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Hyperspectral Unmixing Overview: Geometrical,
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Mario Parente, Member, IEEE, Qian Du, Senior Member, IEEE, Paul Gader, Fellow, IEEE, and
Jocelyn Chanussot, Fellow, IEEE

Abstract� Imaging spectrometers measure electromagnetic
energy scattered in their instantaneous Þeld view in hundreds or
thousands of spectral channels with higher spectral resolution than
multispectral cameras. Imaging spectrometers are therefore often
referred to as hyperspectral cameras (HSCs). Higher spectral res-
olution enables material identiÞcation via spectroscopic analysis,
which facilitates countless applications that require identifying
materials in scenarios unsuitable for classical spectroscopic anal-
ysis. Due to low spatial resolution of HSCs, microscopic material
mixing, and multiple scattering, spectra measured by HSCs are
mixtures of spectra of materials in a scene. Thus, accurate estima-
tion requires unmixing. Pixels are assumed to be mixtures of a few
materials, called endmembers. Unmixing involves estimating all or
some of: the number of endmembers, their spectral signatures, and
their abundances at each pixel. Unmixing is a challenging, ill-posed
inverse problem because of model inaccuracies, observation noise,
environmental conditions, endmember variability, and data set
size. Researchers have devised and investigated many models
searching for robust, stable, tractable, and accurate unmixing
algorithms. This paper presents an overview of unmixing methods
from the time of Keshava and Mustard�s unmixing tutorial [1] to
the present. Mixing models are Þrst discussed. Signal-subspace,
geometrical, statistical, sparsity-based, and spatial-contextual
unmixing algorithms are described. Mathematical problems and
potential solutions are described. Algorithm characteristics are
illustrated experimentally.

Index Terms�Hyperspectral imaging, hyperspectral remote
sensing, image analysis, image processing, imaging spectroscopy,
inverse problems, linear mixture, machine learning algorithms,
nonlinear mixtures, pattern recognition, remote sensing, sparsity,
spectroscopy, unmixing.
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Fig. 1. Hyperspectral imaging concept.

I. INTRODUCTION

H YPERSPECTRAL cameras [1]�[11] contribute signiÞ-

cantly to earth observation and remote sensing [12], [13].

Their potential motivates the development of small, commer-

cial, high spatial and spectral resolution instruments. They have

also been used in food safety [14]�[17], pharmaceutical process

monitoring and quality control [18]�[22], and biomedical, in-

dustrial, and biometric, and forensic applications [23]�[27].

HSCs can be built to function in many regions of the electro-

magnetic spectrum. The focus here is on those covering the vis-

ible, near-infrared, and shortwave infrared spectral bands (in the

range 0.3 to 2.5 [5]). Disregarding atmospheric effects,

the signal recorded by an HSC at a pixel is a mixture of light

scattered by substances located in the Þeld of view [3]. Fig. 1

illustrates the measured data. They are organized into planes

forming a data cube. Each plane corresponds to radiance ac-

quired over a spectral band for all pixels. Each spectral vector

corresponds to the radiance acquired at a given location for all

spectral bands.

A. Linear and Nonlinear Mixing Models

Hyperspectral unmixing (HU) refers to any process that sep-

arates the pixel spectra from a hyperspectral image into a col-



lection of constituent spectra, or spectral signatures, called end-

members and a set of fractional abundances, one set per pixel.

The endmembers are generally assumed to represent the pure

materials present in the image and the set of abundances, or

simply abundances, at each pixel to represent the percentage of

each endmember that is present in the pixel.

There are a number of subtleties in this deÞnition. First, the

notion of a pure material can be subjective and problem de-

pendent. For example, suppose a hyperspectral image contains

spectra measured from bricks laid on the ground, the mortar

between the bricks, and two types of plants that are growing

through cracks in the brick. One may suppose then that there

are four endmembers. However, if the percentage of area that

is covered by the mortar is very small then we may not want

to have an endmember for mortar. We may just want an end-

member for �brick�. It depends on if we have a need to directly

measure the proportion of mortar present. If we have need to

measure the mortar, then we may not care to distinguish be-

tween the plants since they may have similar signatures. On the

other hand, suppose that one type of plant is desirable and the

other is an invasive plant that needs to be removed. Then we

may want two plant endmembers. Furthermore, one may only

be interested in the chlorophyll present in the entire scene. Ob-

viously, this discussion can be continued ad nauseum but it is

clear that the deÞnition of the endmembers can depend upon the

application.

The second subtlety is with the proportions. Most researchers

assume that a proportion represents the percentage of material

associated with an endmember present in the part of the scene

imaged by a particular pixel. Indeed, Hapke [28] states that the

abundances in a linear mixture represent the relative area of

the corresponding endmember in an imaged region. Lab experi-

ments conducted by some of the authors have conÞrmed this in a

laboratory setting. However, in the nonlinear case, the situation

is not as straightforward. For example, calibration objects can

sometimes be used to map hyperspectral measurements to re-

ßectance, or at least to relative reßectance. Therefore, the coor-

dinates of the endmembers are approximations to the reßectance

of the material, which we may assume for the sake of argu-

ment to be accurate. The reßectance is usually not a linear func-

tion of the mass of the material nor is it a linear function of

the cross-sectional area of the material. A highly reßective, yet

small object may dominate a much larger but dark object at a

pixel, which may lead to inaccurate estimates of the amount of

material present in the region imaged by a pixel, but accurate

estimates of the contribution of each material to the reßectivity

measured at the pixel. Regardless of these subtleties, the large

number of applications of hyperspectral research in the past ten

years indicates that current models have value.

Unmixing algorithms currently rely on the expected type of

mixing. Mixing models can be characterized as either linear or

nonlinear [1], [29]. Linear mixing holds when the mixing scale

is macroscopic [30] and the incident light interacts with just one

material, as is the case in checkerboard type scenes [31], [32]. In

this case, the mixing occurs within the instrument itself. It is due

to the fact that the resolution of the instrument is not Þne enough.

The light from the materials, although almost completely sepa-

rated, is mixed within the measuring instrument. Fig. 2 depicts

Fig. 2. Linear mixing. The measured radiance at a pixel is a weighted average
of the radiances of the materials present at the pixel.

linear mixing: Light scattered by three materials in a scene is

incident on a detector that measures radiance in bands. The

measured spectrum is a weighted average of the mate-

rial spectra. The relative amount of each material is represented

by the associated weight.

Conversely, nonlinear mixing is usually due to physical inter-

actions between the light scattered by multiple materials in the

scene. These interactions can be at a classical, or multilayered,

level or at a microscopic, or intimate, level. Mixing at the clas-

sical level occurs when light is scattered from one or more ob-

jects, is reßected off additional objects, and eventually is mea-

sured by hyperspectral imager. A nice illustrative derivation of

a multilayer model is given by Borel and Gerstl [33] who show

that the model results in an inÞnite sequence of powers of prod-

ucts of reßectances. Generally, however, the Þrst order terms

are sufÞcient and this leads to the bilinear model. Microscopic

mixing occurs when two materials are homogeneously mixed

[28]. In this case, the interactions consist of photons emitted

from molecules of one material are absorbed by molecules of

another material, which may in turn emit more photons. The

mixing is modeled byHapke as occurring at the albedo level and

not at the reßectance level. The apparent albedo of the mixture is

a linear average of the albedos of the individual substances but

the reßectance is a nonlinear function of albedo, thus leading to

a different type of nonlinear model.

