Z/7 u/)|
< Cllz—al+la—dl+ly—y|+]z =21+ u—tle,)

for all z,2’' € R 4,9/ € R, 2,2/ € RY, a,a’ € RY and u,u’ € L2(\y).
(HBC2) The generator function f satisfies the monotonicity condition:

flx,a,y,z,u) — f(x,a,y,z,u") < /L’y(a:,a,&y,z,u,u')(u(ﬁ) — ' (£)) Mg (dP) ,

for all z € R% a € RY, z € R% y € R and u, v’ € L%(\y), where v : R x E x R x R? x
L2(\y)xL23(\y) — Ris a B(R)@B(E)@B(R)@B(RY)@B(L2(\y))@B(L3(\y))-measurable
map satisfying: C1(1A|4]) < vy(z,a,4,y, z,u,u’) < Co(1AL]), for £ € L, with two constants
—1<C; <0<0s.

Let us also consider an assumption on the dependence of f w.r.t. the jump component
used in [2], and stronger than (HBC2).

(HBC2’) The generator function f is of the form
f(x,a,y, Z,U) = h(m,a,y, Z)/ U(£)5($,€))\§(d£))

L

for (z,a,y,z,u) € RY x RY x R x R? x L2()\), where
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e § is a measurable function on R¢ x L satisfying:

C A,

<
< Clz—2|AA[?), z,2' eRLe L,

‘5('%7 e) - (5(.’1”, 6)’
for some positive constant C'.

e h is a continuous function on R x R? x R x R? x R such that p — h(z,a,vy, 2, p) is
nondecreasing for all (z,a,y,2) € R? x R x R x R%, and satisfying for some positive
constant C"

\h(z,a,y,2,p) — Wz, a,y,2,0)| < Clp—p', p,p eR,

for all (z,a,y,2) € R? x R? x R x R?

Now with the identification (B.1I), the BSDE problem 2I)-([22]) takes the following
form: find the minimal solution (Y, Z,U, R, K) € S? x L2(W) x L2(¥) x L2(7) x K2 to

T
Ye = g(Xr Ir)+ / F(Xo Lo, Yo, 23, Us)ds + K — K,

_/t Zo.dW, — / / I(ds, dl) — / / a)w(ds,da), (3.5)

Ri(a) < 0, dP®dt® A:(da) a.e. (3.6)

with

The main goal of this paper is to relate the BSDE (B.5]) with A-nonpositive jumps (3.0])
to the following nonlinear IPDE of HJB type:

—88—:5 — sup [ﬁ“w + f(.,a,w,aT(.,a)wa,./\/l“w) = 0, on [0,7)xRY  (3.7)
acA
w(T,z) = supg(z,a), xR (3.8)
acA
where
1
LOw(t,x) = b(m,a).wa(t,a:)+§tr(007(m,a)Diw(t,m))

+ /L [w(t,z + B(z,a,0)) —w(t,z) — B(z,a,l).Dyw(t,z)| Ay(dl),
Mw(t,x) = (w(t,x + B(z,a,0)) — w(t,x))ZGL ,
for (t,z,a) € [0,T] x R? x RY.

Notice that under (HBC1), (HBC2) and (B4) (which follows from (HFC)), and
with the identification ([B), the generator F(t,w,y,z,u,r) = f(X¢(w), }(w),y,z,u) and
the terminal condition { = g(Xrp, IT) satisfy clearly Assumption (HO). Let us now show
that Assumption (H1) is satisfied. More precisely, we have the following result.
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Lemma 3.1 Let Assumptions (HFC), (HBC1) hold. Then, for any initial condition
(t,z,a) € [0,T] x R? x RY, there exists a solution {(Yst’x’a,Zﬁ’x’a,Uﬁ’x’a,}?g’x’a,[gé’x’a),t <
s < T} to the BSDE BH)-B8) when (X,I) = {(X0* I, t < s < T}, with Y2™* =
@(S,Xﬁ’m’a) for some deterministic function © on [0,T] x R? satisfying a polynomial growth
condition: for some p > 2,

o(t
wp [0

(3.9)
(ta)elo.T)xrd 1+ [z[P

Proof. Under (HBC1) and since A is compact, we observe that there exists some m > 0
such that

Cpg == sup < oo (3.10)
Lo seRdaea 1+ 2™+ [yl + 2] + [ulLzry)

Let us then consider the smooth function o(t,z) = Ce”T=9(1 4 |z|?) for some positive
constants C' and p to be determined later, and with p = max(2,m). We claim that for
C and p large enough, the function ¥ is a classical supersolution to (B.7)-[3.8). Indeed,
observe first that from the growth condition on g in (BI0), there exists C' > 0 s.t. () =
supge 4 9(z,a) < C(1+ |z|P) for all z € RY. For such C, we then have: #(T,.) > §. On the
other hand, we see after straightforward calculation that there exists a positive constant
C depending only on C, Cf,, and the linear growth condition in = on b, o, 8 by (HFC)
(recall that A is compact), such that
0v

7 a = T = a
Y 21613 [ﬁ v+ f(.,a,0,07(.,a)Dyv, MD)

v

(p—C)v

> 0,
by choosing p > C. Let us now define the quintuple (Y, Z,U, R, K) by:

E = z_}(757)(15) for t<T, YT = g(XTalT)7
Zt — O'T(th,[tf)DxT)(t, th), t S T,
U, = Mo, X,-), R, =0, t<T
t —
Kt = / [_ %(&XS) - £IS@(57XS) - f(XS7187 ZSa s) ds, t<T
0
KT = KT— + @(T, XT) — g(XT, IT).

