
HAL Id: hal-00760960
https://hal.science/hal-00760960

Submitted on 4 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of parity violation in chiral molecules.
Radovan Bast, Anton Koers, André Severo Pereira Gomes, Miroslav Iliaš,

Lucas Visscher, Peter Schwerdtfeger, Trond Saue

To cite this version:
Radovan Bast, Anton Koers, André Severo Pereira Gomes, Miroslav Iliaš, Lucas Visscher, et al..
Analysis of parity violation in chiral molecules.. Physical Chemistry Chemical Physics, 2011, 13 (3),
pp.864-876. �10.1039/c0cp01483d�. �hal-00760960�

https://hal.science/hal-00760960
https://hal.archives-ouvertes.fr


Analysis of parity violation in chiral molecules
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In order to guide the experimental search for parity violation in molecular systems, in part motivated by the possible link to
biomolecular homochirality, we present a detailed analysis in a relativistic framework of the mechanism behind the tiny energy
difference between enantiomers induced by the weak force. A decomposition of the molecular expectation value into atomic
contributions reveals that the effect can be thought of as arising from a specific mixing of valence s1/2 and p1/2 orbitals on a
single center induced by a chiral molecular field. The intra-atomic nature of the effect is further illustrated by visualization of the
electron chirality density and suggests that a simple model for parity violation in molecules may be constructed by combining
pre-calculated atomic quantities with simple bonding models. A 2-component relativistic computational procedure is proposed
which bridges the relativistic and non-relativistic approaches to the calculation of parity violation in chiral molecules and allows
us to explore the single-center theorem in a variational setting.

1 Introduction

Emil Fischer’s pioneering studies of peptides and sugars in
1891 led to the classification of chiral molecules,1 (D)-sugars
and (L)-amino acids in particular, and to the confirmation of
Pasteur’s original conjecture that the universe is dissymmet-
ric2. Note that chirality, or dissymmetry in the terminology
of Pasteur,3 implies absence of improper rotations, that is,
an achiral molecule is not necessarily devoid of any symme-
try elements. The discovery that the basic molecular build-
ing blocks of living organisms have a distinct chirality, and
that only one enantiomeric form ((D)-sugars and (L)-amino
acids) is predominantly found in living systems, has puzzled
researchers for more than a century.4 In fact, the study of
proteinogenic amino acids from fossil bones shows that the
(L)-form has been the exclusive component in life forms for
at least 100 million years.5 It seems plausible that the onset
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of biomolecular homochirality happened at an early stage in
the chemical/biological evolution process on earth, perhaps
around 4 billion years ago.

There are many hypotheses on the origin of biomolecular
homochirality (an excellent review on the various hypotheses
put forward over the last 60 years or so has been given by Bon-
ner6). The hypotheses can be classified broadly into biotic and
abiotic theories, with a further subdivision of abiotic theories
into deterministic and probabilistic, and terrestrial and extra-
terrestrial theories (panspermia theory for the latter).7–11 The
field is heavily debated and open to much speculation, and it
is fair to say that we do not have a clear understanding of the
pre-biotic chemistry responsible for the emergence of single-
handed molecules in life.12 It is however clear that biomolec-
ular homochirality is one (of the many) necessary conditions
for life, as it is required to form the secondary, tertiary and
quaternary structures of the proteins to function correctly, as
well as the helical structure of the DNA and RNA. For ex-
ample, Urata et al. showed that the incorporation of an (L)-
ribonucleotide into the RNA or (L)-deoxyribonucleotide into
the DNA strand leads to significant destabilization of the du-
plexes upsetting the Watson-Crick-pairing,13 and that the chi-
rality of homochiral nucleic acids is the primary determinant
for their helical sense.14,15 Moreover, this intrinsic chirality at
the microscopic level leads to handedness at the macroscopic
level.16,17

A fundamental discovery in the middle of the last cen-
tury is that electroweak interactions give rise to primarily left-
spinning electrons during nuclear beta decay.18 This symme-
try breaking originates from parity violation (PV) at the quan-
tum level, correctly predicted in 1956 by Lee and Yang19
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and put into a firm quantum theory by Weinberg, Salam and
Glashow.20–23 Loosely speaking, our Universe is left-handed
and mirror-image symmetry is broken in quantum processes,
that is, the parity operator P does not commute anymore with
the Hamiltonian of the system. This PV effect has been mea-
sured and calculated very accurately from electroweak the-
ory for forbidden atomic transitions confirming the standard
model in particle physics to high precision.24–27 From the
standard model it is also accepted that PV can lead to a small
energy difference between enantiomers of chiral molecules
(Vn−Ae coupling for the Z-boson exchange between electrons
and the nucleons),28,29 although there is no experimental veri-
fication yet of this distinct symmetry breaking effect.30,31 For
more recent reviews on PV effects in chiral molecules see refs.
32–35.

Yamagata suggested in 1966 that “The asymmetric appear-
ance of biomolecules is most naturally explained by suppos-
ing a slight breakdown of parity in electromagnetic interac-
tion and an accumulation of it in a series of chemical re-
actions”.36 While this (perhaps over-enthusiastic) statement
added a new hypothesis on the origin of biomolecular ho-
mochirality, his next statement “Conversely, it seems that the
asymmetric existence of biomolecules verifies a parity non-
conservation in electromagnetic interaction. ... This univer-
sality, if true, would promise similar results on other planets
than the earth” is certainly incorrect. Note also that Yamagata
discusses the possibility of parity violation in electromagnetic
and not weak interactions. Nevertheless, the possibility that
PV effects lead to a clear deterministic selection of one enan-
tiomer over the other has led to an intense activity in this field,
most notably in early days of electroweak quantum chemical
investigations37 by Mason and Tranter,38–43 and later by Mc-
Dermott.44,45 However, the energy PV energy difference be-
tween the enantiomers is extremely small and on the order
of 10−17 to 10−16 kJ mol−1.46,47 Moreover, the preference
for one enantiomer over the other critically depends on the
conformation of the molecule and the interaction with other
molecules (such as water). For instance, a slight rotation of
the carboxyl group can easily change the energetic preference
from an (L)-amino acid to the (D)-form.48–51 Moreover, as
we learned in the last 10 years, the computational results are
also critically dependent on the method applied.33,52–57 This
led Bonner to the radical conclusion that “there is no causal
connection whatsoever between parity violation in terrestrial
biopolymers and that in nuclear processes, and that parity vio-
lation inherent in biopolymers is in no way the consequence of
parity violation at the level of fundamental particles”.10 Nev-
ertheless, PV as a cause of biomolecular homochirality cannot
be strictly ruled out and requires more detailed investigations.
What can perhaps be ruled out, though, is the Salam hypoth-
esis of a PV initiated phase transition in (D)-amino acids, as
large conversion barriers for the racemization in the solid state