Fig. 3 illustrates two non-linear mixing scenarios: the left-

hand panel represents an intimate mixture, meaning that the ma-

terials are in close proximity; the right-hand panel illustrates a

multilayered scene, where there are multiple interactions among

the scatterers at the different layers.

Most of this overview is devoted to the linear mixing model.

The reason is that, despite its simplicity, it is an acceptable

approximation of the light scattering mechanisms in many real

scenarios. Furthermore, in contrast to nonlinear mixing, the

linear mixing model is the basis of a plethora of unmixing

models and algorithms spanning back at least 25 years. A sam-

pling can be found in [1], [34]�[47]). Others will be discussed

throughout the rest of this paper.

B. Brief Overview of Nonlinear Approaches

Radiative transfer theory (RTT) [48] is a well established

mathematical model for the transfer of energy as photons

interacts with the materials in the scene. A complete physics

based approach to nonlinear unmixing would require inferring



Fig. 3. Two nonlinear mixing scenarios. Left hand: intimate mixture; Right
hand: multilayered scene.

the spectral signatures and material densities based on the

RTT. Unfortunately, this is an extremely complex ill-posed

problem, relying on scene parameters very hard or impossible

to obtain. The Hapke [31], Kulbelka-Munk [49] and Shkuratov

[50] scattering formulations are three approximations for the

analytical solution to the RTT. The former has been widely used

to study diffuse reßection spectra in chemistry [51] whereas

the later two have been used, for example, in mineral unmixing

applications [1], [52].

One wide class of strategies is aimed at avoiding the complex

physical models using simpler but physics inspiredmodels, such

kernel methods. In [53] and following works [54]�[57], Broad-

water et al. have proposed several kernel-based unmixing al-

gorithms to speciÞcally account for intimate mixtures. Some of

these kernels are designed to be sufÞciently ßexible to allow

several nonlinearity degrees (using, e.g., radial basis functions

or polynomials expansions) while others are physics-inspired

kernels [55].

Conversely, bilinear models have been successively proposed

in [58]�[62] to handle scattering effects, e.g., occurring in the

multilayered scene. These models generalize the standard linear

model by introducing additional interaction terms. They mainly

differ from each other by the additivity constraints imposed on

the mixing coefÞcients [63].

However, limitations inherent to the unmixing algorithms

that explicitly rely on both models are twofold. Firstly, they are

not multipurpose in the sense that those developed to process

intimate mixtures are inefÞcient in the multiple interaction

scenario (and vice versa). Secondly, they generally require the

prior knowledge of the endmember signatures. If such infor-

mation is not available, these signatures have to be estimated

from the data by using an endmember extraction algorithm.

To achieve ßexibility, some have resorted tomachine learning

strategies such as neural networks [64]�[70], to nonlinearly re-

duce dimensionality or learn model parameters in a supervised

fashion from a collection of examples (see [35] and references

therein). The polynomial post nonlinear mixing model intro-

duced in [71] seems also to be sufÞciently versatile to cover a

wide class of nonlinearities. However, again, these algorithms

assumes the prior knowledge or extraction of the endmembers.

Mainly due to the difÞculty of the issue, very few attempts

have been conducted to address the problem of fully unsuper-

vised nonlinear unmixing. One must still concede that a sig-

niÞcant contribution has been carried by Heylen et al. in [72]

where a strategy is introduced to extract endmembers that have

been nonlinearly mixed. The algorithmic scheme is similar in

many respects to the well-known N-FINDR algorithm [73]. The

key idea is to maximize the simplex volume computed with

geodesic measures on the data manifold. In this work, exact

geodesic distances are approximated by shortest-path distances

in a nearest-neighbor graph. Even more recently, same authors

have shown in [74] that exact geodesic distances can be derived

on any datamanifold induced by a nonlinearmixingmodel, such

as the generalized bilinear model introduced in [62].

Quite recently, Close and Gader have devised two methods

for fully unsupervised nonlinear unmixing in the case of in-

timate mixtures [75], [76] based on Hapke�s average albedo

model cited above. One method assumes that each pixel is either

linearly or nonlinearly mixed. The other assumes that there can

be both nonlinear and linear mixing present in a single pixel.

The methods were shown to more accurately estimate physical

mixing parameters using measurements made by Mustard et al.

[56], [57], [64], [77] than existing techniques. There is still a

great deal of work to be done, including evaluating the useful-

ness of combining bilinear models with average albedo models.

In summary, although researchers are beginning to expand

more aggressively into nonlinear mixing, the research is imma-

ture compared with linear mixing. There has been a tremendous

effort in the past decade to solve linear unmixing problems and

that is what will be discussed in the rest of this paper.

C. Hyperspectral Unmixing Processing Chain

Fig. 4 shows the processing steps usually involved in the

hyperspectral unmixing chain: atmospheric correction, di-

mensionality reduction, and unmixing, which may be tackled

via the classical endmember determination plus inversion,

or via sparse regression or sparse coding approaches. Often,

endmember determination and inversion are implemented

simultaneously. Below, we provide a brief characterization of

each of these steps:

1) Atmospheric correction. The atmosphere attenuates and

scatterers the light and therefore affects the radiance at the

sensor. The atmospheric correction compensates for these

effects by converting radiance into reßectance, which is

an intrinsic property of the materials. We stress, however,

that linear unmixing can be carried out directly on radiance

data.

2) Data reduction. The dimensionality of the space spanned

by spectra from an image is generally much lower than

available number of bands. Identifying appropriate sub-

spaces facilitates dimensionality reduction, improving

algorithm performance and complexity and data storage.

Furthermore, if the linear mixture model is accurate, the

signal subspace dimension is one less than equal to the

number of endmembers, a crucial Þgure in hyperspectral

unmixing.

3) Unmixing. The unmixing step consists of identifying the

endmembers in the scene and the fractional abundances

at each pixel. Three general approaches will be discussed

here. Geometrical approaches exploit the fact that linearly



Fig. 4. Schematic diagram of the hyperspectral unmixing process.

Fig. 5. Illustration of the simplex set for ( is the convex hull of the
columns of , ). Green circles represent spectral vectors. Red
circles represent vertices of the simplex and correspond to the endmembers.

mixed vectors are in a simplex set or in a positive cone.

Statistical approaches focus on using parameter estima-

tion techniques to determine endmember and abundance

parameters. Sparse regression approaches, which formu-

lates unmixing as a linear sparse regression problem, in a

fashion similar to that of compressive sensing [78], [79].

This framework relies on the existence of spectral libraries

usually acquired in laboratory. A step forward, termed

sparse coding [80], consists of learning the dictionary

from the data and, thus, avoiding not only the need of

libraries but also calibration issues related to different

conditions under which the libraries and the data were

acquired.

