
HAL Id: hal-00761047
https://hal.science/hal-00761047

Submitted on 4 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Programming with SystemC for Loosely Timed
Models: A Non-Intrusive Approach

Matthieu Moy

To cite this version:
Matthieu Moy. Parallel Programming with SystemC for Loosely Timed Models: A Non-Intrusive
Approach. DATE, Mar 2013, Grenoble, France. pp.9. �hal-00761047�

https://hal.science/hal-00761047
https://hal.archives-ouvertes.fr

Parallel Programming with SystemC for Loosely

Timed Models: A Non-Intrusive Approach

Matthieu Moy

Grenoble INP, Verimag (UMR CNRS 5104),

Grenoble, F-38041, France

Abstract—The SystemC/TLM technologies are widely accepted
in the industry for fast system-level simulation. An important
limitation of SystemC regarding performance is that the reference
implementation is sequential, and the official semantics makes
parallel executions difficult. As the number of cores in computers
increase quickly, the ability to take advantage of the host
parallelism during a simulation is becoming a major concern.
Most existing work on parallelization of SystemC targets cycle-
accurate simulation, and would be inefficient on loosely timed
systems since they cannot run in parallel processes that do not
execute simultaneously.

We propose an approach that explicitly targets loosely timed
systems, and offers the user a set of primitives to express tasks
with duration, as opposed to the notion of time in SystemC which
allows only instantaneous computations and time elapses without
computation. Our tool exploits this notion of duration to run the
simulation in parallel. It runs on top of any (unmodified) Sys-
temC implementation, which lets legacy SystemC code continue
running as-it-is. This allows the user to focus on the performance-
critical parts of the program that need to be parallelized.

I. INTRODUCTION

Systems-on-a-Chip are complex systems involving dedi-

cated hardware components and one or several processors.

Because of time to market pressure, it is not possible to

wait for the physical chip to develop the software, hence the

developers need simulators, or virtual prototypes, earlier in the

design flow. These prototypes need to be fast enough to make it

possible to run complex applications, and must expose enough

details of the hardware to allow non-portable software to run.

The RTL level of abstraction is detailed enough, but far too

slow, and available too late in the design cycle, hence a new

level of abstraction called Transaction Level Modeling (TLM)

has been introduced. We are interested in the SystemC [1]

implementation of TLM.

There are several sub-levels of abstraction within TLM

depending on the target usage: if the virtual prototype is meant

for performance evaluation, it needs to be precise with respect

to timing (either cycle-accurate or approximately timed). On

the other hand, if only the functional correctness is important,

timing can be relaxed considerably. TLM allows a purely

untimed coding style, as well as a loosely timed (LT) coding

style where the behavior is timed only if the timing is needed

for the functionality. For example, a loosely timed model of

a timer will usually be timed properly, but most computations

can be considered instantaneous.

This paper has been partially supported by the French ANR project HELP
(ANR-09-SEGI-006).

Although SystemC represents concurrent systems, it should

be noted that timing and concurrency in SystemC are sim-

ulated, and the actual execution is usually sequential (The

SystemC standard imposes co-routine semantics). Running the

simulation in parallel is needed to take advantage of today’s

machines, and SystemC’s sequentiality could become a major

performance bottleneck in the future. Many approaches have

been proposed for SystemC parallelization, but most of them

are only able to run processes that run at the same simulation

cycle, and hence apply only on cycle-accurate systems.

As opposed to this, the parallelization approach we propose

targets loosely timed systems. We present a programming

model in which processes can not only execute instantaneous

tasks or wait statements, but also express the notion of dura-

tion, i.e. specify the start and end date of the computation and

let the scheduler freely spread it across time. These tasks with

duration are executed in parallel with the SystemC scheduler.

This approach is implemented in a library, that runs on

top of an unmodified SystemC kernel (including proprietary

ones that cannot be modified). Also, this means that legacy

code will continue running with our approach, although they

will not automatically benefit from parallelism. The user can

identify performance-critical parts of the system, and focus

on them to parallelize the program (adding synchronization as

required).