would completely inhibit such a process.58

In the last twenty years a number of research groups be-
gan to search for large PV effects in chiral molecules, both on
the experimental and the theoretical side (e.g. see review arti-
cles33–35,47,59–61 on this subject). Yet, we are currently not in
the position to design new chiral molecules and estimate PV
effects by its order of magnitude without resorting to calcula-
tions. All we currently rely on is the high Z-scaling rule for
the nuclear spin-independent and the nuclear spin-dependent
components of the electroweak perturbation.28,29,37,62–64 A
deeper understanding of the mechanisms of PV in molecular
systems is very much needed in order to better guide experi-
ment. A significant contribution was provided by Hegstrom,
Rein and Sandars37, pointing out the connection to optical ac-
tivity in molecules and introducing the single-center theorem.
A qualitative model of the PV in molecular systems was pro-
posed by Faglioni and Lazzeretti in a non-relativistic frame-
work65. In the present work we present a detailed analysis of
PV in chiral molecules, but now in a 4-component relativistic
framework, which we believe will help to assist further inves-
tigations in this new emerging field. In particular, we perform
a decomposition of the molecular expectation value in intra-
and inter-atomic contributions as well as a visualization of
the electron chirality density.66,67 We furthermore propose a
bridge between the relativistic and non-relativistic approaches
to the calculation of the PV energy in molecules by exploring
the single-center theorem37 in a variational setting.

2 Theory

2.1 Parity violation energy in molecular systems

The parity violating weak interaction in molecules is domi-
nated by the exchange of Z0 bosons between electrons and
nuclei (quarks). Detailed discussions of the interaction Hamil-
tonian relevant for the study of PV in atoms and molecules are
found in refs. 32,53,68–70. In the following we shall simply
sketch a derivation highlighting differences between the weak
and the electromagnetic interaction.

The Hamiltonian describing electromagnetic interactions
may be expressed as71

Hem
int =−

∫
jµAµdτ, (1)

where appears the 4-current jµ = (j, icρ) and 4-potential Aµ =
(A, iφ/c). In the following we employ implicit summation
and, following Sakurai,72 express 4-vectors using imaginary
i rather than resorting to a metric. The 4-potential is the solu-
tion of Maxwell’s equation which in Lorentz gauge reads

�2Aµ =−4π( jµ/c2), (2)
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where appears the d’Alembertian �2 = ∇2− 1
c2

∂2

dt2 . Here and
in the following we employ SI-based atomic units. The elec-
tromagnetic interaction is mediated by photons. Anticipating
massive vector bosons, we generalize the corresponding equa-
tion for the Green’s function (propagator) as(

�2−M2c2)G
(
r, t;r′, t ′

)
=−4πδ

(
r− r′

)
(3)

which corresponds to the Klein-Gordon equation with a source
term. The 4D Fourier transformed Green’s function is given
by

G(k,ω) =
4π

pµ pµ +M2c2 ; pµ = (k, iω/c). (4)

Two limiting cases may now be distinguished: In the case of
electromagnetic interactions, the vector bosons (photons) do
not carry mass, and the (retarded) Green’s function simplifies
to

G(+)
(
r, t;r′, t ′

)
=

δ(t ′− tr)
|r− r′|

; tr = t− |r− r′|
c

. (5)

The electromagnetic interaction Hamiltonian eqn (1) can thus
be expressed as

Hem
int =− 1

c2

∫ jµ(r, t) jµ(r′, tr)
|r− r′|

dτdτ
′. (6)

In the second limiting case the mass of the vector boson over-
whelms momentum exchange (pµ pµ) which leads to an inter-
action Hamiltonian on the contact form given by Fermi in his
explanation of β-decay in 193473(see ref. 74 for an English
translation). An effective Hamiltonian for the weak interac-
tion between electrons and nucleons, mediated by the neutral
and massive Z0 boson is accordingly given by

HFermi
int =

4π

M2
Zc4

∫
je
µ (r, t)

(
Z

∑
i

jp
µ;i (r, t)+

N

∑
i

jn
µ;i (r, t)

)
dτ.

(7)
The mass of the Z0 boson is 91.1876(21) GeV/c2,75 that is,
close to 98 Da.

Intriguingly, the weak force is the only interaction mediated
by massive vector bosons, leading to a contact-like interaction,
and also the only interaction allowing PV (the short range of
the nuclear force, despite the strong interaction being medi-
ated by massless gluons, is due to its van der Waals like char-
acter69). The electromagnetic currents are vector quantities

jµ =−ecψ
† (ααα, i)ψ, (8)

meaning that the spatial component changes sign under in-
version. They combine, however, to give a parity conserving
interaction. In contrast, the neutral currents of the weak inter-
action are combinations of vector and axial-vector forms

jµ =
ec

2sin(2θW)

CV ψ
† (ααα, i)ψ︸ ︷︷ ︸
(−,+)

−CA ψ
† (ΣΣΣ, iγ5)ψ︸ ︷︷ ︸

(+,−)

 , (9)

where appears the γ5 matrix

γ5 =

[
02 12
12 02

]
(10)

and the Weinberg angle θW which describes the rotation of
B0 and W 0 bosons by spontaneous symmetry breaking to
form photons and Z0 bosons. The most recent value76 is
sin2

θW = 0.2397(13) (in the present work we have employed
sin2

θW = 0.2319). The axial-vector coupling coefficients for
the neutron, proton and electron are Cn

A = −Cp
A = Ce

A = −1,
respectively. Likewise, the vector couping coefficients are
Cn

V =−1 and Cp
V =−Ce

V = 1−4sin2
θW. For the nucleon cur-

rents a non-relativistic approximation is employed,70 setting
the small components to zero, such that only parity conserv-
ing parts of the currents are retained.