4) Inversion. Given the observed spectral vectors and the

identiÞed endmembers, the inversion step consists of

solving a constrained optimization problem which mini-

mizes the residual between the observed spectral vectors

and the linear space spanned by the inferred spectral

signatures; the implicit fractional abundances are, very

often, constrained to be nonnegative and to sum to one

(i.e., they belong to the probability simplex). There are,

however, many hyperspectral unmixing approaches in

which the endmember determination and inversion steps

are implemented simultaneously.

The remainder of the paper is organized as follows. Section II

describes the linear spectral mixture model adopted as the base-

line model in this contribution. Section III describes techniques

for subspace identiÞcation. Sections IV, , , VII describe four

classes of techniques for endmember and fractional abundances

estimation under the linear spectral unmixing. Sections IV and

V are devoted to the longstanding geometrical and statistical

based approaches, respectively. Sections VI and VII are devoted

to the recently introduced sparse regression based unmixing and

to the exploitation of the spatial contextual information, respec-

tively. Each of these sections introduce the underlying mathe-

matical problem and summarizes state-of-the-art algorithms to

address such problem.

Experimental results obtained from simulated and real data

sets illustrating the potential and limitations of each class of al-

gorithms are described. The experiments do not constitute an

exhaustive comparison. Both code and data for all the exper-

iments described here are available at http://www.lx.it.pt/~bi-

oucas/code/unmixing_overview.zip. The paper concludes with

a summary and discussion of plausible future developments in

the area of spectral unmixing.



Fig. 6. Illustration of the concept of simplex of minimum volume containing the data for three data sets. The endmembers in the left hand side and in the middle
are identiÞable by Þtting a simplex of minimum volume to the data, whereas this is not applicable to the right hand side data set. The former data set correspond
to a highly mixed scenario.

II. LINEAR MIXTURE MODEL

If the multiple scattering among distinct endmembers is neg-

ligible and the surface is partitioned according to the fractional

abundances, as illustrated in Fig. 2, then the spectrum of each

pixel is well approximated by a linear mixture of endmember

spectra weighted by the corresponding fractional abundances

[1], [3], [29], [39]. In this case, the spectral measurement 1 at

channel ( is the total number of channels)

from a given pixel, denoted by , is given by the linear mixing

model (LMM)

(1)

where denotes the spectral measurement of endmember

at the spectral band, denotes the frac-

tional abundance of endmember , denotes an additive per-

turbation (e.g., noise and modeling errors), and denotes the

number of endmembers. At a given pixel, the fractional abun-

dance , as the name suggests, represents the fractional area

occupied by the th endmember. Therefore, the fractional abun-

dances are subject to the following constraints:

(2)

i.e., the fractional abundance vector

(the notation indicates vector transposed) is in the standard

-simplex (or unit -simplex). In HU jargon, the

nonnegativity and the sum-to-one constraints are termed abun-

dance nonnegativity constraint (ANC) and abundance sum con-

straint (ASC), respectively. Researchers may sometimes expect

that the abundance fractions sum to less than one since an algo-

rithm may not be able to account for every material in a pixel;

it is not clear whether it is better to relax the constraint or to

simply consider that part of the modeling error.

Let denote a -dimensional column vector, and

denote the spectral signature of the

th endmember. Expression (1) can then be written as

(3)

1Although the type of spectral quantity (radiance, reßectance, etc.) is impor-
tant when processing data, speciÞcation is not necessary to derive the mathe-
matical approaches.

where is the mixing matrix containing

the signatures of the endmembers present in the covered area,

and . Assuming that the columns of are

afÞnely independent, i.e.,

are linearly independent, then the set

i.e., the convex hull of the columns of , is a -simplex

in . Fig. 5 illustrates a 2-simplex for a hypothetical mixing

matrix containing three endmembers. The points in green de-

note spectral vectors, whereas the points in red are vertices of

the simplex and correspond to the endmembers. Note that the

inference of the mixing matrix is equivalent to identifying

the vertices of the simplex . This geometrical point of view,

exploited by many unmixing algorithms, will be further devel-

oped in Section IV-B.

Since many algorithms adopt either a geometrical or a sta-

tistical framework [34], [36], they are a focus of this paper. To

motivate these two directions, let us consider the three data sets

shown in Fig. 6 generated under the linear model given in (3)

where the noise is assumed to be negligible. The spectral vec-

tors generated according to (3) are in a simplex whose vertices

correspond to the endmembers. The left hand side data set con-

tains pure pixels, i.e, for any of the endmembers there is at

least one pixel containing only the correspondent material; the

data set in the middle does not contain pure pixels but contains

at least spectral vectors on each facet. In both data sets

(left and middle), the endmembers may by inferred by Þtting a

minimum volume (MV) simplex to the data; this rather simple

and yet powerful idea, introduced by Craig in his seminal work

[81], underlies several geometrical based unmixing algorithms.

A similar idea was introduced in 1989 by Perczel in the area of

Chemometrics et al. [82].

The MV simplex shown in the right hand side example of

Fig. 6 is smaller than the true one. This situation corresponds

to a highly mixed data set where there are no spectral vectors

near the facets. For these classes of problems, we usually re-

sort to the statistical framework in which the estimation of the

mixing matrix and of the fractional abundances are formulated

as a statistical inference problem by adopting suitable proba-

bility models for the variables and parameters involved, namely

for the fractional abundances and for the mixing matrix.



Fig. 7. Illustration of a badly-conditioned mixing matrices and noise (repre-
sented by uncertainty regions) centered on clean spectral vectors represented
by green circles.

Fig. 8. Signal-to-noise-ratio spectral distribution (SNR-SD) for the data sets
SudP5SNR40, SusgsP5SNR40, and Rcuprite. The Þrst two are simulated and
contain endmembers and the third is a subset of the AVIRIS Cuprite data
set.

A. Characterization of the Spectral Unmixing Inverse Problem

Given the data set containing

-dimensional spectral vectors, the linear HU problem is, with

reference to the linear model (3), the estimation of the mixing

matrix and of the fractional abundances vectors corre-

sponding to pixels . This is often a difÞcult inverse

problem, because the spectral signatures tend to be strongly cor-

related, yielding badly-conditioned mixing matrices and, thus,

HU estimates can be highly sensitive to noise. This scenario is

illustrated in Fig. 7, where endmembers and are very

close, thus yielding a badly-conditioned matrix , and the ef-

fect of noise is represented by uncertainty regions.

To characterize the linear HU inverse problem, we use the

signal-to-noise-ratio (SNR)

where and are, respectively, the signal (i.e., )

and noise correlation matrices and denotes expected value.

Besides SNR, we introduce the signal-to-noise-ratio spectral

distribution (SNR-SD) deÞned as

(4)

where is the eigenvalue-eigenvector couple of

ordered by decreasing value of . The ratio

yields the signal-to-noise ratio (SNR) along the signal direc-

tion . Therefore, we must have for

, in order to obtain acceptable unmixing results.

Otherwise, there are directions in the signal subspace signiÞ-

cantly corrupted by noise.

Fig. 8 plots , in the interval , for

the following data sets:

� SudP5SNR40: simulated; mixing matrix sampled

from a uniformly distributed random variable in the in-

terval [0, 1]; ; ; fractional abundances dis-

tributed uniformly on the 4-unit simplex; .