The paper is structured as follows: Section II discusses

related works. Section III presents the main contribution: the

during tasks principle and implementation, for which Sec-

tion IV give experimental results. Section V is the conclusion.

II. RELATED WORK

As the official semantics for SystemC is to use co-routine

semantics, the natural way to execute a SystemC program is

to execute it sequentially. To take advantage of the parallelism

of the host machine, it is tempting to run SystemC threads

in parallel. The SystemC standard allows this, “provided that

the behavior appears identical to the co-routine semantics” [1].

This implies two constraints on a parallel implementation:

1) It should not change the order in which processes are

allowed to be executed. In particular, the simulated time

imposes an order on the execution of processes.

2) It should not introduce new race conditions. For example,

two SystemC processes may safely execute x++ on a

shared variable, but running two such processes in parallel

cannot be allowed.

Approaches for parallel execution of SystemC programs can

be classified depending on the way they deal with these

constraints: conservative ensure them by construction, while

optimistic approaches relax them, ideally with a verification

and rollback mechanism to correct them after the fact.

A. Semantics-Preserving Parallelization

An ideal conservative approach would preserve the official

semantics completely. To solve problem 1 above, one can

introduce parallelism within a δ-cycle (i.e. within one iteration

inside a simulation instant), but keep a global synchronization

barrier between each δ-cycle. Since the order of execution

within an evaluation phase is unspecified in SystemC, it is

correct to run processes in any order.

To solve problem 2, one needs to ensure that two processes

accessing the same variable will never be run in parallel. This

can be done structurally, under the assumption that a process

will only access variables declared within its own module.

It is then sufficient to ensure that at most one process is

running within each module. SystemCASS [2] is an example

tool using this assumption to perform a dependency analysis

(for static scheduling). Unfortunately, communication using

TLM break this assumption: TLM communication channels

transport transaction through function calls, hence the code

processing a transaction in a target module is executed in

the context of the initiator module. In particular, the natural

implementation of a RAM makes it a shared array between

all components accessing it.

Another option is to statically analyze the code of the

processes to detect accesses to shared variables. [3] proposes

an approach to parallelization of SystemC based on a depen-

dency analysis performed on a SystemC-transition (i.e. piece

of code executed between two wait statements) basis. [4]

applies similar static analysis for SpecC. Scoot [5] proposes a

finer analysis using model-checking (applied to scheduling and

model-checking, not to parallelization). These approaches are

heavyweight since they require a static analysis of arbitrary

C++ code, and require the complete source code of the

model to be available. The efficiency of these approaches

is disappointing on TLM models for which a few target

components create a synchronization bottleneck (back to our

RAM example, two processes that may access the RAM never

be executed in parallel).

B. Parallelism within δ-cycles

A second category of approaches is to be conservative with

respect to problem 1, but to leave it up to the user to deal

with problem 2, by avoiding shared variables, and using proper

synchronization and locking when needed.

[6] actually distributes the simulation over several machines,

running one SystemC scheduler on each node. The first version

enforced a global synchronization at each δ-cycle, and further

optimizations [7] allowed relaxing this synchronization by

computing the next simulated time locally on each nodes.

Another approach is to modify the SystemC kernel to allow

a parallel simulation [8]. The scheduler maintains a set of

runnable processes, and several threads run an evaluation

phase that pick processes from this set and run them, finishing

the evaluation phase with a global synchronization barrier.

This work is currently focused on performance, but leaves

the responsibility of protecting the atomicity of accesses

to shared data-structure to the SystemC processes. Similar

work propose some performance optimizations using various

load-balancing techniques like work-stealing, work-sharing or

manual grouping [9], [10] to improve the cache usage. To

avoid having to use a modified SystemC kernel, [11] allows

running a distributed simulation on top of SystemC. It runs the

δ-cycles one by one, calling sc_start(SC_ZERO_TIME)

repeatedly in the main loop of the distributed engine.