The parentheses below the underbraces in eqn (9) indicate
the behaviour of the space and time components under inver-
sion. Combining the space components of the nucleon axial-
vector currents and the electron vector current and (An−Ve
coupling) leads to a nuclear spin-dependent interaction Hamil-
tonian which has been employed in theoretical studies of PV
in NMR spectra64,77–87. In the present work, however, we
focus exclusively on the PV nuclear spin-independent inter-
action Hamiltonian which is obtained by combining the time
components of the nucleon vector currents and the electron
axial-vector current (Vn−Ae coupling). At the 4-component
relativistic level it is given by

HPV = ∑
A

HA
PV; HA

PV =
GF

2
√

2
QA

w ∑
i

γ5(i)ρA(ri), (11)

in which appears the weak nuclear charge

QA
w = ZACp

V +NACn
V = ZA(1−4sin2

θW)−NA (12)

with ZA and NA representing the number of protons and neu-
trons in nucleus A. The presence of normalized nuclear charge
densities ρA restricts integration over electron coordinates ri to
nuclear regions and thereby provides a natural partitioning of
the operator in atomic contributions ĤA

PV. The Fermi coupling
constant

GF = 2.22255×10−14Eha3
0≈ 2

√
2
(

4πh̄2

4πε0M2
Zc4

)(
ec

2sin(2θW)

)2

(13)
implies that the interaction is truly weak (the right-hand side
formula is only approximate in that the cited value also con-
tains radiative corrections). The parity violating energy EPV
can accordingly not be simply extracted from the total elec-
tronic energy of a molecule in standard floating point calcula-
tions and should rather be obtained in the framework of pertur-
bation theory. In a relativistic framework the parity violating
energy can be calculated as an expectation value

EPV = ∑
A
〈HA

PV〉. (14)
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In a non-relativistic (NR) framework the PV Hamiltonian re-
duces to

HPV;NR =∑
A

HA
PV;NR; HA

PV;NR =
GF

4mc
√

2
QA

w ∑
i
{σσσi ·p,ρA(ri)}+.

(15)
This purely imaginary operator gives zero expectation value
for NR (real) wave functions. In a NR framework the parity
violating energy is therefore calculated as a static linear re-
sponse function52,54

EPV;NR = ∑
AB
〈〈HA

PV;NR;HB
SO〉〉0 (16)

(or approximated by a sum-over-states expression) by cou-
pling the NR PV operator with an operator describing spin–
orbit (SO) coupling contributions from individual centers. A
Z5

A scaling law has been deduced for EA
PV in molecular sys-

tems, based on both the relativistic,28 eqn (14), and NR29,37,62

expressions, eqn (16), for the PV energy.

2.2 Projection analysis of expectation values

At the 4-component relativistic Hartree–Fock (HF) and Kohn–
Sham (KS) level of theory the PV energy EPV is straightfor-
wardly calculated as an expectation value. Further insight can
be obtained by subjecting the expectation value to projection
analysis. Consider the expectation value of some operator Ω̂

in the HF or KS approach

Ω = 〈Ψ|Ω̂|Ψ〉=
Nocc

∑
i
〈ψi|Ω̂|ψi〉. (17)

We proceed, in the spirit of for instance the Townes–Dailey
model for nuclear quadrupole coupling constants,88 by ex-
panding the molecular orbitals (MO) ψi in the atomic orbitals
ψA

j of the constituent atoms

|ψi〉= ∑
A j
|ψA

j 〉cA
ji + |ψ

pol
i 〉, (18)

where the index A labels the individual atoms (or, more gener-
ally, individual fragments). Typically only the occupied frag-
ment orbitals will be employed, so whatever part of the molec-
ular orbitals which is not spanned by the selected set of frag-
ment orbitals is denoted the polarization contribution ψ

pol
i ,

which by construction is orthogonal to the fragment orbitals.
Projecting eqn (18) from the left by any fragment orbital ψB

k
gives a system of linear equations

∑
A j
〈ψB

k |ψA
j 〉cA

ji = 〈ψB
k |ψi〉, (19)

which determines the expansion coefficients cA
ji.

Inserting the MO expansion, eqn (18) into the expectation
value, eqn (17) we obtain several terms

〈Ψ|Ω̂|Ψ〉= ∑
A

∑
i jk
〈ψA

i |Ω̂|ψA
j 〉cA?

ik cA
jk︸ ︷︷ ︸

intra-atomic

+ ∑
A 6=B

∑
i jk
〈ψA

i |Ω̂|ψB
j 〉cA?

ik cB
jk︸ ︷︷ ︸

inter-atomic

+(pol), (20)

which are conveniently divided into three classes: i) intra-
atomic contributions involve only atomic orbitals from the
same center, ii) inter-atomic contributions involve atomic or-
bitals from two centers and iii) polarization contributions in-
volve ψ

pol
i . The usefulness of the projection analysis deteri-

orates with increasing importance of the latter contributions,
since they blur the distinction between intra- and inter-atomic
contributions. Setting Ω̂ to the identity operator gives the start-
ing point for a population analysis89 equivalent to that of Mul-
liken, but cured of the strong basis-set dependence which ren-
ders Mulliken population analysis at best ambiguous in many
cases.

3 Computational details

All calculations have been carried out with a development ver-
sion of the DIRAC program package.90 For the series H2X2
(X = O, S, Se, Te, Po) we have carried out 4-component rela-
tivistic HF and KS calculations based on the Dirac-Coulomb
(DC) Hamiltonian. We have employed the density function-
als LDA (SVWN5),91,92 BLYP,93–95 and B3LYP,96,97 repre-
sentative of the three first rungs of the Jacob’s ladder of den-
sity functional approximations.98 We have adopted the even-
tempered basis sets and geometric parameters of ref. 63 with
the H–X–X–H dihedral angle defined to correspond to the
(P)-enantiomer. The small component basis sets were gen-
erated by restricted kinetic balance imposed in the canonical
orthonormalization step.99 The two-electron Coulomb inte-
grals (SS|SS), involving only the small components, were ne-
glected in all calculations and the energy corrected by a sim-
ple point-charge model.100 For the projection analysis atomic
orbitals for the constituent atoms were precalculated in their
own atomic basis based on the ground state electronic config-
urations. We employed average SCF in the case of HF and
fractional occupation in the case of KS.

For the CHBrClF molecule we carried out 4- and 2-
component relativistic HF calculations, the latter based on
the one-step, exact two-component (X2C) relativistic Hamil-
tonian101 in spin–orbit free form. We employed the AMFI
code102,103 to provide one- and two-electron spin–orbit cor-
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rections, see ref. 104 for more details. For comparative pur-
poses with respect to the 4-component DC Hamiltonian, the
two-electron SO terms of the AMFI operator contain only the
spin-same-orbit part. A specificity of our interface to AMFI is
that it allows the selection of nuclei for which spin–orbit cor-
rections are supplied. Basis sets and geometric parameters as
well as the scalar relativistic CCSD(T) potential curve along
the C–F stretching mode were taken from ref. 105. The PV
shift was calculated by double perturbation theory56

∆P0→1 = 2(P1−P0)≈
h̄

µωe

[
P[2]− 1

µω2
e

P[1]V [3]
]

(21)

where V [n] and P[n] are the MacLaurin expansion coefficients
of the potential and property curves along the normal coordi-
nate q, respectively. Pn = 〈n|P(q)|n〉 is the value of the prop-
erty, in this case EPV, in vibrational state n of the selected
normal mode and µ is the corresponding reduced mass.