� SusgsP5SNR40: simulated; mixing matrix sampled

from the United States Geological Survey (USGS) spec-

tral library;2 ; ; fractional abundances dis-

tributed uniformly on the 4-unit simplex; .

� Rcuprite: real; subset of the well-known AVIRIS cuprite

data cube 3 with size 250 lines by 191 columns by 188

bands (noisy bands were removed).

The signal and noise correlation matrices were obtained with the

algorithms and code distributed with HySime [83]. From those

plots, we read that, for SudP5SNR40 data set,

for and for , indicating that

the SNR is high in the signal subspace. For SusgsP5SNR40,

the singular values of the mixing matrix decay faster due to

the high correlation of the USGS spectral signatures. Neverthe-

less the �big picture�is similar to that of SudP5SNR40 data set.

The Rcuprite data set yields the more difÞcult inverse problem

because has �close to convex shape�slowly ap-

proaching the value 1. This is a clear indication of a badly-con-

ditioned inverse problem [84].

III. SIGNAL SUBSPACE IDENTIFICATION

The number of endmembers present in a given scene is, very

often, much smaller than the number of bands . Therefore, as-

suming that the linear model is a good approximation, spectral

vectors lie in or very close to a low-dimensional linear subspace.

The identiÞcation of this subspace enables low-dimensional yet

accurate representation of spectral vectors, thus yielding gains

in computational time and complexity, data storage, and SNR. It

is usually advantageous and sometimes necessary to operate on

data represented in the signal subspace. Therefore, a signal sub-

space identiÞcation algorithm is required as a Þrst processing

step.

Unsupervised subspace identiÞcation has been approached in

many ways. Band selection or band extraction, as the name sug-

gests, exploits the high correlation existing between adjacent

bands to select a few spectral components among those with

higher SNR [85], [86]. Projection techniques seek for the best

subspaces to represent data by optimizing objective functions.

For example, principal component analysis (PCA) [87] mini-

mizes sums of squares; singular value decomposition (SVD)

[88] maximizes power; projections on the Þrst eigenvectors

of the empirical correlation matrix maximize likelihood, if the

noise is additive andwhite and the subspace dimension is known

to be [88]; maximum noise fraction (MNF) [89] and noise ad-

justed principal components (NAPC) [90] minimize the ratio of

noise power to signal power. NAPC is mathematically equiva-

lent to MNF [90] and can be interpreted as a sequence of two

2http://speclab.cr.usgs.gov/spectral-lib.html

3http://aviris.jpl.nasa.gov/data/free\_data.html



Fig. 9. Left: Noisy and projected spectra from the simulates data set SusgsP5SNR30. Right: Noisy and projected spectra from the real data set Rcuprite

principal component transforms: the Þrst applies to the noise

and the second applies to the transformed data set. MNF is re-

lated to SNR-SD introduced in (4). In fact, both metrics are

equivalent in the case of white noise, i.e, , where de-

notes the identity matrix. However, they differ when .

The optical real-time adaptive spectral identiÞcation system

(ORASIS) [91] framework, developed by U. S. Naval Research

Laboratory aiming at real-time data processing, has been used

both for dimensionality reduction and endmember extraction.

This framework consists of several modules, where the dimen-

sion reduction is achieved by identifying a subset of exemplar

pixels that convey the variability in a scene. Each new pixel

collected from the scene is compared to each exemplar pixel by

using an anglemetric. The new pixel is added to the exemplar set

if it is sufÞciently different from each of the existing exemplars.

An orthogonal basis is periodically created from the current set

of exemplars using a modiÞed Gram-Schmidt procedure [92].

The identiÞcation of the signal subspace is a model order

inference problem to which information theoretic criteria

like the minimum description length (MDL) [93], [94] or the

Akaike information criterion (AIC) [95] comes to mind. These

criteria have in fact been used in hyperspectral applications

[96] adopting the approach introduced by Wax and Kailath in

[97]. In turn, Harsanyi, Farrand, and Chang [98] developed a

Neyman-Pearson detection theory-based thresholding method

(HFC) to determine the number of spectral endmembers in

hyperspectral data, referred to in [96] as virtual dimensionality

(VD). The HFC method is based on a detector built on the

eigenvalues of the sample correlation and covariance matrices.

A modiÞed version, termed noise-whitened HFC (NWHFC),

includes a noise-whitening step [96]. HySime ( hyperspectral

signal identiÞcation by minimum error) [83] adopts a minimum

mean squared error based approach to infer the signal subspace.

The method is eigendecomposition based, unsupervised, and

fully-automatic (i.e., it does not depend on any tuning parame-

ters). It Þrst estimates the signal and noise correlation matrices

and then selects the subset of eigenvalues that best represents

the signal subspace in the least square error sense.

When the spectral mixing is nonlinear, the low dimensional

subspace of the linear case is often replaced with a low di-

mensional manifold, a concept deÞned in the mathematical

subject of topology [99]. A variety of local methods exist for

estimating manifolds. For example, curvilinear component

analysis [100], curvilinear distance analysis [101], manifold

learning [102]�[107] are non-linear projections based on the

preservation of the local topology. Independent component

analysis [108], [109], projection pursuit [110], [111], and

wavelet decomposition [112], [113] have also been considered.

A. Projection on the Signal Subspace

Assume that the signal subspace, denoted by , has been

identiÞed by using one of the above referred to methods and

let the columns of be an orthonormal basis

for , where , for . The coordinates of the

orthogonal projection of a spectral vector onto , with

respect to the basis , are given by . Replacing

by the observation model (3), we have

As referred to before, projecting onto a signal subspace can yield

large computational, storage, and SNR gains. The Þrst two are

a direct consequence of the fact that in most applica-

tions; to brießy explain the latter, let us assume that the noise

is zero-mean and has covariance . The mean power of the

projected noise term is then ( de-

notes mean value). The relative attenuation of the noise power

implied by the projection is then .

Fig. 9 illustrates the advantages of projecting the data sets on

the signal subspace. The noise and the signal subspace were es-

timated with HySime [83]. The plot on the left hand side shows

a noisy and the corresponding projected spectra taken from the

simulated data set SusgsP5SNR30.4 The subspace dimension

was correctly identiÞed. The SNR of the projected data set is

46.6 dB, which is above to that of the

noisy data set. The plot on the right hand side shows a noisy and

the corresponding projected spectra from the Rcuprite data set.

The identiÞed subspace dimension has dimension 18. The SNR

of the projected data set is 47.5 dB, which is 5 dB above to that

4Parameters of the simulated data set SusgsP5SNR30: mixing matrix

sampled from a uniformly distributed random variable in the interval [0, 1];

; ; fractional abundances distributed uniformly on the 4-unit
simplex; .



Fig. 10. Top left: noisy eigen-image no. 18 of the Rcuprite data set. Top right: denoised no. 18; Bottom left: difference between noisy and denoised images.
Botton right: scatter plots of the Eigen-image no. 17 and no. 18 of the Rcuprite data set (blue dots: noisy data; Green dots: denoised data).

Fig. 11. Projections of the observed data onto an hyperplane: (a) Orthogonal
projection on an hyperplane (the projected vectors suffers a rotation); (b) Per-
spective projection (the scaling brings them to the hyperplane deÞned
by ).

of the noisy data set. The colored nature of the additive noise

explains the difference .