From the supersolution property of o to (3.7)-([3.8]), the process K is nondecreasing. More-
over, from the polynomial growth condition on v, linear growth condition on b, o, growth
condition ([3I0) on f, g and the estimate ([3.4)), we see that (Y, Z,U, R, K) lies in S% x
L2(W) x L2(J) x L2(7) x K2. Finally, by applying Ito’s formula to o (¢, X;), we conclude
that (Y, Z,U, R, K) is solution a to (B.5)), and the constraint (B.6) is trivially satisfied. O

Under (HFC), (HBC1) and (HBC2), we then get from Theorem [21] the existence
of a unique minimal solution {(Yst’m’a, Zﬁ’w’a, U;’w’a, Ri’w’a, Kﬁ’w’a), t <s<T} to BH)-B.4)
when (X, 1) = {(XL™" I®), t < s < T}. Moreover, as we shall see in the next paragraph,
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this minimal solution is written in this Markovian context as: Yi™® = (s, X2™% I2%)
where v is the deterministic function defined on [0, 7] x R? x RY — R by:

o(t,z,a) = YU (t,z,a) € [0,T] x RY x RY. (3.11)

We aim at proving that the function v defined by (B.I1I)) does not depend actually on its
argument a, and is a solution in a sense to be precised to the parabolic IPDE (B.7))-(3-8]).
Notice that we do not have a priori any smoothness or even continuity properties on v.

To this end, we first recall the definition of (discontinuous) viscosity solutions to ([B.7])-
[BR). For a locally bounded function w on [0,7) x R%, we define its lower semicontinuous
(Isc for short) envelope w,, and upper semicontinuous (usc for short) envelope w* by

wy(t,z) =  liminf w(t,2’) and w*(t,r) = limsup w(t,a’),
2"y = (t,x) ', a') = (t,2)
th<T t'<T

for all (t,z) € [0,T] x RY.

Definition 3.1 (Viscosity solutions to (3.1)-B.8))
(i) A function w, Isc (resp. usc) on [0,T] x R%, is called a viscosity supersolution (resp.

subsolution) to (B.1)-B.8]) if

w(T,z) > (resp. <) supg(z,a),
acA

for any x € R, and

(- % cup (L% + £ a,w,07( @) Daip, MO9)| ) (1,2) = (resp. <) 0,
ot acA

for any (t,x) € [0,T) x R? and any ¢ € C12([0,T] x R?) such that

(w—o)(t,z) = pgl}anRd(w — ) (resp. [O%i%d(w - ).

(ii) A locally bounded function w on [0,T) x R? is called a viscosity solution to B.1)-B3.8)
if wy is a viscosity supersolution and w* is a viscosity subsolution to (3.1)-(B.8]).

We can now state the main result of this paper.

Theorem 3.1 Assume that conditions (HA), (H\.), (HFC), (HBC1), and (HBC2)
hold. The function v in BII) does not depend on the variable a on [0,T) x R x A i.e.

v(t,z,a) = o(t,r,d), Va,d € A,

for all (t,z) € [0,T) x RL.  Let us then define by misuse of notation the function v on
[0,T) x R? by:

o(t,z) = w(t,z,a), (t,x)ec(0,T) xR (3.12)

for any a € A. Then v is a viscosity solution to B20) and a viscosity subsolution to (33).
Moreover, if (HBCZ2’) holds, v is a viscosity supersolution to (3.3]).
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Remark 3.2 1. Once we have a uniqueness result for the fully nonlinear IPDE B1)- (3.8,
Theorem [B.1] provides a Feynman-Kac representation of this unique solution by means
of the minimal solution to the BSDE ([BX)-(3.6]). This suggests consequently an original
probabilistic numerical approximation of the nonlinear IPDE (B.7)-(B.8]) by discretization
and simulation of the minimal solution to the BSDE (3.1)-(3:6]). This issue, especially
the treatment of the nonpositive jump constraint, has been recently investigated in [15]
and [I6], where the authors analyze the convergence rate of the approximation scheme,
and illustrate their results with several numerical tests arising for instance in the super-
replication of options in uncertain volatilities and correlations models. We mention here
that a nice feature of our scheme is the fact that the forward process (X, ) can be easily
simulated: indeed, notice that the jump times of I follow a Poisson distribution of parameter
Ap 1= 1) 4 Ar(da), and so the pure jump process I is perfectly simulatable once we know how
to simulate the distribution A;(da)/A; of the jump marks. Then, we can use a standard
Euler scheme for simulating the component X. Our scheme does not suffer the curse of
dimensionality encountered in finite difference methods or controlled Markov chains, and
takes advantage of the high dimensional properties of Monte-Carlo methods.

2. We do not address here comparison principles (and so uniqueness results) for the general
parabolic nonlinear IPDE ([B.7)-(3.8]). In the case where the generator function f(z,a) does
not depend on (y, z,u) (see Remark below), comparison principle is proved in [24], and
the result can be extended by same arguments when f(z,a,y, z) depends also on y, z under
the Lipschitz condition (HBC1)(ii). When f also depends on u, comparison principle is
proved by [2] in the semilinear IPDE case, i.e. when A is reduced to a singleton, under
condition (HBC2’). We also mention recent results on comparison principles for IPDE in
[3] and references therein. O

Remark 3.3 Stochastic control problem

1. Let us now consider the particular and important case where the generator f(z,a) does
not depend on (y, z,u). We then observe that the nonlinear IPDE 37 is the Hamilton-
Jacobi-Bellman (HJB) equation associated to the following stochastic control problem: let
us introduce the controlled jump-diffusion process:

dxg = b(X;“,as)ds+a(X?,as)dWs+/B(XS,as,ﬁ)@(ds,dﬁ), (3.13)
L

where W is a Brownian motion independent of a random measure 9 on a filtered probability
space (Q, F,FY P), the control « lies in Apo, the set of FO-predictable process valued in A,
and define the value function for the control problem:

T
w(t,z) = sup E[/ f(Xf;’x’a,as)ds—i—g(X;lx’a,aT)], (t,z) € [0,T] x RY,
acAgo t
where {X."* t < s < T} denotes the solution to (BI3) starting from x at s = ¢, given
a control @ € Apo. It is well-known (see e.g. [24] or [I9]) that the value function w is
characterized as the unique viscosity solution to the dynamic programming HJB equation
B0)-B3), and therefore by Theorem Bl w = v. In other words, we have provided a
representation of fully nonlinear stochastic control problem, including especially control in
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the diffusion term, possibly degenerate, in terms of minimal solution to the BSDE (B.1])-
B3).