Unless otherwise stated, a Gaussian charge distribution has
been chosen as the nuclear model using the recommended val-
ues of ref. 106. All basis sets are used in the uncontracted
form.

4 Results and discussion

4.1 Projection analysis of the PV expectation value

The PV energy can be written as a sum of atomic contributions

EPV = ∑
A

EA
PV =

GF

2
√

2 ∑
A

QA
wMA

PV. (22)

In the following we will concentrate on the reduced contri-
butions MX

PV = 〈Ψ|γ5ρX |Ψ〉. In Figure 1 we show the reduced
contribution MTe

PV of a Te atom in H2Te2 as a function of the H–
Te–Te–H dihedral angle ϕ, calculated at the HF level as well as
with three different density functionals. We observe the char-
acteristic sigmoidal curve found for H2X2 systems by previous
authors40,52,53,55,63,64,83,107,108 and which is also found when
optical activity is plotted as a function of dihedral angle for the
same systems (see for instance ref. 109). The MX

PV is zero by
symmetry for dihedral angles 0◦ and 180◦, whereas the cross-
ing of the abcissa in the vicinity of dihedral angle 90◦ occurs
for a chiral conformation and therefore bars the use of the PV
energy EPV as a chirality measure, as is the case for any pseu-
doscalar function.110,111 We note that the four curves traced
in Figure 1 are qualitatively the same, but the three density
functionals distinguish themselves from HF by giving more
pronounced maxima around 45◦ and minima around 135◦.

A compact representation of the sigmoidal curves is pro-
vided by Fourier decomposition

MX
PV(ϕ) =

∞

∑
n=1

FX
n sin(nϕ). (23)

Fig. 1 Reduced contribution MTe
PV for H2Te2 as a function of

dihedral angle. All values in atomic units

In Figure 2 we trace the Fourier components of the reduced
contribution MTe

PV of a Te atom in H2Te2 as a function of dihe-
dral angle ϕ, calculated at the HF level. The curve is clearly
dominated by the F2 component, whereas the F1 is the prime
responsible for shifting the crossing of the abscissa off from
dihedral angle 90◦. In Table 1 we give the F2 component of
MX

PV for the series H2X2 (X = O, S, Se, Te, Po). One clearly
sees how the values obtained with the three density function-
als LDA, BLYP and B3LYP tend to cluster away from the HF
value, although the distinction becomes less pronounced for
the heavier systems. One also observes that the PV energy in-
creases by orders of magnitude for the heavier systems. We
will explore the scaling of the PV energy in more detail later
in this section.

Fig. 2 Fourier decomposition of the reduced contribution MTe
PV for

H2Te2 calculated at the HF level as a function of dihedral angle. All
values in atomic units.
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Table 1 Fourier component F2 of the reduced contribution MX
PV to the PV energy for the series H2X2 (X = O, S, Se, Te, Po). All values in

atomic units. The square brackets denote powers of 10

H2O2 H2S2 H2Se2 H2Te2 H2Po2
HF 6.729[–6] 7.435[–5] 3.163[–3] 2.787[–2] 7.955[–1]
LDA 7.441[–6] 9.522[–5] 4.335[–3] 3.697[–2] 7.444[–1]
BLYP 7.238[–6] 9.554[–5] 4.204[–3] 3.585[–2] 7.504[–1]
B3LYP 7.163[–6] 9.162[–5] 4.055[–3] 3.488[–2] 7.703[–1]

In order to obtain a deeper understanding of parity viola-
tion in molecular systems, we will subject the reduced con-
tributions MX

PV to the projection analysis of expectation val-
ues introduced in section 2.2. Our results are summarized
in Tab. 2 and illustrated for H2Te2 in Figure 3. All num-
bers refer to HF calculations, but the conclusions are valid for
the KS level as well. The projection analysis clearly shows
that the reduced contribution MX

PV is completely dominated by
intra-atomic contributions from the same center (X), although
some uncertainty is introduced by the polarization contribu-
tion, which rises rather steadily from 4.7% to 20.3% through
the series. All other intra-atomic contributions as well as
the inter-atomic contributions are completely negligible. For
H2Po2 we find that the inclusion of the virtual 7s1/2 orbital in
the projection analysis reduces the polarization contribution
from 20.3% to below 6.0%. We believe that this is due to the
combined effect of the increasing polarisability of atoms when
descending a row in the periodic table and the significant rela-
tivistic stabilization of the 7s1/2 orbital. We find, though, that
the contribution of the 7s1/2 orbital to the electronic configu-
ration of the polonium atom in the molecule is negligible.

Fig. 3 Projection analysis of the reduced contribution MTe
PV for

H2Te2 calculated at the HF level as a function of dihedral angle, see
text for more details. All values in atomic units.

The atomic nature of the reduced contribution MX
PV allows

us to deepen the analysis by expressing it in terms of atomic

orbitals from the same center X . We write the 4-component
relativistic atomic orbitals as

ψ =


ψLα

ψLβ

ψSα

ψSβ

=

[
RL(r)χκ,m j(θ,φ)

iRS(r)χ−κ,m j(θ,φ)

]
, (24)

where RL and RS are the large and small radial functions, re-
spectively and χκ,m j the 2-component angular functions. Our
analysis so far shows that MX

PV is very well approximated by

MX
PV ≈∑

i j
〈ψX

i |γ5ρ
X |ψX

j 〉

= i
{
〈RL;X

i |ρ
X |RS;X

j 〉r〈χ
X
κi,mi
|χX
−κ j ,−m j

〉θ,φ

−〈RS;X
i |ρ

X |RL;X
j 〉r〈χ

X
−κi,mi

|χX
κ j ,−m j

〉θ,φ
}
, (25)

where subscripts r and (θ,φ) refer to radial and angular inte-
gration, respectively. From the angular integration we obtain
the restrictions κi = −κ j and mi = m j. These already imply
that the expectation value is strictly zero for an unpolarized
atom. Further insight is obtained from the radial integration.
Due to the extremely local nature of the nuclear charge distri-
bution, it is sufficient to consider small r solutions of the radial
functions112,113

RL = rγ−1(p0 + p1r+ p2r2 + . . .) (26)

RS = rγ−1(q0 +q1r+q2r2 + . . .). (27)

For a point nucleus γ =+
√

κ2−Z2/c2 < |κ| such that there is
a weak singularity at the nucleus for |κ|= 1. This implies that
the only contributions to MX