C. Parallelism Across Simulated Instants

All the works presented above have in common the fact

that they parallelize the content of δ-cycle, but cannot run

in parallel processes that should be executed at different

simulated times. In other words, they require a simultaneity

between processes to take advantage of parallelism. This is

appropriate for cycle-accurate simulation, where clock ticks

usually wakes up many processes at the same time. But

higher levels of abstraction tend to eliminate clock, and deal

with quantitative time instead. Figure 1 shows an example

modeling a system performing two computations in parallel.

Computations that take some time are usually modeled by

instantaneous computations followed by a SystemC wait. For

example, TLM-2’s temporal decoupling [1] produces this ef-

fect (the call to wait is done when synchronizing a process’s

local clock with the simulation time). In simulation, this

program will run without ever having two processes runnable

at the same time. In the presence of loose timing annotations

(e.g. wait(X±50%)), the situation is even worse since the

argument to wait becomes a random value.

void P::compute() {

P1(); wait(25, SC_MS);

P2(); wait(12, SC_MS);

}

void Q::compute() {

wait(10, SC_MS);

Q1(); wait(13, SC_MS);

Q2(); wait(11, SC_MS);

}

Fig. 1. Parallelism Without Simultaneity

For such systems, semantics-preserving approaches are even

harder. The scheme proposed in [4] performs a static analy-

sis for processes that may be executed at different instants,

but in SystemC/TLM programs with a shared bus, target

components will still create conflicts in many cases, and

this approach requires the availability of the whole source

code. The alternative is to use optimistic approaches, i.e. one

processes should be allowed to advance its local time without

waiting for other computations to terminate. Maintaining the

same execution order as the reference semantics becomes

intractable, hence optimistic simulation either (a) requires a

violation-detection together with a rollback mechanism or (b)

deliberately accepts some order violations, even though it can

control them with some logical clock mechanism in addition

to the quantitative simulated time. Approaches in category

(a) have been successfully applied to VHDL simulations, but

the case of SystemC is much harder to deal with: since the

user can call arbitrary C++ code and system calls, a rollback

mechanism is not implementable in general.

One solution in category (b) is proposed in [12], introducing

the TLM with Distributed Time (TLM-DT) abstraction level

and the associated parallel simulator. In TLM-DT, processes

do not rely on the SystemC simulated time, but manage a local

clock, that is synchronized with other components regularly

(on every communication, and using null messages when a pre-

defined time quantum elapsed without actual communication).

This way, ordering violations can happen only with processes

running with a difference of at most the time quantum. This

approach does not need simultaneity for parallelization, and

relaxes the synchronization barrier, but still enforces it every

time quantum (through null messages). It requires a particular

modeling style and forbids some SystemC primitives, hence

is not applicable on legacy code. It is designed to be efficient

on approximately timed model, but not on loosely timed ones.

Another approach relying on the notion of time quantum is

presented in [13]. It performs a distributed simulation similarly

to [6], but instead of performing a synchronization barrier

for every δ-cycle, the authors propose to force processes to

execute only on a multiple of the quantum.

Tasks and Duration: An experiment of transaction-level

modeling outside the SystemC world is jTLM [14]. The

management of simulated time is different in that jTLM

provides a notion of “task with duration” [15]. Instead of

modeling such task as an instantaneous computation followed

by a wait, the user can specify the duration of the task, and let

the scheduler spread the computation over the specified period

of time. The example of Figure 1 becomes the one in Figure 2.

void P_compute() {

consumesTime(25){P1();}

consumesTime(12){P2();}

}

void Q_compute() {

awaitTime(10);

consumesTime(13){Q1();}

consumesTime(11){Q2();}

}

Fig. 2. Parallelism With Duration in jTLM

This way, tasks P1() and Q1(), although not simultaneous,

have an overlap, hence can run in parallel.

This notion of duration and overlap is interesting for parallel

execution of models with a coarse timing granularity. The

coarsest the task are, the less likely it is for their start and end

points to be simultaneous, but the most likely it is for them

to overlap. Unlike cycle-based approaches, the efficiency will

therefore increase with the size of tasks. An obvious limitation

of this approach is that jTLM is not compatible with SystemC,

hence unable to use legacy SystemC code.