A Þnal word of warning: although the projection of the data

set onto the signal subspace often removes a large percentage

of the noise, it does not improve the conditioning of the HU

inverse problem, as this projection does not change the values

of for the signal subspace eigen-components.

A possible line of attack to further reduce the noise in the

signal subspace is to exploit spectral and spatial contextual in-

formation. We give a brief illustration in the spatial domain.

Fig. 10, on the top left hand side, shows the eigen-image no. 18,

i.e., the image obtained from for , of the Rcuprite

data set. The basis of the signal subspace were obtained with the

HySime algorithm. A Þltered version using then BM3D [114]

is shown on the top right hand side. The denoising algorithm

is quite effective in this example, as conÞrmed by the absence

of structure in the noise estimate (the difference between the

noisy and the denoised images) shown in the bottom left hand

side image. This effectiveness can also be perceived from the

scatter plots of the noisy (blue dots) and denoised (green dots)

eigen-images 17 and 18 shown in the bottom right hand side

Þgure. The scatter plot corresponding to the denoised image is

much more dense, reßecting the lower variance.

B. AfÞne Set Projection

From now on, we assume that the observed data set has been

projected onto the signal subspace and, for simplicity of nota-

tion, we still represent the projected vectors as in (3), that is,

(5)

where and . Since the columns of be-

long to the signal subspace, the original mixing matrix is simply

given by the matrix product .

Model (5) is a simpliÞcation of reality, as it does not model

pixel-to-pixel signature variability. Signature variability has

been studied and accounted for in a few unmixing algorithms

(see, e.g., [115]�[118]), including all statistical algorithms that

treat endmembers as distributions. Some of this variability

is amplitude-based and therefore primarily characterized by

spectral shape invariance [38]; i.e., while the spectral shapes

of the endmembers are fairly consistent, their amplitudes are

variable. This implies that the endmember signatures are af-

fected by a positive scale factor that varies from pixel to pixel.



Fig. 12. Left (orthogonal projection): angles between projected and unprojected vectors. Right (perspective projection): scale factors between projected and un-
projected vectors.

Hence, instead of one matrix of endmember spectra for the

entire scene, there is a matrix of endmember spectra for each

pixel for . In

this case, and in the absence of noise, the observed spectral

vectors are no longer in a simplex deÞned by a Þxed set of

endmembers but rather in the set

(6)

as illustrated in Fig. 11. Therefore, the coefÞcients of the end-

member spectra need not sum-to-one, although they are still

nonnegative. Transformations of the data are required to im-

prove the match of the model to reality. If a true mapping from

units of radiance to reßectance can be found, then that transfor-

mation is sufÞcient. However, estimating that mapping can be

difÞcult problem or impossible. Other methods can be applied to

to ensure that the sum-to-one constraint is a better model, such

as the following:

a) Orthogonal projection: Use PCA to identify the afÞne

set that best represent the observed data in the least

squares sense and then compute the orthogonal projec-

tion of the observed vectors onto this set (see [119] for

details). This projection is illustrated in Fig. 11.

b) Perspective projection: This is the so-called dark point

Þxed transform (DPFT) proposed in [81]. For a given

observed vector , this projection, illustrated in Fig. 11,

amounts to rescale according to , where is

chosen such that for every in the data set. The

hyperplane containing the projected vectors is deÞned by

, for any .

Notice that the orthogonal projection modiÞes the direction

of the spectral vectors whereas the perspective projection does

not. On the other hand, the perspective projection introduces

large scale factors, which may become negative, for spectral

vectors close to being orthogonal to . Furthermore, vectors

with different angles produce non-parallel afÞne sets and thus

different fractional abundances, which implies that the choice

of is a critical issue for accurate estimation.

These effects are illustrated in Fig. 12 for the Rterrain

data set.5 This is a publicly available hyperspectral data cube

distributed by the Army Geospatial Center, United States Army

Corps of Engineers, and was collected by the hyperspectral

image data collection experiment (HYDICE). Its dimensions

are 307 pixels by 500 lines and 210 spectral bands. The Þgure

on the left hand side plots the angles between the unprojected

and the orthogonally projected vectors, as a function of the

norm of the unprojected vectors. The higher angles, of the

order of 1�7 , occur for vectors of small norm, which usually

correspond to shadowed areas. The Þgure on the right hand

side plots the norm of the projected vectors as a function of

the norm of the unprojected vectors. The corresponding scale

factors varies between, approximately, between 1/3 and 10.

A possible way of mitigating these projection errors is dis-

carding the problematic projections, which are vectors with an-

gles between projected and unprojected vectors larger than a

given small threshold, in the case of the perspective projection,

and vectors with very small or negative scale factors , in

the case of the orthogonal projection.

IV. GEOMETRICAL BASED APPROACHES TO LINEAR

SPECTRAL UNMIXING

The geometrical-based approaches are categorized into two

main categories: Pure Pixel (PP) based and Minimum Volume

(MV) based. There are a few other approaches that will also be

discussed.

A. Geometrical Based Approaches: Pure Pixel Based

Algorithms

The pure pixel based algorithms still belong to the MV class

but assume the presence in the data of at least one pure pixel per

endmember, meaning that there is at least one spectral vector

on each vertex of the data simplex. This assumption, though

enabling the design of very efÞcient algorithms from the com-

putational point of view, is a strong requisite that may not hold

in many datasets. In any case, these algorithms Þnd the set of

most pure pixels in the data. They have probably been the most

5 http://www.agc.army.mil/hypercube



often used in linear hyperspectral unmixing applications, per-

haps because of their light computational burden and clear con-

ceptual meaning. Representative algorithms of this class are the

following:

� The pixel purity index (PPI) algorithm [120], [121] uses

MNF as a preprocessing step to reduce dimensionality and

to improve the SNR. PPI projects every spectral vector

onto skewers, deÞned as a large set of random vectors. The

points corresponding to extremes, for each skewer direc-

tion, are stored. A cumulative account records the number

of times each pixel (i.e., a given spectral vector) is found

to be an extreme. The pixels with the highest scores are the

purest ones.

� N-FINDR [73] is based on the fact that in spectral di-

mensions, the volume deÞned by a simplex formed by the

purest pixels is larger than any other volume deÞned by

any other combination of pixels. This algorithm Þnds the

set of pixels deÞning the largest volume by inßating a sim-

plex inside the data.

� The iterative error analysis (IEA) algorithm [122] imple-

ments a series of linear constrained unmixings, each time

choosing as endmembers those pixels which minimize the

remaining error in the unmixed image.

� The vertex component analysis (VCA) algorithm [123] it-

eratively projects data onto a direction orthogonal to the

subspace spanned by the endmembers already determined.

The new endmember signature corresponds to the extreme

of the projection. The algorithm iterates until all endmem-

bers are exhausted.

� The simplex growing algorithm (SGA) [124] iteratively

grows a simplex by Þnding the vertices corresponding to

the maximum volume.

� The sequential maximum angle convex cone (SMACC) al-

gorithm [125] is based on a convex cone for representing

the spectral vectors. The algorithm starts with a single end-

member and increases incrementally in dimension. A new

endmember is identiÞed based on the angle it makes with

the existing cone. The data vector making the maximum

angle with the existing cone is chosen as the next end-

member to enlarge the endmember set. The algorithm ter-

minates when all of the data vectors are within the convex

cone, to some tolerance.