2. Combining the BSDE representation of Theorem [B.1] together with the dual representa-
tion in Theorem [2.2] we obtain an original representation for the value function of stochastic
control problem:

T T
sup E| / FXE an)dt + g(X3,ar)] = sup B / F (X, Lt + g(Xp, Ir)|
acAgo 0 veEV 0

The r.h.s. in the above relation may be viewed as a weak formulation of the stochastic
control problem. Indeed, it is well-known that when there is only control on the drift, the
value function may be represented in terms of control on change of equivalent probability
measures via Girsanov’s theorem for Brownian motion. Such representation is called weak
formulation for stochastic control problem, see [9]. In the general case, when there is
control on the diffusion coefficient, such “Brownian” Girsanov’s transformation can not be
applied, and the idea here is to introduce an exogenous process I valued in the control set
A, independent of W and ¥ governing the controlled state process X, and then to control
the change of equivalent probability measures through a Girsanov’s transformation on this
auxiliary process.

3. Non Markovian extension. An interesting issue is to extend our BSDE representation
of stochastic control problem to a non Markovian context, that is when the coefficients
b, o and [ of the controlled process are path-dependent. In this case, we know from the
recent works by Ekren, Touzi, and Zhang [8] that the value function to the path-dependent
stochastic control is a viscosity solution to a path-dependent fully nonlinear HJB equation.
One possible approach for getting a BSDE representation to path-dependent stochastic
control, would be to prove that our minimal solution to the BSDE with nonpositive jumps
is a viscosity solution to the path-dependent fully nonlinear HJB equation, and then to
conclude with a uniqueness result for path-dependent nonlinear PDE. However, to the best
of our knowledge, there is not yet such comparison result for viscosity supersolution and
subsolution of path-dependent nonlinear PDEs. Instead, we recently proved in [13] by
purely probabilistic arguments that the minimal solution to the BSDE with nonpositive
jumps is equal to the value function of a path-dependent stochastic control problem, and
our approach circumvents the delicate issue of dynamic programming principle and viscosity
solution in the non Markovian context. Our result is also obtained without assuming that
o is non degenerate, in contrast with [§] (see their Assumption 4.7). O

The rest of this paper is devoted to the proof of Theorem B.11

3.2 Viscosity property of the penalized BSDE
Let us consider the Markov penalized BSDE associated to (3.5)-(3.6):

T T
Y= g+ [ O LYE Z2 s e [ [ (RN A (dads
t t A
T T B T i
—/t Z, .dWS—/t /LUS (6)79(ds,d€)—/t /ARs(a)ﬂ(ds,da), (3.14)
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and denote by {(YJ""™, Zb®e bt gL '+ < s < T} the unique solution to (BI4)
when (X, 1) = {(X£™, 1Y), t < s < T} for any initial condition (¢,z,a) € [0, T] x R x RY.
From the Markov property of the jump-diffusion process (X, ), we recall from [2] that
st’t’m’a = vn(S,Xﬁ’x’a,Iﬁ’“), t < s < T, where v, is the deterministic function defined on
[0, 7] x R? x RY by:

vp(t,z,a) = YU (tx,a) € [0,T] x RY x RY. (3.15)

From the convergence result (Theorem 2]) of the penalized solution, we deduce that the
minimal solution of the constrained BSDE is actually in the form Y7"™% = v(s, X0 I0%),
t <s<T, with a deterministic function v defined in (B.IT]).

Moreover, from the uniform estimate (2.5]) and Lemma Bl there exists some positive
constant C' s.t. for all n,

T
ot < C(Blglxp P+ B[ [ 1£0xee,12,0,0,0)%ds
t

+E[ sup [o(s, X0")2)).
t<s<T

for all (¢,z,a) € [0,T] x R? x R%. From the polynomial growth condition in (HBC1)(i) for
g and f, (3] for v, and the estimate ([B.4]) for (X, ), we obtain that v,, and thus also v
by passing to the limit, satisfy a polynomial growth condition: there exists some positive
constant C, and some p > 2, such that for all n:

lon(t,z,a)| + v(t,z,a)] < Cp(1+ |z’ +|al’), V(¢ z,a)€ [0,T] x RY x RY. (3.16)

We now consider the parabolic semi-linear penalized IPDE for any n:

9o

o (t,z,a) — L (t,z,a) — f(2,a,vn,07(x,a) Dyvy, M vy) (3.17)
- /A [ (t, 2, ') — vn(t, 2, @) \s (da)

—n/A[vn(t,:E,a') otz a) [ A(dd)) = 0, on [0,T) x RY x RY,

oo(T,.,.) = g, on REx R (3.18)

From Theorem 3.4 in Barles et al. [2], we have the well-known property that the pena-
lized BSDE with jumps (2.3]) provides a viscosity solution to the penalized IPDE (3.17)-
BI8). Actually, the relation in their paper is obtained under (HBC2”), which allows the
authors to get comparison theorem for BSDE, but such comparison theorem also holds
under the weaker condition (HBCZ2) as shown in [27], and we then get the following result.