III. TASKS WITH DURATION IN SYSTEMC

None of the approaches mentioned above can parallelize

the execution of SystemC programs across instants safely

and without changing the code. It does not seem realistic

to target fully automatic parallelization for real-life TLM

programs. Instead, our contribution is a new programming

model that complements the one of SystemC and allows the

programmer to solve the parallelization problem by using the

new primitives on performance-critical parts of the program.

The semantics is inspired from the one of jTLM, but the

implementation is made as a library called sc-during

(while jTLM implements tasks with a dedicated scheduler).

It runs on top of SystemC, without modifying it. The library

can be freely downloaded from http://sc-during.forge.imag.fr/.

A. Principle of Tasks with Duration

An example code using sc-during is shown in Figure 3.

To use the API, a module derives from the class sc_during.

The main primitive is the method during(d, f) that takes

a duration d and a function f to be executed as argument.

This function can only be called from an SC_THREAD (i.e.

not from an SC_METHOD), as it calls wait internally. The

function f is passed using boost::function and can be

either a pointer to function, or a method using boost::bind.

f may not interact directly with SystemC (i.e. call wait or

notify), but section III-B1 will present a way to perform

such interactions.

1 extern void P1(), P2(), Q1(), Q2();

2 struct P : sc_module, sc_during {

3 void compute() {

4 during(sc_time(25, SC_MS), P1);

5 during(sc_time(12, SC_MS), P2);

6 }

7 SC_CTOR(P) {SC_THREAD(compute);}

8 };

9 struct Q : sc_module, sc_during {

10 void compute() {

11 wait(10, SC_MS);

12 during(sc_time(13, SC_MS), Q1);

13 during(sc_time(11, SC_MS), Q2);

14 }

15 SC_CTOR(Q) {SC_THREAD(compute);}

16 };

17
18 int sc_main(int, char **) {

19 P p("p"); Q q("q"); sc_start(); return 1; }

Fig. 3. Parallelism With Duration in SystemC

The execution of this program is illustrated in Figure 4.

It starts the normal way, using the SystemC scheduler and

global simulated time. Once a call to during is encountered,

the execution of the function passed as argument (e.g. P1, at

t = 0 line 4) can be delegated to another operating system

thread. The simulation will continue with other processes

on the SystemC side, in parallel with the execution of P1.

SystemC and P1 will join at t = 25 ms, i.e. either the SystemC

simulation reaches 25 and waits for P1 to complete, or P1

terminates at t < 25.

P

Q

P1() P2()

t = 0

wait(10)

t = 10

Q1()

t = 23

Q2()

t = 34

Fig. 4. Execution of a Program with During Tasks

http://sc-during.forge.imag.fr/

While executing P1 as a separate task, the SystemC sched-

uler continues its execution, executes wait(10, SC_MS);

and reaches t = 10. Then, it encounters another call to

during and launches Q1 in a separate task, just like it did

for P1. At this point, the simulation can contain 3 OS threads:

one for each task, and one running the SystemC kernel. As P1

and Q1 have an overlap in time, they can be executed in any

order, or with any interleaving. On the other hand, the end of

task Q1 predates the start of P2, so the scheduler ensures that

Q1 is completed before starting Q2.

It is of course possible to have instantaneous computa-

tions too. Any code within a SystemC process and out-

side a call to during will run instantaneously, follow-

ing the SystemC semantics and independently from the

sc-during library (another way to create instantaneous

tasks is during(SC_ZERO_TIME, f) which creates a

separate task that must complete before the end of the next

δ-cycle).

The sc-during library contains 4 different implementa-

tion of the notion of task with duration. We first illustrate the

idea with the one called THREAD, which is straightforward

and unoptimized. Figure 5 shows a simplified version of this

implementation (more implementation details are needed to

introduce other primitives in section III-B).

1 void during(sc_core::sc_time duration,

2 boost::function<void()> routine) {

3 boost::thread t(routine); // create thread

4 sc_core::wait(time); // let SystemC execute

5 t.join(); // wait for thread completion

6 }

Fig. 5. Simplified Implementation of during()

B. Synchronization and Time Modeling

The ideas presented up to now allow running a piece of

code in parallel with a SystemC simulation, but up to now,

the task can hardly communicate with the SystemC thread.