� The alternating volume maximization (AVMAX) [126], in-

spired by N-FINDR, maximizes, in a cyclic fashion, the

volume of the simplex deÞned by the endmembers with

respect to only one endmember at one time. AVMAX is

quite similar to the SC-N-FINDR variation of N-FINDR

introduced in [127].

� The successive volume maximization (SVMAX) [126] is

similar to VCA. The main difference concerns the way

data is projected onto a direction orthogonal the subspace

spanned by the endmembers already determined. VCA

considers a random direction in these subspace, whereas

SVMAX considers the complete subspace.

� The collaborative convex framework [128] factorizes the

data matrix into a nonnegative mixing matrix and

a sparse and also nonnegative abundance matrix . The

Fig. 13. Illustration of the concept of simplex of minimum volume containing
the data.

columns of the mixing matrix are constrained to be

columns of the data .

� Lattice Associative Memories (LAM) [129]�[131] model

sets of spectra as elements of the lattice of partially or-

dered real-valued vectors. Lattice operations are used to

nonlinearly construct LAMS. Endmembers are found by

constructing so-called min and max LAMs from spectral

pixels. These LAMs contain maximum and minimum

coordinates of spectral pixels (after appropriate additive

scaling) and are candidate endmembers. Endmembers are

selected from the LAMS using the notions of afÞne inde-

pendence and similarity measures such as spectral angle,

correlation, mutual information, or Chebyschev distance.

Algorithms AVMAX and SVMAX were derived in [126]

under a continuous optimization framework inspired by

Winter�s maximum volume criterium [73], which underlies

N-FINDR. Following a rigorous approach, Chan et al. not

only derived AVMAX and SVMAX, but have also unveiled a

number of links between apparently disparate algorithms such

as N-FINDR and VCA.

B. Geometrical Based Approaches: Minimum Volume Based

Algorithms

The MV approaches seek a mixing matrix that minimizes

the volume of the simplex deÞned by its columns, referred to as

, subject to the constraint that contains the

observed spectral vectors. The constraint can be soft or hard.

The pure pixel constraint is no longer enforced, resulting in a

much harder nonconvex optimization problem. Fig. 13 further

illustrates the concept of simplex of minimum size containing

the data. The estimated mixing matrix dif-

fers slightly from the true mixing matrix because there are not

enough data points per facet (necessarily per facet) to de-

Þne the true simplex.

Let us assume that the data set has been projected onto the

signal subspace , of dimension , and that the vectors

, for , are afÞnely independent (i.e., ,

for , are linearly independent). The dimensionality

of the simplex is therefore so the volume of

is zero in . To obtain a nonzero volume, the ex-

tended simplex , containing the origin, is usually

considered. We recall that the volume of , the convex

hull of , is given by

(7)



Fig. 14. Noisy data. The dashed simplex represents the simplex of minimum
volume required to contain all the data; by allowing violations to the positivity
constraint, the MVSA and SISAL algorithms yield a simplex very close to the
true one.

An alternative to (7) consists of shifting the data set to the

origin and working in the subspace of dimension . In this

case, the volume of the simplex is given by

Craig�s work [81], published in 1994, put forward the seminal

concepts regarding the algorithms ofMV type. After identifying

the subspace and applying projective projection (DPFT), the al-

gorithm iteratively changes one facet of the simplex at a time,

holding the others Þxed, such that the volume

is minimized and all spectral vectors belong to this simplex; i.e.,

and (respectively, ANC and ASC

constraints 6 ) for . In a more formal way:

The minimum volume simplex analysis (MVSA) [132] and

the simplex identiÞcation via variable splitting and augmented

Lagrangian (SISAL) [133] algorithms implement a robust ver-

sion of the MV concept. The robustness is introduced by al-

lowing the positivity constraint to be violated. To grasp the rel-

evance of this modiÞcation, noisy spectral vectors are depicted

in Fig. 14. Due to the presence of noise, or any other pertur-

bation source, the spectral vectors may lie outside the true data

simplex. The application of a MV algorithm would lead to the

dashed estimate, which is far from the original.

In order to estimate endmembers more accurately, MVSA/

SISAL allows violations to the positivity constraint. Violations

are penalized using the hinge function ( if

6The notation stands for a column vector of ones with size .

and if ). MVSA/SISAL project the data onto a signal

subspace. Thus the representation of Section III-B is used. Con-

sequently, the matrix is square and theoretically invertible

(ill-conditioning can make it difÞcult to compute the inverse nu-

merically). Furthermore,

(8)

MVSA/SISAL aims at solving the following optimization

problem:

(9)

(10)

where with being any set of

of linearly independent spectral vectors taken from the data set

is a regularization parameter, and stands

for the number of spectral vectors.

We make the following two remarks: a) maximizing

is equivalent to minimizing ; b) the

term weights the ANC violations. As

approaches inÞnity, the soft constraint approaches the hard

constraint. MVSA/SISAL optimizes by solving a sequence of

convex optimization problems using the method of augmented

Lagrange multipliers, resulting in a computationally efÞcient

algorithm.

Theminimum volume enclosing simplex (MVES) [134] aims

at solving the optimization problem (10) with , i.e., for

hard positivity constraints. MVES implements a cyclic mini-

mization using linear programs (LPs). Although the optimiza-

tion problem (10) is nonconvex, it is proved in (10) that the

existence of pure pixels is a sufÞcient condition for MVES to

identify the true endmembers.

A robust version of MVES (RMVES) was recently intro-

duced in [135]. RMVES accounts for the noise effects in the

observations by employing chance constraints, which act as

soft constraints on the fractional abundances. The chance con-

straints control the volume of the resulting simplex. Under the

Gaussian noise assumption, RMVES infers the mixing matrix

and the fractional abundances via alternating optimization

involving quadratic programming solvers.

The minimum volume transform-nonnegative matrix factor-

ization (MVC-NMF) [136] solves the following optimization

problem applied to the original data set, i.e., without dimension-

ality reduction:

(11)

where is amatrix containing the frac-

tional abundances is the Frobenius norm

of matrix and is a regularization parameter. The optimiza-

tion (11) minimizes a two term objective function, where the



term measures the approximation error and

the term measures the square of the volume of the sim-

plex deÞned by the columns of . The regularization param-

eter controls the tradeoff between the reconstruction errors

and simplex volumes. MVC-NMF implements a sequence of

alternate minimizations with respect to (quadratic program-

ming problem) and with respect to (nonconvex program-

ming problem). The major difference between MVC-NMF and

MVSA/SISAL/RMVES algorithms is that the latter allows vio-

lations of the ANC, thus bringing robustness to the SU inverse

problem, whereas the former does not.

The iterative constrained endmembers (ICE) algorithm [137]

aims at solving an optimization problem similar to that of

MVC-NMF, where the volume of the simplex is replaced by

a much more manageable approximation: the sum of squared

distances between all the simplex vertices. This volume regu-

larizer is quadratic and well deÞned in any ambient dimension

and in degenerated simplexes. These are relevant advantages

over the regularizer, which is non-convex and prone

to complications when the HU problem is badly conditioned or

if the number of endmembers is not exactly known. Variations

of these ideas have recently been proposed in [138]�[141].