Proposition 3.1 Let Assumptions (HFC), (HBC1), and (HBC2) hold. The function
v, in BIB) is a continuous viscosity solution to BI1)-BIR)), i.e. it is continuous on
[0, 7] x R x RY, a wiscosity supersolution (resp. subsolution) to (318):

on(T,z,0) = (resp. <) g(a,a),
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for any (z,a) € R x RY, and a viscosity supersolution (resp. subsolution) to (BIT):

%4t 0,0) — Lop(t,,0) (3.19)

—f(z,a,v,(t,z,a), 0™ (x,a)Dyp(t, x,a), M*p(t,z,a))
— / [o(t,z,a") — p(t,z,a)| A\ (da) — n/ [o(t,z,d") — p(t,z,a)] " A (da') > (resp. <) 0,
A A

for any (t,x,a) € [0,T) x R x R? and any ¢ € CY2([0,T] x (R? x RY)) such that

(v, —p)(t,x,a) = min (v, —¢) (resp. max (v, —¢)) . (3.20)
[0,T]x R4 xR [0,T]xR4 xR

In contrast to local PDEs with no integro-differential terms, we cannot restrict in general
the global minimum (resp. maximum) condition on the test functions for the definition of
viscosity supersolution (resp. subsolution) to local minimum (resp. maximum) condition.
In our IPDE case, the nonlocal terms appearing in (BI7) involve the values w.r.t. the
variable a only on the set A. Therefore, we are able to restrict the global extremum
condition on the test functions to extremum on [0,T] x R% x A. More precisely, we have
the following equivalent definition of viscosity solutions, which will be used later.

Lemma 3.2 Assume that (H)\;), (HFC), and (HBC1) hold. In the definition of vy, being
a wviscosity supersolution (resp. subsolution) to BIT) at a point (t,x,a) € [0,T) x R x A,
we can replace condition ([B.20) by:

0= (n=—9)(t,z,a) =  min (o —¢) (resp. max (v —¢)),
[0,7]xRdx A [0,7]xRdx A

and suppose that the test function ¢ is in C129(]0,T] x R? x RY).

Proof. We treat only the supersolution case as the subsolution case is proved by same
arguments, and proceed in two steps.

Step 1. Fix (t,x,a) € [0,T) x R? x RY, and let us show that the viscosity supersolution
inequality (BI9) also holds for any test function ¢ in CH%0([0,7] x R? x RY) s.t.

(v — @) (t,x,a) = min (v, — ). (3.21)

[0,7]x R4 x R4

We may assume w.l.o.g. that the minimum for such test function ¢ is zero, and let us
define for r > 0 the function ¢" by

/|12 /|12 /|2 /|12
S d) = cp(t',x',a’)(l B (I)(\m ! :; |a'| >> B qu)(!w \ :; |a| )(1 L PP,
where C,, > 0 and p > 2 are the constant and degree appearing in the polynomial growth
condition ([B.I6]) for v,, ® : Ry — [0,1] is a function in C*°(R4) such that @[y ;) = 0 and
D3 +00) = 1. Notice that " € C120([0,T] x RY x R?),

(¢", D", D2¢") — (¢, Dy, D2¢p) as 1 — o0 (3.22)
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locally uniformly on [0, 7] x R? x R, and that there exists a constant C, > 0 such that
"', 2" )| < Co(L+ 2| +d[P) (3.23)

for all (¢, 2',a") € [0, T] xRYxR%. Since ® is valued in [0, 1], we deduce from the polynomial
growth condition (B.I6) satisfied by v, and B2I) that ¢" < v, on [0,T] x R? x R? for all
r > 0. Moreover, we have ¢" (t,z,a) = ¢(t,z,a) (= v,(t, z,a)) for r large enough. Therefore
we get

n— ") (t, z, = i n— "), 3.24
(o0 = ¢")(t, 2, a) ot o (Vn — 1) (3.24)

for r large enough, and we may assume w.l.o.g. that this minimum is strict. Let (¢} )x be
a sequence of function in CH2([0,T] x (R? x RY)) satisfying (323)) and such that

(s Daphs D2gh)  — (@7, Dyp", D2¢")  as  k — oo, (3.25)

locally uniformly on [0,7] x R? x R9. From the growth conditions [BI6) and E23) on
the continuous functions v, and ¢}, we can assume w.lo.g. (up to an usual negative
perturbation of the function ¥ for large (2/,a’)), that there exists a bounded sequence
(ty, Tp, ar)g in [0,7] x R? x R? such that

A — : o
(vn — @) (th, ks ax) [o,T}Tﬁngq(U" ©k) - (3.26)

The sequence (ty,zk, ag)r converges up to a subsequence, and thus, by (3.24), (325]) and
(3:26)), we have

(tg, K, ax) — (t,x,a), as Kk — o0. (3.27)

Now, from the viscosity supersolution property of v, at (tx,zk,ax) with the test function
¢, we have

8 T
(;Dtk (ths Ths ag) — L @) (tr, Tk, ax)
_f(xka ag, Un(tka Ty CLk), UT(‘TIW ak)DSC(pZ(tka Ty CLk), Mak(p};(tka Ty ak:))

— /A[SOZ(%%,CL,) — @) (tgy Tg, ag)) Ar (da’)

n /A (Gt 2, 0') — Gt 20 ap)] T An(dd) > O,

Sending k and r to infinity, and using [3.22), (3:25) and (B.27]), we obtain the viscosity
supersolution inequality at (¢, x,a) with the test function .

Step 2. Fix (t,z,a) € [0,T) xR? x A, and let ¢ be a test function in CH2([0, 7] x (R% x RY))
such that

0 = (vp—@)(t,z,a) = min (v, — ¢). (3.28)
[0,T]xRdx A

By same arguments as in ([8.23]), we can assume w.l.o.g. that ¢ satisfies the polynomial
growth condition:

lp(t',2',d)] < COL+ [P+ d|P), (.2’ a) €[0,T] x RY x RY,
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for some positive constant C'. Together with (B3.16]), and since A is compact, we have

(vn —@)(t',2",d) = —CA+ 2P+ |da(a)I"), (3.29)
for all (¢,2,a’) € [0,T] x R? x RY, where da(a’) is the distance from a’ to A. Fix ¢ > 0
and define the function ¢. € C*29([0, 7] x R% x R?) by

d /
oot a!d) = ot 2 d) @(#)0(1 + 2’ [P + da(a’)?)
for all (/,2',a’) € [0,T] x R? x RY, where
A, = {d €A : dya(d) > ¢}, (3.30)

and ® : Ry — [0, 1] is a function in C*°(R) such that <I>|[07%] =0 and ®|; ;) = 1. Notice
that