In particular, it cannot call SystemC primitives like wait()

and notify(), and shared variables between the SystemC

thread would create race-conditions. In order to provide a

complete programming model to the user, we need to introduce

additional synchronization primitives.

1) Full Synchronization with SystemC: sc_call(): A

during task may want to execute a piece of code within the

context of the SystemC thread. This way, this piece of code

will be allowed to execute SystemC primitives (e.g. wait,

notify . . .) the normal way, and to access variables shared

with SystemC without specific locking or race condition (like

two SystemC processes access shared variables).

The sc_call() API function does this: it is callable from

a during task and takes a function as argument. The current

task is blocked, and the function is scheduled to be executed

next time SystemC allows it. The during task is unlocked

once the function has completed its execution.

We provide two implementations for the scheduling of

the function to be executed: In SystemC 2.2, we simply

record the function to be called, and call it when the call to

sc_core::wait associated to the task terminates. In Sys-

temC 2.3, we use async_request_update() to schedule

the execution during the next δ-cycle.

2) Controlling Time Elapse and Duration:

extra_time() and catch_up(): Up to now, the

only way to specify the duration of a task is to provide

it as argument to the during() method. This is not

always possible, since it would require knowing how long

the computation done within the task would take, before

executing it.

To solve this issue, the sc-during library provides the

function extra_time(sc_time t), that can be called

from a during task. This function increases the dura-

tion of the current task by t. In the implementation of

the library, this means the wait statement line 4 in

Fig 5 is actually inside a loop along the lines of while

(remaining_time) wait(remaining_time);, and

extra_time increments remaining_time with proper

synchronization. An example is shown in Figure 6.

1 void trace(string s) {

2 cout << sc_time_stamp() << ": " << s << endl; }

3 SC_MODULE(A), sc_during {

4 void P() {

5 wait(5, SC_MS);

6 during(5, SC_MS, boost::bind(&A::f, this));

7 trace("done");

8 }

9 void f(void) {

10 trace("before extra_time");

11 extra_time(7, SC_MS);

12 trace("after extra_time");

13 };

14 SC_CTOR(A) { SC_THREAD(P); }

15 };

P

t = 0

wait(5)

t = 5

initial
duration

t = 10

extra time

t = 17

Fig. 6. Example Code Using extra_time(), and Execution Trace

This program will produce an output of the form (output is

generated by the trace function defined line 1 which displays

the current simulated time and a string):

X ms: before extra_time

Y ms: after extra_time

17 ms: done

The semantics ensures that the duration of the task is the

initial duration plus the sum of times accumulated with

extra_time(), hence the last line 17 ms: done. Before

the call to extra_time, the during task spans only

over [5, 10], hence X ∈ [5, 10] is ensured. After calling

extra_time, the task spans over [5, 17], hence Y ∈

[X, 17]. In general, the semantics of during tasks with

extra_time is that a piece of code within the task can be

executed at a simulated time t ∈ [s, s+ d+ e] where s is the

starting time of the task, d is the initial duration, and e is the

sum of the extra-time accumulated up to this point.

By default, time may flow freely during the execution of

a during task. This may be problematic if the program

relies on some fairness between a during task and the

SystemC simulation. Take the example of a polling loop like

while (!x) {}. In SystemC, such a loop which doesn’t let

time elapse will create an infinite loop, and will have to

be rewritten while (!x) {wait(t);} (for some time constant

t). Within a during task, it is possible to achieve a simi-

lar effect with while (!x) {extra_time(t);}. Unfortunately,

while this piece of code creates a during task with an

unbounded duration, it does not ensure that the SystemC sim-

ulated time will actually increase. The catch_up function

may be used as follows to ensure fairness:
1 while(!x) {

2 extra_time(10, SC_MS);

3 trace("between");

4 catch_up();

5 trace("after");

6 }

If this code is executed starting at t = 0, in a during task

whose duration is initially 0, it will produce an output of the

form:

X1 ms: between

10 ms: after

X2 ms: between

20 ms: after

with X1 ∈ [0, 10] and X2 ∈ [10, 20]. The simulated time after

returning from catch_up is fixed to the duration of the task

at this point.