PV arises from the mixing of s1/2
and p1/2 orbitals on the same center X . However, further con-
tributions are allowed if we consider the more realistic model
of extended nuclei. We then have γ = |κ| and no singulari-
ties. For κ < 0 we have q0 = p1 = 0, whereas for κ > 0 the
conditions p0 = q1 = 0 hold. Again only s1/2 and p1/2 orbitals
have non-zero contributions at the origin. In particular, for s1/2

orbitals RL = p0 and RS = 0, where p0 is determined from
the normalization of the orbital. Likewise, for p1/2 orbitals
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Table 2 Summary of projection analysis of the reduced contribution MX
PV to the PV energy, calculated at the HF level, for the series H2X2

(X = O, S, Se, Te, Po). All values in atomic units. The square brackets denote powers of 10

H2O2 H2S2 H2Se2 H2Te2 H2Po2
full 6.492[–6] 7.435[–5] 3.163[–3] 2.787[–2] 7.955[–1]
intra(X) 5.879[–6] 6.876[–5] 2.717[–3] 2.459[–2] 6.334[–1]
inter 3.060[–7] –1.212[–6] 3.074[–5] –1.233[–4] 9.569[–4]
polar 3.066[–7] 6.798[–6] 4.152[–4] 3.407[–3] 1.611[–1]
MX

PV(ns1/2;np1/2) 8.819[–6] 8.548[–5] 3.773[–3] 3.216[–2] 7.728[–1]

RL = 0 and RS = q0 where q0 is determined from normaliza-
tion. However, the finite extent of the nuclear charge distribu-
tion means that contributions from any pair of atomic orbitals
with same j, but opposite κ is now allowed. These findings
are illustrated in Tables 3 and 4 where we give selected ma-
trix elements 〈ψPo

i |γ5ρPo|ψPo
j 〉 for the polonium atom using a

Gaussian and a point charge nuclear model. In Table 3 such el-
ements are given between s1/2 and p1/2 orbitals. It can be seen
that the difference between the values of the matrix elements
obtained with the two different models for the nuclear charge
distribution are rather small. One can also observe a differ-
ence of orders of magnitude of such matrix elements when
going from core to valence orbitals. In Table 4 such elements
are given between p3/2 and d3/2 orbitals. With a point nucleus
such matrix elements are indeed zero (to machine precision),
whereas non-zero values are found with an extended (Gaus-
sian) nucleus, albeit significantly smaller than the matrix ele-
ments involving s1/2 and p1/2. Although Kriplovich114 points
out that a finite nucleus does result in mixing of orbitals other
than s1/2 and p1/2, we are not aware of studies of atomic PV
that explore the modification of selection rules by the combi-
nation of PV and the finite size of the nucleus demonstrated
above.

The picture that emerges from our analysis so far is that the
PV energy arises from mixing of atomic orbitals, in particular
s1/2 and p1/2 in the presence of a chiral molecular field. This is
in line with previous theoretical considerations37,40,68,114,115.
The novelty of our approach is that we have developed an
analysis tool which allows us to study these effects in a de-
tailed and quantitative manner for any molecular system.

In atoms such mixing leads to non-zero transition ampli-
tudes for parity-forbidden electric dipole transitions such as
the 6S1/2 → 7S1/2 transition in cesium which has been ob-
served by experiment.116,117 Clearly s1/2 and p1/2 orbitals al-
ready mix in the X2 moiety for which EPV is strictly zero, so
the nature of this mixing has to be considered in more detail.
We note that according to eqn (25) the inter-atomic matrix ele-
ments 〈ψX

i |γ5ρX |ψX
j 〉 should be purely imaginary, whereas the

actual elements given in Tables 3 and 4 are real. This follows
from a specific choice of phase, which will be important in
the following. Relativistic atomic orbitals are usually given as
in eqn (24) with a purely imaginary phase on the small com-
ponent to assure real radial functions, but this is not the only
possibility. We will introduce a choice of phase that to largest
possible extent leads to real coefficients when mixing atomic
orbitals into molecular ones. 4-component relativistic orbitals
(4-spinors) span fermion irreps, that is, the extra irreps of the
double groups. However, as pointed out in ref. 118, the real
and imaginary parts of each component span boson irreps, that
is, the irreps of single point groups. The phase of atomic or-
bitals is fixed to within a real phase by insisting on a specific
symmetry structure of gerade and ungerade orbitals

ψg =


(Γ0,ΓRz)
(ΓRy ,ΓRx)
(Γxyz,Γz)
(Γy,Γx)

 ; ψu =


(Γxyz,Γz)
(Γy,Γx)
(Γ0,ΓRz)
(ΓRy ,ΓRx)

= Γxyz⊗ψg.

(28)
In the above expression Γ0 refers to the totally symmetric ir-
rep, Γq and ΓRq (q = x,y,z) to the symmetry of the coordinates
and rotations, respectively, and finally Γxyz to the symmetry of
the function xyz, which is the symmetry of the γ5 matrix. In
fact, the phases are fixed by selecting Γ0 and Γxyz for gerade
and ungerade orbitals, respectively, as the symmetry of the
real part of the Lα component. With this choice of phase, s1/2
will have the structure as given in eqn (24), but for p1/2 or-
bitals the imaginary phase is moved to the large component.
The matrix elements between s1/2 and p1/2 orbitals now be-
come purely real, that is,

〈sX
1/2|γ5ρ

X |pX
1/2〉= 〈R

L;X
s |ρX |RS;X

p 〉r + 〈RS;X
s |ρX |RL;X

p 〉r. (29)

Consider now the mixing of s1/2 and p1/2 orbitals on the same
center X when atomic symmetry is broken in a molecule[

ψ+

ψ−

]
=

[
cosθ eiφ sinθ

−e−iφ sinθ cosθ

][
sX

1/2
pX

1/2

]
; θ∈

[
−π

2
,

π

2

]
.

(30)
The generally unitary transformation has been selected such
that the resulting function ψ+ has a real coefficient cosθ for
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Table 3 Matrix elements 〈ψPo
i |γ5ρPo|ψPo

j 〉 between s1/2 and p1/2 orbitals, calculated at the HF level. Numbers are given for a Gaussian
nuclear model as well as a point nucleus model, the latter in parenthesis. All values in atomic units. The square brackets denote powers of 10

2p1/2 3p1/2 4p1/2 5p1/2 6p1/2
1s1/2 1.385[+5] –7.082[+4] 3.583[+4] 1.573[+4] –4.904[+3]

(1.551[+5]) (–7.942[+4]) (4.018[+4]) (1.764[+4]) (–5.499[+3])
2s1/2 5.486[+4] –2.806[+4] 1.419[+4] 6.233[+3] –1.943[+3]

(6.148[+4]) (–3.148[+4]) (1.593[+4]) (6.992[+3]) (–2.180[+3])
3s1/2 –2.646[+4] 1.354[+4] –6.847[+3] –3.007[+3] 9.372[+2]