(@E,DI%,DEE%) — (cp,ngp,Dicp) as € —0, (3.31)

locally uniformly on [0,T] x R? x A. We notice from (B29) and the definition of (. that
e < v, on [0,T] x RE x AS. Moreover, since ¢. < ¢ on [0,7] x R x RY, . = ¢ on
[0,7] x RY x A, and a € A, we get by [B28)) for £ small enough

0 = (vo— )t a,a) = i —©e) -
(vn = @) (¢, a) [O,T}T[%QEXRQ(U” )

From Step 1, we then have

8(108 a
5 (t,z,a) — LY%:(t,z,a)

_f(x7 CL, Un(ta ‘Ta a)7 O-T(x7 a)DZ‘(pE(t? .Z', CL), Mawa(t, ‘Ta a))

— / [pe(t,z,a") — e (t, z,a)|\r (da’) — n/ [pe(t,m,a") — pe(t,x,a)] T Ae(da’) > 0.
A A

By sending ¢ to zero with @31)), and using a € A with (H);)(ii), we get the required
viscosity subsolution inequality at (¢, z,a) for the test function . O
3.3 The non dependence of the function v in the variable a

In this subsection, we aim to prove that the function v(t,z,a) does not depend on a.
From the relation defining the Markov BSDE (3.1]), and since for the minimal solution
(Ytma ztwa tza ptoa tea) to [35)-(38), the process K5 is predictable, we ob-
serve that the A-jump component R is expressed in terms of Y% = y(., Xb®a Jhz.a)
as:

RY™a) = v(s, X" d) —uv(s, X000 I, t<s<T, d €A,

for all (t,x,a) € [0,T] x R? x RY. From the A-nonpositive constraint (B.6]), this yields
t+h
E[/ / [v(s, XL, ') — U(s,Xﬁ’x’“,Iﬁ’x’“)]+)\7r(da')ds} = 0,
t A
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for any h > 0. If we knew a priori that the function v was continuous on [0,7) x R% x A,
we could obtain by sending h to zero in the above equality divided by h (and by dominated
convergence theorem), and from the mean-value theorem:

/[v(t,:z:,a/)—v(t,:z:,a)]Jr/\ﬂ(da/) = 0.
A

Under condition (HA;)(i), this would prove that v(t,z,a) > v(t,z,a’) for any a,d’ € A,
and thus the function v would not depend on a in A.

Unfortunately, we are not able to prove directly the continuity of v from its very defi-
nition (BI1]), and instead, we shall rely on viscosity solutions approach to derive the non
dependence of v(t,z,a) in a € A. To this end, let us introduce the following first-order
PDE:

—|Dav(t,:1:,a)‘ = 0, (t,x,a)e(0,T)xR?x A. (3.32)

Lemma 3.3 Let assumptions (H\;), (HFC), (HBC1) and (HBC2) hold. The function
v is a viscosity supersolution to B.32): for any (t,x,a) € [0,T) x R% x A and any function
0 € CY2([0,T] x (RY x RY)) such that (v — ¢)(t,x,a) = ming 7 xraxre (v — ), we have

—‘Dago(t,x,aﬂ > 0, te Dyp(t,x,a) = 0.

Proof. We know that v is the pointwise limit of the nondecreasing sequence of functions
(vp). By continuity of vy, the function v is Isc and we have (see e.g. [I] p. 91):

v = vy, = liminf,v,, (3.33)
n—0o0
where
liminf ,v,(¢t,z,a) = lim inf vp(t', 2’ d’), (t,z,a) € [0,T] x R x RY.
n— o0 n — oo
(t/,ac',a:) — (t,z,a)
tt < T

Let (t,2,a) € [0,T) x RY x A, and ¢ € C12([0,T] x (R? x RY)), such that (v — @)(t,z,a)
= ming 71xpixra(V — ). We may assume w.l.o.g. that this minimum is strict:

—)(t,z,a) = strict i — ). 3.34
@=p)ta0) = strict  min (v —) (331

Up to a suitable negative perturbation of ¢ for large (z,a), we can assume w.l.o.g. that
there exists a bounded sequence (t,,, Ty, a,)n in [0,7] x R? x RY such that

n — tn: nsy Un = i n — . 3.35
(On =)t 2nyan) = min - (On =) (3.35)

From [B.33)), (3:34)), and (3:35]), we then have, up to a subsequence:

(tns Ty Qpy U (ty Ty an)) — (L x,a,0(t,x,a))  as n— oo . (3.36)
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Now, from the viscosity supersolution property of v, at (t,,zn,a,) with the test function

¢, we have by (B.30)):

9
ot

_f(xm [ Un(tm T, an)y o’ (xny an)DxSD(tna Ty an)a Mancp(tna Ty an)

- / (s T, @) — @(bns s 1) Ar (de)
A

(tn7 Tn, an) - £an90(tm Tn, an)

v
o

—n/ [¢(tn, Tn, a/) — @(tn, Tn, an)]+>‘7r(da,)
A
which implies

/ (ot s @) — @(tn, s an)] A (de)
A

1 - 9
n ot
- f(xmanavn(tmxna an)yUT(xnyan)DxSD(tnaxman)aMan(P(tnaxna an))

- /[‘P(tnal’ma,) — @(tn, Tn, an))Ar(da’)|.
A

(tn7 Tn, an) - ﬁan(p(tﬂn Tn, an)

Sending n to infinity, we get from (B.30]), the continuity of coefficients b, o, 8 and f, and
the dominated convergence theorem:

/ [o(t 2,d') = p(t,z,a)] " Ax(da’) = 0.

A

Under (H)\,), this means that ¢(t, z,a) = maxeeca @(t, ,a’). Since a € A, we deduce that
Dyp(t,z,a) = 0. O

We notice that the PDE (3:32]) involves only differential terms in the variable a. There-
fore, we can freeze the terms (t,z) € [0,7) x R? in the PDE [B32), i.e. we can take test
functions not depending on the variables (¢, ) in the definition of the viscosity solution, as
shown in the following Lemma.