Alternatively, the user can use the relaxed form

catch_up(t), providing as argument a time t and

that only ensures that the simulated time will advance until

the difference between the current time and the end of the

task is at most t.

C. Temporal Decoupling and Duration

Temporal decoupling is a technique standardized by TLM-

2 to reduce the number of wait statements executed. The

idea is to allow processes to maintain a local lock tlocal to

model the fact that the process is “in advance” with respect

to the SystemC time. Instead of using wait(d), processes

increase tlocal by d (function annotate in Figure 7), and

periodically call a function to actually perform the wait()

statement (function synchronize in Figure 7).

1 void annotate(sc_time d) {

2 tlocal = tlocal + d;

3 }

1 void synchronize() {

2 wait(tlocal);

3 tlocal = 0;

4 }

Fig. 7. Simple Temporal Decoupling API

1 void annotate(sc_time d) {

2 extra_time(d);

3 }

1 void synchronize() {

2 catch_up();

3 }

Fig. 8. Temporal Decoupling API within during Tasks

This synchronize function can be called whenever tlocal
becomes greater than a predefined time quantum (a call can be

inserted in annotate for instance), or before synchronization

points [16]. The sc-during library can benefit from tempo-

ral decoupling. The primitives of Figure 7 can be re-written

as Figure 8 when used inside (possibly unbounded) during

tasks. This preserves the property that important actions (i.e.

the ones after calling synchronize) are executed at the

right SystemC time, and the computations calling annotate

are modeled with the right duration.

D. Implementation

We gave in section III-A a sketch of the THREAD implemen-

tation for during tasks. The actual implementation is more

complex since it needs to manage sc_call, extra_time

and catch_up. We also provide several implementation of

parallelism: POOL pre-allocates a set of threads and works in a

producer-consumer scheme, ONDEMAND creates new threads

as needed and re-uses them instead of deleting and re-creating

them, and SEQ is a reference sequential implementation.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup and Platform Synchronization

We experimented our approach on a SystemC model of

an existing platform containing a CPU, a timer, a GPIO, a

RAM and an interrupt controller (ITC), running on an FPGA,

and executing an embedded software running Conway’s Game

of Life (the same C code is running on the FPGA and on

the TLM platform). To illustrate parallelization of simulation,

we added multi-processing capabilities to the system, adding

N additional CPUs and ITCs. CPU0 delegates parts of the

computation (slices of the image to compute) to other CPUs.

It does so by setting a flag in RAM, and triggering an interrupt

using the ITC associated to the CPU. Bus-communication is

abstracted with a TLM-2 channel. Transactions (either read

or write) are initiated by a component, routed through a Bus

module towards a target module.

The most performance-consuming components are the

CPUs, on which we are now going to focus. We use a

simple ISS, but our approach would work equally well with

any other SystemC module provided the approach has some

notion of timing (possibly approximate). One ISS step takes

a constant amount of time (PERIOD), hence we can basically

count the number N of steps, and wait for N*PERIOD when

synchronizing with SystemC time. We tried several strategies

to choose when and how to synchronize:

The first one is called during_quant and is directly

inspired from the notion of quantum. “Packs” of 5000 in-

structions are executed in a during task of duration d =
5000∗PERIOD. The second one, called during_sync, re-

quires the user to explicitly set the synchronization points of

the model (writing to some magic values in the addressmap),

and is an application of Section III-C: we start a during

task initially empty, call extra_time(5000*PERIOD) ev-

ery 5000 ISS steps, and call extra_time(N*PERIOD);

N = 0; catch_up() at every synchronization point (i.e.

before sending or waiting for an interrupt, within polling loops,

. . .).