(–2.966[+4]) (1.519[+4]) (–7.683[+3]) (–3.373[+3]) (1.051[+3])
4s1/2 1.345[+4] –6.881[+3] 3.481[+3] 1.529[+3] –4.765[+2]

(1.508[+4]) (–7.720[+3]) (3.906[+3]) (1.715[+3]) (–5.346[+2])
5s1/2 –6.182[+3] 3.162[+3] –1.600[+3] –7.024[+2] 2.190[+2]

(–6.929[+3]) (3.548[+3]) (–1.795[+3]) (–7.881[+2]) (2.457[+2])
6s1/2 2.260[+3] –1.156[+3] 5.849[+2] 2.568[+2] –8.006[+1]

(2.534[+3]) (–1.297[+3]) (6.562[+2]) (2.881[+2]) (–8.982[+1])

Table 4 Matrix elements 〈ψPo
i |γ5ρPo|ψPo

j 〉 between p3/2 and d3/2 orbitals, calculated at the HF level. Numbers are given for a Gaussian
nuclear model as well as a point nucleus model, the latter in parenthesis. All values in atomic units. The square brackets denote powers of 10

3d3/2 4d3/2 5d3/2
2p3/2 –1.185[–02] 6.311[–03] –2.348[–03]

(–4.598[–21]) (2.403[–22]) (4.869[–20])
3p3/2 6.277[–03] –3.343[–03] 1.244[–03]

(–2.365[–20]) (1.236[–21]) (2.504[–19])
4p3/2 –3.193[–03] 1.701[–03] –6.330[–04]

(1.052[–20]) (–5.500[–22]) (–1.114[–19])
5p3/2 1.380[–03] –7.348[–04] 2.734[–04]

(–2.491[–19]) (1.302[–20]) (2.638[–18])
6p3/2 3.989[–04] –2.125[–04] 7.907[–05]

(3.287[–19]) (–1.718[–20]) (–3.480[–18])

the s1/2 orbital. We then find

〈ψ+|γ5ρ
X |ψ+〉= 2cosθcosφsinθ〈sX

1/2|γ5ρ
X |pX

1/2〉

=−〈ψ−|γ5ρ
X |ψ−〉. (31)

From the above result we can draw two conclusions: i) The
presence of the factor cosφ in the above expression shows
that a non-zero contribution is only obtained when the mix-
ing coefficient of the p1/2 orbital has a real component. ii) ψ+

and ψ− must contribute with unequal weight in the molecular
wave function, otherwise they cancel each other. The latter
conclusion explains why core orbitals generally do not con-
tribute to the PV energy,63 although Tables 3 and 4 show that
their matrix elements are significantly larger than matrix el-
ements over valence orbitals. Indeed, Figure 3 and Table 2
clearly show that the reduced contribution MX

PV is completely
dominated by the mixing of valence s1/2 and p1/2 orbitals on
the same center X .

The above analysis shows that for the series H2X2 (X = O, S,
Se, Te, Po) the reduced contribution is very well approximated

by

MX
PV ≈ 〈nsX

1/2|γ5ρ
X |npX

1/2〉

“mixing”︷ ︸︸ ︷
2Re

[
∑

i
c(nsA

1/2)
?
i c(npA

1/2)i

]
︸ ︷︷ ︸

“total”

,

(32)
where the index i sums over molecular orbitals. In Fig-
ure 4 we give a log-log plot showing the scaling behaviour
of the reduced contribution along the series. Although not
strictly linear, it can be seen that the atomic matrix element
〈nsX

1/2|γ5ρX |npX
1/2〉 scales approximately as Z2.6 , thus con-

firming the Z3 scaling law proposed by Bouchiat and Bouch-
iat68. The mixing coefficient, which we from eqn (16) can
associate with spin-orbit coupling from the neighbouring cen-
ters, scales as Z2.1, thus giving an overall scaling Z4.8, in
agreement with previous estimates.28,29,37,62
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Fig. 4 Log-log plot showing the scaling of reduced contribution
MX

PV as a function of nuclear charge Z along the series H2X2 (X = O,
S, Se, Te, Po) (log(MX

PV) vs. log(Z)). The total contribution is split
into an atomic integral 〈nsX

1/2|γ5ρX |npX
1/2〉 weighted by the mixing

coefficients of the atomic orbitals in the molecule as in eqn (32).

4.2 Visualization of the electron chirality density in the
4-component relativistic framework

In section 2.2 the reduced contributions

MX
PV =

Nocc

∑
i
〈ψi|γ5ρ

X |ψi〉 (33)

have been studied by means of a projection analysis. The in-
tegrals MX

PV have been shown to exhibit an intriguing depen-
dence on the H–X–X–H dihedral angle through the changing
chiral environment probed at the atomic centers X and in their
immediate vicinity by the normalized nuclear charge distribu-
tion ρX . In this section we wish to visualize this dependence
by defining a density γ5(r), such that∫

γ5(r)ρX (r)dr≡
Nocc

∑
i
〈ψi|γ5ρ

X |ψi〉. (34)

If we consider the atomic centers X fixed in space during the
variation of the H–X–X–H dihedral angle (Figure 5) then the
geometry depencence of MX

PV is carried by the γ5(r) density
alone, whereas the probing ρX (r) is independent of the posi-
tions of other atoms and therefore independent of the chiral
environment created by these centers.

The density γ5(r) has been introduced in the NR frame-
work by Hegstrom66,67 under the name electron chirality den-
sity, a name which we will adopt also in our work. In the 4-
component relativistic theory the density γ5(r) takes a partic-
ularly simple form given the structure of the γ5 Dirac matrix,
eqn (10) and can be evaluated in AO basis according to

γ5(r) = ∑
κλ

[
χ

†
κ(r)χλ(r)Dλκ +χ

†
λ
(r)χκ(r)Dκλ

]
, (35)

where the indices κ and λ map large and small component
basis functions χ, respectively, and Dλκ represents elements
of the AO density matrix. In contrast to the NR theory where
SO coupling needs to be introduced perturbationally to yield
nonzero γ5(r), we can work with the unperturbed SCF density
matrix since SO coupling is introduced variationally from the
start.

The significance of the electron chirality density is the fact
that an understanding and modeling of the electron chirality
density depending on the molecular building blocks and their
relative geometry and orientation would allow to model the
PV expectation value. The relationship between γ5(r) and the
PV expectation value is particularly simple when using the
point charge (PC) nuclear model:

EPC
PV =

GF

2
√

2 ∑
A

QA
w

∫
γ5(r)ρA

δ
3(r−rA)dr=

GF

2
√

2 ∑
A

QA
wγ5(rA).