Lemma 3.4 Let assumptions (H)\;), (HFC), (HBC1) and (HBC2) hold. For any
(t,z) € [0,T) x R?, the function v(t,x,.) is a viscosity supersolution to

—‘Dav(t,x,aﬂ = 0, acA,

i.e. for anya € A and any function p € C2(RY) such that (v(t,z,.)—¢)(a) = ming (v(t, z,.)—
), we have: —|Dap(a)| > 0 (and so =0).

Proof. Fix (t,z) € [0,T) x R%, a € A and ¢ € C2(R?) such that

((t,2,) ~¢)(a) = min(ult,z,.) ~ ). (3.37)
As usual, we may assume w.l.o.g. that this minimum is strict and that ¢ satisfies the
growth condition sup, cgq % < 0o. Let us then define for n > 1, the function ¢" €

CH2([0,T] x (R% x RY)) by

P (2’ d) = p(a) —n(| —t] + " —2*) —|d' — a*
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for all (¢,2',a’) € [0,T] x R? x R%. From the growth condition (ZI6]) on the lsc function
v, and the growth condition on the continuous function ¢, one can find for any n > 1 an
element (t,,,,a,) of [0,T] x R x RY such that

v— ") (ty, Tn,a = min v —").
( ©")(tns Tn, an) [O,T]dequ( ©")

In particular, we have
v(t,z,a) —pla) = (v—¢")(tz,a) > (v—¢")(tn, Tn, an) (3.38)
= 0(tn, Ty an) = @lan) +n(ltn =t + [z, — 2[) + |ay — af*?

> U(tna$n,an) - U(t7$a an) + U(t7$a a) - (10(&)

+ 0|ty — 2+ |z, — 2|?P) + |an — al?
by [B37), which implies from the growth condition (3.I6]) on v:
(|t =t + |zn — 2[) +|an — o < COL+ |2y — 2P + |an — af).

Therefore, the sequences {n(|t, — t|*> + |z, — z|*")}, and (la — a,|??), are bounded and
(up to a subsequence) we have: (t,,Zn,a,) — (t,%,a) as n goes to infinity, for some
ax € R2. Actually, since v(t,x,a) — p(a) > v(ty, Tn, an) — @(ay) by [B38]), we obtain by
sending n to infinity and since the minimum in [B37) is strict, that as = a, and so:

(tns Tn,an) — (t,x,a) as m — 0o .

On the other hand, from Lemma applied to (t,,z,,a,) with the test function ¢", we
have

0 = Do"(tn, Tn,an) = Dapl(an) —2p(a, — a)la, — a‘2p—17
for all n > 1. Sending n to infinity we get the required result: D,p(a) = 0. O

We are now able to state the main result of this subsection.

Proposition 3.2 Let assumptions (HA), (H\:), (HFC), (HBC1) and (HBC2) hold.
The function v does not depend on the variable a on [0,T) x R% x A:

v(t,z,a) = v(t,z,d), a,d € A,
for any (t,x) € [0,T) x R

Proof. We proceed in four steps.
Step 1. Approzimation by inf-convolution.
We introduce the family of functions (u,), defined by

up(t,x,a) = inf4 [v(t,z,a') +nla—d*], (t,z,a)€[0,T] x R x A.
a’'e

It is clear that the sequence (uy), is nondecreasing and upper-bounded by v. Moreover,
since v is lsc, we have the pointwise convergence of u, to v on [0,T] x R? x A. Indeed, fix
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some (t,r,a) € [0,T] x R? x A. Since v is lIsc, there exists a sequence (a,), valued in A
such that

up(t,x,a) = v(t,x,a,)+ nla— an]2p ,

for all n > 1. Since A is compact, the sequence (a,) converges, up to a subsequence, to
some ao, € A. Moreover, since u,, is upper-bounded by v and v is Isc, we see that as = a
and

Up(t,z,a) — v(t,z,a) as n— oo. (3.39)

Step 2. A test function for u, seen as a test function for v.
For r,6 > 0 let us define the integer N(r,d) by

20 (1 4+ 22p—5 p 4 9op—1 P
N(o) = min{nen :n > 20lE +Z‘5>t” maee 4 laf?)
2

where C, is the constant in the growth condition (3.I6]), and define the set /015 by

+Cv}

As = {ae A : d(a,0A) := min |a—d'| >} .

a’€0A

Fix (t,z) € [0,T) x RY. We now prove that for any § > 0, n > N(|z|,d), a € As and
¢ € C%(RY) such that
0 = (un(t7$7 ) - (10)(&) = min(un(t,aj, ) - (10) ) (340)

R
there exists a, € A and ¢ € C2(RY) such that
0 = (v(t.z,.) ~¥)(an) = min(o(t,z,.) ~ ), (3.41)
and
Datp(an) = Dap(a). (3.42)

To this end we proceed in two substeps.

Substep 2.1. We prove that for any 6 > 0, (t,z,a) € [0,T) x R x As, and any n >
N (|, ):

argmin {v(t,z,a’) +nld’ —a**} C A.
a’c€A

Fix (t,z,a) € [0,T) x R? x As and let a,, € A such that
v(t, z,an) + nlay, —al*? = min [v(t,z,a’) +nld —al?"] .
a'e
Then we have

U(t7x7an) + n|an - a|2p é U(t7$7 (l),
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and by (B0, this gives

—Cy(1 + |z|P + 2P~ max lal? + 27" Ya, — aP) + nla, —al?? < Cu(1+ |zP + |al?) .
a

Then using the inequality 203 < a? + 32 to the product 203 = 2P~ 1|a,, — a|?, we get:
(n—CY|an —al** < 20,(1+2%75 4 |zP + 2P~ 1 max lal?) .
a

For n > N(|z|, ), we get from the definition of N (r,0):

N

lan —al <

which shows that a, € A since a € fi(;.
Substep 2.2. Fix § > 0, (t,z,a) € [0,T) x R% x As, and ¢ € C(RY) satisfying (Z40).
Let us then choose a,, € argmin {v(t,z,a’) + nla’ —a|? : ' € A}, and define ¢ € C?(RY)

by:
P(d) = ¢la+d —ap)—nla, —al’’, o €RY.