ICE implements a sequence of alternate minimizations with

respect to and with respect to . An advantage of ICE

over MVC-NMF, resulting from the use of a quadratic volume

regularizer, is that in the former one minimization is a quadratic

programming problemwhile the other is a least squares problem

that can be solved analytically, whereas in the MVC-NMF the

optimization with respect to is a nonconvex problem. The

sparsity-promoting ICE (SPICE) [142] is an extension of the

ICE algorithm that incorporates sparsity-promoting priors

aiming at Þnding the correct number of endmembers. Linear

terms are added to the quadratic objective function, one for

all the proportions associated with one endmember. The linear

term corresponds to an exponential prior. A large number of

endmembers are used in the initialization. The prior tends to

push all the proportions associated with particular endmembers

to zero. If all the proportions corresponding to an endmember

go to zero, then that endmember can be discarded. The addi-

tion of the sparsity promoting prior does not incur additional

complexity to the model as the minimization still involves a

quadratic program.

The quadratic volume regularizer used in the ICE and SPICE

algorithms also provides robustness in the sense of allowing

data points to be outside of the simplex . It has been

shown that the ICE objective function can be written in the fol-

lowing way:

(12)

where is the sample covariance matrix of the endmembers

and is a regularization parameter that controls the

tradeoff between error and smaller simplexes. If , then the

best solution is to shrink all the endmembers to a single point,

so all the data will be outside of the simplex. If , then the

best solution is one that yields no error, regardless of the size

of the simplex. The solution can be sensitive to the choice of .

The SPICE algorithm has the same properties. versions also

exist [143].

It is worth noting the both Heylen et al. [144] and Silvn-Cr-

denas [145] have reported geometric-based methods that can

either search for or analytically solve for the fully constrained

least squares solution.

The -NMFmethod introduced in [146] formulates a non-

negative matrix factorization problem similar to (11), where the

volume regularizer is replaced with the sparsity-enforcing reg-

ularizer . By promoting zero

or small abundance fractions, this regularizer pulls endmember

facets towards the data cloud having an effect similar to the

volume regularizer. The estimates of the endmembers and of

the fractional abundances are obtained by a modiÞcation of the

multiplicative update rules introduced in [147].

Convex cone analysis (CCA) [148], Þnds the boundary points

of the data convex cone (it does not apply afÞne projection),

what is very close to MV concept. CCA starts by selecting the

eigenvectors corresponding to the largest eigenvalues. These

eigenvectors are then used as a basis to form linear combina-

tions that have only nonnegative elements, thus belonging to

a convex cone. The vertices of the convex cone correspond to

spectral vectors contains as many zero elements as the number

of eigenvectors minus one.

Geometric methods can be extended to piecewise linear

mixing models. Imagine the following scenario: An airborne

hyperspectral imaging sensor acquires data over an area. Part

of the area consists of farmland containing alternating rows

of two types of crops (crop A and crop B) separated by soil

whereas the other part consists of a village with paved roads,

buildings (all with the same types of roofs), and non-deciduous

trees. Spectra measured from farmland are almost all linear

mixtures of endmember spectra associated with crop A, crop B,

and soil. Spectra over the village are almost all linear mixtures

of endmember spectra associated with pavement, roofs, and

non-deciduous trees. Some pixels from the boundary of the

village and farmland may be mixtures of all six endmember

spectra. The set of all pixels from the image will then consist

of two simplexes. Linear unmixing may Þnd some, perhaps all,

of the endmembers. However, the model does not accurately

represent the true state of nature. There are two convex regions

and the vertices (endmembers) from one of the convex regions

may be in the interior of the convex hull of the set of all pixels.

In that case, an algorithm designed to Þnd extremal points

on or outside the convex hull of the data will not Þnd those

endmembers (unless it fails to do what it was designed to do,

which can happen). Relying on an algorithm failing to do what

it is designed to do is not a desirable strategy. Thus, there is a

need to devise methods for identifying multiple simplexes in

hyperspectral data. One can refer to this class of algorithms as

piecewise convex or piecewise linear unmixing.

One approach to designing such algorithms is to represent

the convex regions as clusters. This approach has been taken in

[149]�[153]. The latter methods are Bayesian and will therefore

be discussed in the next section. The Þrst two rely on algorithms

derived from fuzzy and possibilistic clustering. Crisp clustering



Fig. 15. Unmixing results of N-FINDR, VCA, MVC-NMF, and SISAL on different data sets: SusgsP5PPSNR30� pure-pixel (top-left); SusgsP5SNR30� non

pure pixel (top right); SusgsP5MP08SNR30� truncated fractional abundances (bottom left); SusgsP5XS10SNR30� and highly mixed (bottom tight).

algorithms (such as k-means) assign every data point to one and

only one cluster. Fuzzy clustering algorithms allow every data

point to be assigned to every cluster to some degree. Fuzzy clus-

ters are deÞned by these assignments, referred to as member-

ship functions. In the example above, there should be two clus-

ters. Most points should be assigned to one of the two clusters

with high degree. Points on the boundary, however, should be

assigned to both clusters.

Assuming that there are simplexes in the data, then the fol-

lowing objective function can be used to attempt to Þnd end-

member spectra and abundances for each simplex:

(13)

such that

Here, represents the membership of the data point in

the simplex. The other terms are very similar to those used in

the ICE/SPICE algorithms except that there are endmember

matrices and abundance vectors. Analytic update formulas

can be derived for the memberships, the endmember updates,

and the Lagrange multipliers. An update formula can be used to

update the fractional abundances but they are sometimes nega-

tive and are then clipped at the boundary of the feasible region.

One can still use quadratic programming to solve for them. As

is the case for almost all clustering algorithms, there are local

minima. However, the algorithm using all update formulas is

computationally efÞcient. A robust version also exists that uses

a combination of fuzzy and possibilistic clustering [151].

Fig. 15 shows results of pure pixel based algorithms

(N-FINDR and VCA) and MV based algorithms (MVC-NMF

and SISAL) in simulated data sets representative of the classes

of problems illustrated in Fig. 6. These data sets have

pixels and and the following characteristics:

SusgsP5PPSNR30� pure pixels and abundances uniformly

distributed over the simplex (top left); SusgsP5SNR30 non

pure pixels and abundances uniformly distributed over the sim-

plex (top right); SusgsP5MP08SNR30 abundances uniformly

distributed over the simplex but truncated to 0.8 (bottom left);

SusgsP5XS10SNR30 abundances with Dirichlet distributed

with concentration parameter set to 10, thus yielding a highly

mixed data set.

In the top left data set all algorithm produced very good re-

sults because pure pixels are present. In the top right SISAL



and MVC-NMF produce good results but VCA and N-FINDR

shows a degradation in performance because there are no pure

pixels. In the bottom left SISAL and MVC-NMF still produce

good results but VCA and N-FINDR show a signiÞcant degra-

dation in performance because the pixels close to the vertices

were removed. Finally, in the bottom right all algorithm produce

unacceptable results because there are no pixels in the vertex of

the simplex neither on its facets. These data sets are beyond the

reach of geometrical based algorithms.