(36)
Using this model, γ5(rA) =MA

PV, and the PV expectation value
is a simple sum of the electron chirality densities evaluated
at the atomic centers A and scaled with the respective weak
charges QA

w and the prefactor GF/2
√

2 whereas the more re-
alistic Gaussian distribution model for the normalized nuclear
charge density ρA would require the knowledge of γ5(r) also
in the close vicinity of the nuclear center.

It is important to realize that the electron chirality density
γ5(r) itself is very atomic in nature. This follows from the
very atomic nature of the small components and the fact that
the γ5 matrix, eqn (10), couples the large and the small com-
ponents of 4-spinors. This feature is illustrated in Figure 6
where we compare the reduced contribution MTe

PV and the inte-
grated electron chirality density for H2Te2, both calculated at
the HF level, as a function of dihedral angle. The two curves
are qualitatively very similar (Figure 6), but only MTe

PV is inte-
grated including the nucleon density.

In Figure 7 we have plotted the HF γ5(r) around one Te
atom in H2Te2 for selected H-Te-Te-H dihedral angles using
the orientation sketched in Figure 5. The dimensions of the
plots (0.2× 0.2 a0) are restricted to the close vicinity of the
Te center position since only the nuclear region is significant
for the PV expectation value. At all dihedral angles one can
observe regions of positive and negative γ5(r) and several con-
tour lines representing isosurfaces where γ5(r) = 0 relatively
close to the nucleus. At the dihedral angle 0◦ γ5(r) has four
lobes around the nucleus which lies exactly in the γ5(r) = 0
nodal surface – this corresponds to a zero PV expectation
value at this molecular structure (all nuclei lie in the nodal
surface and the molecular expectation value is zero). Increas-
ing the dihedral angle from zero, the nodal surface shifts away
from the nucleus which enters a region of positive γ5(r) with
increasing magnitude and this corresponds to the general be-
havior of the curves in Figure 1. Close to the 90◦ dihedral
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angle the γ5(r) = 0 nodal surface returns and passes through
the nucleus which can then be seen in a region of (relatively
small) negative γ5(r) at 105◦ dihedral angle. At 180◦ dihedral
angle (not shown in Figure 7 because plot would be zero ev-
erywhere), all nuclei lie again in the γ5(r) = 0 nodal surface
(mirror plane).

In all plots presented in Figure 7 the γ5(r) = 0 nodal sur-
faces are relatively close to the nuclear center, which illus-
trates the general difficulty for understanding and modeling
the PV expectation value: it is possible to obtain very differ-
ent atomic contributions EX

PV of even opposite sign by only a
tiny displacement of the nodal surface induced by a minute
change in the molecular structure.

Fig. 5 Orientation of the H2Te2 molecule employed in the
visualization of the electron chirality density (Figure 7). The
dihedral angle H-Te-Te-H is twice the angle between the Te-Te-H
plane and the yz plane. The electron chirality density is plotted in
the xz plane around one Te atom (gray rectangle; size of this
rectangle is not proportional to the bond distances).

Fig. 6 Reduced HF contribution MTe
PV for H2Te2 (left axis) and the

integrated HF electron chirality density γ5(r), eqn (35), (right axis)
as a function of dihedral angle (both in atomic units).

4.3 A variational approach to the single-center theorem

In contrast to the hydrogen dichalcogenides, the CHBrClF
molecule has been subject to experimental studies of PV in
molecules, albeit so far with negative result. Following a
suggestion by Letokhov and co-workers,119,120 the group of
Chardonnet searched for the signature of parity violation in
the CHBrClF molecule in the form of a difference ∆νPV =
νR(−)− νS(+) between the two enantiomers in their infrared
spectral absorption line frequencies. More precisely a hyper-
fine component of the C–F stretching fundamental was probed
by laser-saturated absorption spectroscopy.30,121 In these ex-
periments a sensitivity ∆νPV/ν of 5× 10−14 was attained.
However, theoretical calculations indicate that the PV shift
∆ν0→1

PV for the fundamental 0→ 1 transition of the C–F stretch
of CHBrClF is on the order of –2.4 mHz,56,122–124 correspond-
ing to ∆νPV/ν ≈ −8× 10−17, that is, three orders of magni-
tude smaller. In view of these results, the group of Chardon-
net has oriented their research towards molecules containing
heavier atoms, such as oxorhenium compounds, and are de-
veloping a new ultra-high resolution experiment based on the
sub-Doppler two-photon Ramsey fringes technique which tar-
gets a sensitivity of 0.01 Hz (3×10−16) or better.35,57,60

The PV shift of the fundamental C–F stretching mode of
the CHBrClF molecule has been calculated both as an expec-
tation value, eqn (14), in a 4-component relativistic frame-
work56,105,125 and as a linear response function, eqn (16), in
a NR framework.122,126,127 In the latter case the PV energy is
expressed as a double sum involving the NR PV Hamiltonian
and SO operators associated with the constituent atoms of the
molecule. Diagonal terms are zero according to the single-
center theorem of Hegstrom et al.37 In this section we explore
a hybrid approach which allows us to probe the single-center
theorem in a variational framework. We perform 2-component
relativistic calculations based on the X2C Hamiltonian. In
such calculations an exact block diagonalization of the parent
Dirac Hamiltonian to 2-component form is carried out. The
corresponding picture transformation of the two-electron op-
erator is not carried out, since the resulting two-electron in-
tegrals are expressed in terms of the full set of two-electron
integrals of the 4-component calculation and thus engenders
a computational cost higher than the parent calculation. In-
stead, two-electron SO contributions are typically generated
in an atomic mean-field fashion, in our case by the AMFI
code.102,103 We have carried out a series of calculations in
which the X2C Hamiltonian in the spinfree form has been
combined with both one- and two-electron SO contributions
generated by the AMFI code for a single atom at a time. The
PV energy is then calculated as an expectation value, but with
a wave function generated with SO contributions from a single
center. A similar approach has been employed by van Wüllen
in a computational study of magnetic anisotropy.128 We also
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0◦ 15◦ 30◦ 45◦

60◦ 75◦ 90◦ 105◦

Fig. 7 HF electron chirality density γ5(r), eqn (35), around one Te atom in H2Te2 for several H-Te-Te-H dihedral angles (for the orientation
of the molecule, see Figure 5). Solid (dotted) contour lines are plotted in the range from +0.0005 to +0.005 (−0.0005 to −0.005) atomic
units in intervals of 0.0005 atomic units. The dash-dotted contour line represents γ5(r) = 0. The cross represents the position of the nucleus.
The dimensions of the plots are 0.2×0.2 a0.

note in passing that a 2-component Zeroth-Order Regular Ap-
proximation (ZORA) study of molecular parity violation has
been reported by Berger et al.129.