It is clear that v satisfies ([B.42]). Moreover, we have by ([40) and the inf-convolution
definition of u,:

P(d) < up(t,z,a+d —ay) —nla, —al® < v(t,z,d), o R

Moreover, since a, € A attains the infimum in the inf-convolution definition of un(t, x,a),
we have

Y(an) = ¢(a) —nla, —a| = up(t,z,a) —nlay, —af* = v(t,z,an),

which shows (B41]).

Step 3. The function u, does not depend locally on the variable a. From Step 2 and Lemma
B4l we obtain that for any fixed (t,7) € [0,T) x R%, the function u,(t,z,.) inherits from
v(t,z,.) the viscosity supersolution to

—‘Daun(t,x,aﬂ = 0, ac A, (3.43)

for any 0 > 0, n > N(|z|,0). Let us then show that w,(t,z,.) is locally constant in the
sense that for all a € Ajy:

up(t,z,a) = wup(t,z,d), Vd € B(a,n), (3.44)

for all n > 0 such that B(a,n) C As. We first notice from the inf-convolution definition
that wu,(t,z,.) is semi concave on As. From Theorem 2.1.7 in [6], we deduce that uy, (, z, )
is locally Lipschitz continuous on fi(;. By Rademacher theorem, this implies that u,(t, z,.)
is differentiable almost everywhere on As. Therefore, by Corollary 2.1 (i) in [1], and the
viscosity supersolution property (3.43]), we get that this relation (3.43]) holds actually in
the classical sense for almost all a’ € As. In other words, u,(t,z,.) is a locally Lipschitz
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continuous function with derivatives equal to zero almost everywhere on 1215. This means
that it is locally constant (easy exercise in analysis left to the reader).

Step 4. From the convergence ([B:39]) of u,, to v, and the relation ([344]), we get by sending
n to infinity that for any 6 > 0 the function v satisfies: for any (¢,2,a) € [0,T) x R? x A;

v(t,z,a) = ov(t,r,d)

for all n > 0 such that B(a,n) C As and all ' € B(a,n). Then by sending § to zero
we obtain that v does not depend on the variable a locally on [0,7) x R? x A. Since A is
assumed to be connex, we obtain that v does not depend on the variable a on [0, T") x Rex A.

O

3.4 Viscosity properties of the minimal solution to the BSDE with A-
nonpositive jumps

From Proposition B2, we can define by misuse of notation the function v on [0,T) x R? by
o(t,z) = w(t,z,a), (t,x)ec(0,T) xR (3.45)
for any a € A. Moreover, by the growth condition ([BI6]), we have for some p > 2:

su v(t, z)]
P
(t2)elo,T]xrd 1+ [P

(3.46)

The aim of this section is to prove that the function v is a viscosity solution to [B1)-(B.3]).

Proof of the viscosity supersolution property to (87). We first notice from (B.33])
and (B43) that v is Isc and
v(t,z) = wvi(t,z) = liminf v, (¢t z,a) (3.47)
n—oo
for all (¢, z,a) € [0,T]xR4x A. Let (¢, ) be a point in [0, 7) xR?, and ¢ € CH2([0, T] x RY),
such that

— t = i — .
(v—)(t, ) [o,l%l]lfRd(” ©)

lp(t,z)]

T+ < 00 Fix some a € A, and

We may assume w.l.o.g. that ¢ satisfies sup( ;yec(o,7)xRr¢
define for € > 0, the test function

P (t,a ) = et a) —e(lt' =t + |2’ — 2 +|d' — af*P),

for all (#,2/,a") € [0,T] x R x RY. Since (¢, z,a) = ¢(t,z), and ¢° < ¢ with equality iff
(t',a2',a") = (t,x,a), we then have

(v—°)(t,z,a) = strict [O,T]I>I<1]1.1§I‘}><Rq(v — ). (3.48)
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From the growth conditions on the continuous functions v,, and ¢, there exists a bounded
sequence (t,, Tp, ay)n (we omit the dependence in €) in [0, T] x R x R? such that

(vn — %) (tn, T, an) = min (v, —¢%). (3.49)
[0,T|xR4 xR

From ([B:47)) and ([B:48]), we obtain by standard arguments that up to a subsequence:
(tns Ty pyy U (ty Ty an)) —  (t,x,a,v(t,x)), as n goes to infinity.

Now from the viscosity supersolution property of v, at (t,,xn,a,) with the test function
©°, we have
_0¢F
ot

_f(xnv Qn, Un(tnv Tn, an)v O'T(ﬂj‘n, an)DIE(p (tn7 Ln, an)7 Man(pa(tn) Ln, an))

—/[(pe(tn,mn,a/) — ¢ (tn, Tn, an)| A (da’)
A

——(tn, Tn,an) — L7 (tn, Tn, an)

— n/ [0 (tny Tnya') — @ (tn, Tny an)] T An(da’) > 0.
A

Sending n to infinity in the above inequality, we get from the definition of ¢® and the
dominated convergence Theorem:
()

dp a, e
ot (t7x7a) - L ¥ (t7x7a)

—f(z,a,0(t,z), 07 (z,a) Dy (t, z,a), M ¢°(t, 2, a)) (3.50)
—i—s/\a al*A(da’) > 0.