The ISS triggers reads and writes on the bus, which triggers

execution of handlers in the target modules. When these

handlers do not call SystemC primitives, and if the data-

access they perform are safe, we can let them run in the

context of the during task. But for example, writing on ITC

component may trigger an e.notify(), which cannot be

run from a during task. When triggering a write transaction

to such modules, the ISS wraps the bus access in an sc_call,

so that the transaction be executed in the context of the

SC_THREAD, like in the sequential version. We also wrap

wait for interrupts in sc_calls. Most accesses to the bus are

performed without synchronization: the bus component itself

is thread-safe (no state variable except the addressmap, which

is read-only during simulation), and memory access that do

not require particular synchronization in the actual system are

performed without synchronization in simulation.

B. Speedup and Scalability

We tested the scalability of the approach on two machines.

The first one (Figure 9.(a)) has 4 Intel Xeon cores. The second

(Figure 9.(b)) has 4 AMD Opteron-6176 processors, each

containing 12 cores (total of 48 cores).

(a) Execution on a 4 cores machines

(b) Execution on a 48 cores machine

Fig. 9. Speedup Compared to SEQ for Different Implementation (average,
min and max over 10 runs)

Both graphs show the benefit of defining explicit syn-

chronization points, as the strategy during_sync always

gives a better speedup than the quantum-based one. This

also illustrate the fact that sc-during targets loosely timed

systems, since coarser granularities models give better perfor-

mance (unlike most alternative approaches). For low numbers

of CPU in the model, the speedup is almost optimal, it

does not decrease significantly when parallelizing the model

too much (i.e. instantiation more CPU in the model than

physical CPUs). With a large number of processors, even

on the 48 cores machines, we can notice that the speedup

is smaller than the number of processors. While disappoint-

ing, this result is not so surprising since the during task

need some synchronization with SystemC (some bus accesses

being protected with sc_call). We can further optimize

the platform by making the ITC component itself thread-

safe (by using async_request_update()), and get 13%

additional speedup in ONDEMAND implementation and 23%

in THREAD implementation, on machine (b) with 60 threads.

It should be noted that the suboptimal speedups are not due

to extra computation, but essentially to latency of synchroniza-

tion. Our experiments show that the CPU time spent in the

computation increase by less than 35% even for very loaded

simulation (60 CPUs). Unlike approaches using busy-waiting,

this means that our parallel simulation will remain efficient on

multi-users machines.

The during_quant strategy has a slightly lower speedup

when the parallelism is low, but stagnates (and even decreases

for the ONDEMAND implementation) with a large number of

threads, because OS threads need frequent synchronization

with SystemC, which becomes the synchronization bottleneck.

This problem can be solved by increasing the quantum. For

example, by setting the quantum to 50,000 instructions (i.e. 1

ms) instead of 5000, we speed up the simulation in THREAD

implementation by a factor of 3.7. With a quantum of 10 ms,

we get back to the same performance as the during_sync

version. This illustrates the potential difficulty of choosing the

right quantum, and the advantage of explicit synchronizations.

V. CONCLUSION

We presented an approach for parallel execution of SystemC

models. A deliberate choice of the approach is that we require

the user to use new primitives, as the alternatives would

either be inefficient or would break the SystemC semantics

for existing code. We showed that our approach allows a

significant speedup with a reasonable modeling effort. By

providing primitives to express the notion of duration, we

allow the user to create more parallelism in the model than

cycle-based approach, hence can efficiently parallelize loosely

timed systems.

Our approach works with any SystemC scheduler, it is a

simple library whose primitives are called directly from the

SC_THREAD, hence intrusion in the user code is minimal.

We could in theory run our library on top of a parallel

implementation of SystemC, although such setup has not been

experimented. Running code in a separate OS thread limits

the interactions with SystemC, hence the approach applies

best to parallelize computation that do not interact with the

rest of the simulation, but we also provide primitives to allow

synchronizing with SystemC, hence communication with other

processes (sc_call, extra_time and catch_up).

Further work include providing more tools for synchro-

nization to the user. For example, we manually wrapped in

sc_call some transactions, but the Bus component could do

it automatically for user-defined address ranges. This approach

can be compared with the SpecC approach, where the language

reference allows parallelism within a component, but the

communication channels act as monitors [17].