The resulting PV energies EPV at the equilibrium geometry
of CHBrClF are given in Table 5. For comparison we also
give corresponding values obtained from conventional calcu-
lations based on the 2-component X2C and the 4-component
DC Hamiltonian. In all calculations we employ a point charge
model for the nuclei, which, in view of the discussion in sec-
tion 2.2, implies that contributions to EPV are exclusively ob-
tained from mixing of atomic s1/2 and p1/2 orbitals on the
same center and thus conforms to the restriction imposed
on the single-center theorem.37 The entries of the first five
columns of Table 5 are given in the form (APV,BSO) where
the row refers to the atomic contribution EA

PV to the total PV
energy and the column to the SO-active nucleus. The indi-
vidual PV contributions are summed up in column six and,
comparing to the results obtained by conventional X2C cal-
culations in column seven, one indeed observes a high degree
of additivity of the individual SO-contributions, as implied by
the structure of eqn (16). We also note a very good agreement
of the 2-component X2C results with the full 4-component DC

results, with a maximum deviation of 4% for the bromine PV
contribution, in agreement with previous observations in refs.
57 and 130. However, the diagonal elements of Table 5 are
generally not zero, and even quite significantly so for the heav-
ier elements. This is contrary to the single-center theorem and
may indicate significant higher-order SO contributions. We
also note that the individual PV contributions from the Br and
Cl atoms have opposite signs and so the presence of two heavy
atoms have a destructive, rather than constructive effect.

In Table 6 we give the corresponding PV shifts associated
with the fundamental C–F stretch of the CHBrClF molecule.
Again we observe strong additivity of individual atomic SO-
contributions and good agreement with both conventional 2-
component X2C results as well as 4-component DC results.
We note that both the PV- and SO-contributions from the Br
and Cl atoms come with opposite signs. In Table 6 we also
give the purely harmonic contributions to the PV shift, show-
ing that all atomic PV contributions change sign when anhar-
monicity is taken into account, emphasizing the importance of
including this effect into simulations of the PV shift in molec-
ular vibrational spectra.125
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Table 5 Contributions to the parity violating energy EPV for the CHBrClF molecule. The first five columns give the EPV contributions with
only one spin–orbit active nucleus, summed up in column six, labelled “Sum”. In these calculations both one- and two-electron
SO-contributions were provided by the AMFI module. The final two columns refer to calculations based on the conventional X2C Hamiltonian
and the 4-component Dirac-Coulomb (DC) Hamiltonian, respectively. A point nucleus model was employed in these calculations. All values
in 10−18Eh

C H F Br Cl Sum X2C DC
C –0.0001 0.0000 –0.0028 0.0594 0.0010 0.0576 0.0574 0.0575
H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
F –0.0035 0.0000 0.0008 1.0719 –0.1868 0.8823 0.8735 0.8798
Br –0.6097 0.0007 1.9386 2.4255 4.7602 8.5153 7.8545 8.2086
Cl 0.0584 0.0007 –0.1048 –3.4845 –0.0590 –3.5893 –3.5330 –3.5986
Sum –0.5550 0.0015 1.8318 0.0724 4.5154 5.8660 5.2524 5.5473

5 Conclusion

In this contribution we have analyzed parity violation in sam-
ple chiral molecules in a 2- and 4-component relativistic
framework. Spin-orbit interaction is accordingly included
variationally, and the parity violation energy EPV may be cal-
culated as an expectation value, eqn (14). We have carried out
a decomposition of the molecular expectation value in atomic
contributions and demonstrate that EPV is completely domi-
nated by intra-atomic contributions. By integrating the elec-
tron chirality density γ5 (r) we show that the atomic nature of
parity violation arises not only from the presence of nuclear
charge densities in the weak interaction Hamiltonian, but also
from the coupling of the large and small components of Dirac
4-spinors by the γ5 matrix. The interaction Hamiltonian sam-
ples the electron chirality density in nuclear regions, and we
show that the nodal structure of γ5 (r), and thus its sign in nu-
clear regions, is quite sensitive to molecular structure.

The picture which emerges from our analysis is that the
parity violating energy arises from the mixing of valence
s1/2 and p1/2 atomic orbitals on the same center, induced
by a chiral molecular field. This picture contrasts with the
manifestly inter-atomic mechanism suggested by the non-
relativistic framework in which the parity violation energy is
calculated as a linear response function, eqn (16). We have
carried out 2-component relativistic calculations on the CHBr-
ClF molecule in which only one nucleus is spin-orbit active at
a time and demonstrate that the spin-orbit contributions are
indeed to a large extent additive, giving PV energies and vi-
brational shifts in good agreement with both conventional 2-
component X2C results as well as 4-component DC results.
On the other hand, we show that for the heaviest atom bromine
the spin-orbit contribution gives a significant contribution to
the parity violation energy of the same center contrary to the
single-center theorem. We attribute this result to higher-order
spin-orbit effects not taken into account by the single-center

theorem.
The intra-atomic picture of parity violation that emerges

from our analysis in a relativistic framework, summarized
by eqn (32), suggests that it may be possible to construct a
model for parity violation in chiral molecules by combining
pre-calculated atomic quantities by simple bonding models,
the latter providing estimates for the mixing of s1/2 and p1/2
atomic orbitals in the molecular field. Such a model would
not only allow a rapid scan of candidate molecules for exper-
iment, but may ultimately allow the in silico design of such
molecules.
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Table 6 Contributions to the parity violating transition frequency difference ∆ν0→1
PV between the two enantiomers (R-S) for the fundamental

0→ 1 transition of the C−F stretching mode of the CHBrClF molecule. The first five columns give the contributions with only one
spin–orbit active nucleus, summed up in column six, labelled “Sum”. In these calculations both one- and two-electron SO-contributions were
provided by the AMFI module. The next two columns refer to calculations based on the conventional X2C Hamiltonian and the 4-component
Dirac-Coulomb (DC) Hamiltonian, respectively, whereas the final column reports the harmonic contribution to the DC calculation. A point
nucleus model was employed in these calculations. All values in mHz

C H F Br Cl Sum X2C DC DCharm

C 0.000 0.000 0.001 0.172 –0.041 0.132 0.132 0.132 –0.027
H 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
F 0.000 0.000 0.000 –0.043 –0.001 –0.044 –0.047 –0.046 0.100
Br 0.285 –0.003 0.066 –1.175 –2.518 –3.345 –3.355 –3.334 2.309
Cl –0.018 0.000 –0.013 1.424 0.013 1.406 1.408 1.412 –0.349
Sum 0.267 –0.003 0.054 0.378 –2.547 –1.851 –1.862 –1.836 2.060
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