Sending ¢ to zero, and since ¢°(t,z,a) = (t,x), we get

-G tn) - £%(t0) ~ £ (0,0,0(0,2),07 (2, Dot ). MUp(1 ) 2 0

Since a is arbitrarily chosen in /01, we get from (HA) and the continuity of the coefficients
b, o, v and f in the variable a

%’0( x) — sup [ﬁ“(p(t,x) + f(a:, a,v(t,x), JT(m,a)ngp(t,a:),M“gp(t,a;))} > 0,
t a€A

which is the viscosity supersolution property. O

Proof of the viscosity subsolution property to ([B.7). Since v is the pointwise limit
of the nondecreasing sequence of continuous functions (v,,), and recalling ([8.43]), we have

by [I] p. 91:

v*(t,x) = limsup*v,(t, z,a) (3.51)

n—o0
for all (t,z,a) € [0,T] x R x A, where

lim sup *v,(t,z,a) = lim sup (', 2’ d).
n—oo n — oo
(t',x’, a") 4> (t,z,a)
t/ <T, a’ € A
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Fix (t,r) € [0,T) x R? and ¢ € C12(]0,T] x RY) such that

(W' —o)(t.x) = e (=) (3.52)

We may assume w.l.o.g. that this maximum is strict and that ¢ satisfies

|o(t, )]

sup (3.53)
(to)efo.r)xre 1+ [z
Fix a € A and consider a sequence (tn, T, an )y in [0,T) x R? x A such that
(tn, Ty Gny U (), Ty an)) — (6, x,a,0" (¢, x)) as n — 00. (3.54)

Let us define for n > 1 the function ¢, € C130([0,7] x R x RY) by

ont',2'd) = o, 2)+n

(dA,m ()

Tin

AL+ — tol? + |2/ — xn|2p)

where A,,, is defined by [B.30) for € = 7, and (n,), is a positive sequence converging to 0
s.t. (such sequence exists by (HA;)(ii)):

A (A\A4,) — 0 as n-—oo. (3.55)

From the growth conditions ([3.46]) and (3.53]) on v and ¢, we can find a sequence (t,,, Tp,, ay, )
in [0,7] x R% x A such that

n — ¥n Znyinyin - n — ¥n) 21 3.56
(vn = n)(tn, Tn, Gn) mﬂgﬁﬁgw(v on) n (3.56)

Using (351) and ([352]), we obtain by standard arguments that up to a subsequence
n(nidA% (@) + a — tal? + |2~ 2a?) — 0 s movoo, (357
n
and
Un(tn, Tnydn) — 0°(t,x) as n— 0.
We deduce from ([B.57) and ([354]) that, up to a subsequence:
(tn, Tp,an) — (t,x,a), as n—oo. (3.58)

for some a € A. Moreover, for n large enough, we have a,, € A. Indeed, suppose that, up to
a subsequence, a, € 0A for n > 1. Then we have nind A (@n) > 1, which contradicts ([B.57]).
Now, from the viscosity subsolution property of v, at (¢,, Ty, a,) with the test function ¢,
satisfying ([B.50]), Lemma [3.2] and since a,, € A, we have:

_ O¢n
ot )
—[(Zn, G, U (tn, T,y Gn), 07 (T, Gn) De@(tn, Tn), M ©(tn, Tn, an)) (3.59)

—(n+1)nA<“"n"77@A1)Aﬂ(da’) <0,

(fna T, an) - £an90n(£na T, an)
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for all n > 1. From (355]) we get

(n+ 1)n/A <(L4"n”7n(a/) A 1>A,T(da’) — 0 asn— oo (3.60)

Sending n to infinity into ([3.59), and using [B.51)), (B58) and ([B.60), we get

¢

- ot (t,l‘) - Ea(p(t’x) - f(l‘,C_L,U*(t,$),O'T(l‘,C_L)Dx<,D(t,l‘),Ma(p(t,$)) < 0.

Since a € A, this gives

0
_a_f(t7x) — sup E“cp(t,x) +f(.Z',CL,'U*(t,IE),O'T(.Z',CL)DIQO(t,x),Ma(‘D(t,‘T))i| S 0 )
acA
which is the viscosity subsolution property. O

Proof of the viscosity supersolution property to BX). Let (z,a) € R? x A. From
B47), we can find a sequence (t,, 2y, @), valued in [0,7) x R? x R? such that

(tns Ty Oy Up (tny Ty ay))  — (T, x,a,0. (T, x)) as n —oo.
The sequence of continuous functions (vy,), being nondecreasing and v, (T,.) = g we have

ve(Tyx) > lm vy(ty,xpn,an) = g(z,a).
n—oo

Since a is arbitrarily chosen in A, we deduce that v, (T, z) > sup,¢ 4 9(¢,a) = sup,e 4 9(z, a)
by (HA) and continuity of ¢ in a. |

Proof of the viscosity subsolution property to (3.8). Let x € R%. Then we can find
by B35 a sequence (t,, T, an )y in [0,7) x R? x A such that

(tn, Tp, Un(tn, Tn,ay)) — (T,z,0*(T,x)), as n—oo. (3.61)
Define the function & : [0,7] x R* — R by

h(t,z) = VT —t+supg(zx,a)

acA

for all (t,z) € [0,T) x RY. From (HFC), (HBC1) and (HBC2’), we see that h is
a continuous viscosity supersolution to B.I7)-(BI8]), on [T — 7, T] x B(x,n) for n small
enough. We can then apply Theorem 3.5 in [2] which gives that

v, < h on[T—nT]x B(z,n) x A

for all n > 0. By applying the above inequality at (¢,,x,,a,), and sending n to infinity,
together with ([B.61]), we get the required result. O
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4 Conclusion

We introduced a class of BSDEs with partially nonpositive jumps and showed how the
minimal solution is related to a fully nonlinear IPDE of HJB type, when considering a
Markovian framework with forward regime switching jump-diffusion process. Such BSDE
representation can be extended to cover also the case of Hamilton-Jacobi-Bellman-Isaacs
equation arising in controller /stopper differential games, see [7]. It is also extended to
the non Markovian context in [I3]. From a numerical application viewpoint, our BSDE
representation leads to original probabilistic approximation scheme for the resolution in high
dimension of fully nonlinear HJB equations, as recently investigated in [I5] and [16]. We
believe that this opens new perspectives for dealing with more general non linear equations
and control problems, like for instance mean field games, or control of McKean-Vlasov
equations.
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