REFERENCES

[1] IEEE 1666 Standard: SystemC Language Reference Manual, Open
SystemC Initiative, 2011. [Online]. Available: http://www.accellera.org/

[2] “SystemCASS,” SoClib project.
[3] Y. Bouzouzou, “Accélération des simulations de systèmes sur puce

au niveau transactionnel,” Diplôme de Recherche Technologique, UJF
Grenoble, 2007.

[4] W. Chen, X. Han, and R. Dömer, “Out-of-order parallel simulation for
ESL design,” in DATE, W. Rosenstiel and L. Thiele, Eds. IEEE, 2012,
pp. 141–146.

[5] N. Blanc and D. Kroening, “Race analysis for SystemC using model
checking,” ACM TODAES, vol. 15, no. 3, p. 21, 2010.

[6] C. B, C. P, and Z. J, “A conservative approach to SystemC paralleliza-
tion,” in International Conference on Computational Science, 2006.

[7] P. Combes, E. Caron, F. Desprez, B. Chopard, and J. Zory, “Relax-
ing synchronization in a parallel SystemC kernel,” in International

Symposium on Parallel and Distributed Processing with Applications.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 180–187.

[8] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann,
“ParSC: synchronous parallel SystemC simulation on multi-
core host architectures,” ser. CODES/ISSS ’10. New York,
NY, USA: ACM, 2010, pp. 241–246. [Online]. Available:
http://doi.acm.org/10.1145/1878961.1879005

[9] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi, “Parallelizing
SystemC kernel for fast hardware simulation on SMP machines,” ser.
PADS ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
80–87. [Online]. Available: http://dx.doi.org/10.1109/PADS.2009.25

[10] R. S. Khaligh and M. Radetzki, “A dynamic load balancing method for
parallel simulation of accuracy adaptive TLMs,” in FDL, 2010.

[11] K. Huang, I. Bacivarov, F. Hugelshofer, and L. Thiele, “Scalably dis-
tributed SystemC simulation for embedded applications,” International

Symposium on Industrial Embedded Systems, pp. 271–274, Jun. 2008.
[12] A. Mello, I. Maia, A. Greiner, and F. Pecheux, “Parallel simulation of

SystemC TLM 2.0 compliant MPSoC on SMP workstations,” in DATE

Conference Exhibition, March 2010, pp. 606 –609.
[13] R. Khaligh and M. Radetzki, “Efficient parallel transaction level sim-

ulation by exploiting temporal decoupling,” in IESS 2009, vol. 310.
Springer-Verlag New York Inc, 2009, p. 149.

[14] G. Funchal and M. Moy, “jTLM: an experimentation framework for the
simulation of transaction-level models of systems-on-chip,” in Design,

Automation and Test in Europe (DATE), 2011.
[15] ——, “Modeling of time in discrete-event simulation of systems-on-

chip,” in MEMOCODE, July 2011.
[16] J. Cornet, “Separation of functional and non-functional aspects in trans-

actional level models of systems-on-chip,” Ph.D. dissertation, Institut
National Polytechnique de Grenoble, 2008.

[17] R. Domer, W. Chen, X. Han, and A. Gerstlauer, “Multi-core parallel
simulation of system-level description languages,” in ASP-DAC. IEEE,
2011, pp. 311–316.

http://www.accellera.org/
http://doi.acm.org/10.1145/1878961.1879005
http://dx.doi.org/10.1109/PADS.2009.25

	Introduction
	Related Work
	Semantics-Preserving Parallelization
	Parallelism within -cycles
	Parallelism Across Simulated Instants

	Tasks with Duration in SystemC
	Principle of Tasks with Duration
	Synchronization and Time Modeling
	Full Synchronization with SystemC: sc_call()
	Controlling Time Elapse and Duration: extra_time() and catch_up()

	Temporal Decoupling and Duration
	Implementation

	Experimental Results
	Experimental Setup and Platform Synchronization
	Speedup and Scalability

	Conclusion
	References