V. STATISTICAL METHODS

When the spectral mixtures are highly mixed, the geometrical

based methods yields poor results because there are not enough

spectral vectors in the simplex facets. In these cases, the statis-

tical methods are a powerful alternative, which, usually, comes

with price: higher computational complexity, when compared

with the geometrical based approaches. Statistical methods also

provide a natural framework for representing variability in end-

members. Under the statistical framework, spectral unmixing is

formulated as a statistical inference problem.

Since, in most cases, the number of substances and their re-

ßectances are not known, hyperspectral unmixing falls into the

class of blind source separation problems [154]. Independent

Component Analysis (ICA), a well-known tool in blind source

separation, has been proposed as a tool to blindly unmix hyper-

spectral data [155]�[157]. Unfortunately, ICA is based on the

assumption of mutually independent sources (abundance frac-

tions), which is not the case of hyperspectral data, since the sum

of abundance fractions is constant, implying statistical depen-

dence among them. This dependence compromises ICA appli-

cability to hyperspectral data as shown in [39], [158]. In fact,

ICA Þnds the endmember signatures by multiplying the spectral

vectors with an unmixing matrix which minimizes the mutual

information among channels. If sources are independent, ICA

provides the correct unmixing, since the minimum of the mutual

information corresponds to and only to independent sources.

This is no longer true for dependent fractional abundances. Nev-

ertheless, some endmembers may be approximately unmixed.

These aspects are addressed in [158].

Bayesian approaches have the ability to model statistical vari-

ability and to impose priors that can constrain solutions to phys-

ically meaningful ranges and regularize solutions. The latter

property is generally considered to be a requirement for solving

ill-posed problems. Adopting a Bayesian framework, the infer-

ence engine is the posterior density of the random quantities

to be estimated. When the unknown mixing matrix and the

abundance fraction matrix are assumed to be a priori indepen-

dent, the Bayes paradigm allows the joint posterior of and

to be computed as

(14)

where the notation and stands for the probability

density function (pdf) of and of given , respectively.

In (14), is the likelihood function depending

on the observation model and the prior distribution

and summarize the prior knowledge regarding these

unknown parameters.

A popular Bayesian estimator is [159] the joint maximum a

posteriori (MAP) estimator given by

(15)

(16)

Under the linear mixing model and assuming the noise random

vector is Gaussian with covariance matrix , then, we have

. It

is then clear that ICE/SPICE [142] and MVC-NMF [136] algo-

rithms, which have been classiÞed as geometrical, can also be

classiÞed as statistical, yielding joint MAP estimates in (15). In

all these algorithms, the estimates are obtained by minimizing a

two-term objective function: plays the

role of a data Þtting criterion and

consists of a penalization. Conversely, from a Bayesian perspec-

tive, assigning prior distributions and to the end-

member and abundance matrices and , respectively, is a

convenient way to ensure physical constraints inherent to the

observation model.

The work [160] introduces a Bayesian approach where the

linear mixing model with zero-mean white Gaussian noise of

covariance is assumed, the fractional abundances are uni-

formly distributed on the simplex, and the prior on is an au-

toregressive model. Maximization of the negative log-posterior

distribution is then conducted in an iterative scheme.Maximiza-

tion with respect to the abundance coefÞcients is formulated as

weighted least square problems with linear constraints that are

solved separately. Optimization with respect to is conducted

using a gradient-based descent.

The Bayesian approaches introduced in [161]�[164] have all

the same ßavor. The posterior distribution of the parameters of

interest is computed from the linear mixing model within a hi-

erarchical Bayesian model, where conjugate prior distributions

are chosen for some unknown parameters to account for phys-

ical constraints. The hyperparameters involved in the deÞnition

of the parameter priors are then assigned non-informative priors

and are jointly estimated from the full posterior of the param-

eters and hyperparameters. Due to the complexity of the re-

sulting joint posterior, deriving closed-form expressions of the

MAP estimates or designing an optimization scheme to approx-

imate them remain impossible. As an alternative, Markov chain

Monte Carlo algorithms are proposed to generate samples that

are asymptotically distributed according to the target posterior

distribution. These samples are then used to approximate the

minimum mean square error (MMSE) (or posterior mean) esti-

mators of the unknown parameters

(17)

(18)

These algorithms mainly differ by the choice of the priors

assigned to the unknown parameters. More precisely, in [161],

[165], spectral unmixing is conducted for spectrochemical

analysis. Because of the sparse nature of the chemical spectral

components, independent Gamma distributions are elected as



Fig. 16. Projected pixels (black points), actual endmembers (black circles),
endmembers estimated by N-FINDR (blue stars), endmembers estimated by
VCA (green stars) and endmembers estimated by the algorithm in [163] (red
stars.

priors for the spectra. The mixing coefÞcients are assumed to

be non-negative without any sum-to-one constraint. Interest of

including this additivity constraint for this speciÞc application

is investigated in [162] where uniform distributions over the

admissible simplex are assigned as priors for the abundance

vectors. Note that efÞcient implementations of both algorithms

for operational applications are presented in [166] and [167],

respectively.

In [163], instead of estimating the endmember spectra in

the full hyperspectral space, Dobigeon et al. propose to esti-

mate their projections onto an appropriate lower dimensional

subspace that has been previously identiÞed by one of the

dimension reduction technique described in paragraph III-A.

The main advantage of this approach is to reduce the number

of degrees of freedom of the model parameters relative to other

approaches, e.g., [161], [162], [165]. Accuracy and perfor-

mance of this Bayesian unmixing algorithm when compared to

standard geometrical based approaches is depicted in Fig. 16

where a synthetic toy example has been considered. This

example is particularly illustrative since it is composed of a

small dataset where the pure pixel assumption is not fulÞlled.

Consequently, the geometrical based approaches that attempt to

maximize the simplex volume (e.g., VCA and N-FINDR) fail

to recover the endmembers correctly, contrary to the statistical

algorithm that does not require such hypothesis.

Note that in [162], [163] and [164] independent uniform dis-

tributions over the admissible simplex are chosen as prior dis-

tributions for the abundance vectors. This assumption, which is

equivalent of choosing Dirichlet distributions with all hyperpa-

rameters equal to 1, could seem to be very weak. However, as

demonstrated in [163], this choice favors estimated endmem-

bers that span a simplex of minimum volume, which is pre-

cisely the founding characteristics of some geometrical based

unmixing approaches detailed in paragraph IV-B.

Explicitly constraining the volume of the simplex formed by

the estimated endmembers has also been considered in [164].

According to the optimization perspective suggested above, pe-

nalizing the volume of the recovered simplex can be conducted

by choosing an appropriate negative log-prior .

Arngren et al. have investigated three measures of this volume:

exact simplex volume, distance between vertices, volume of a

corresponding parallelepiped. The resulting techniques can thus

be considered as stochastic implementations of the MVC-NMF

algorithm [136].

All the Bayesian unmixing algorithms introduced above rely

on the assumption of an independent and identically Gaussian

distributed noise, leading to a covariancematrix of the noise

vector . Note that the case of a coloredGaussian noise with un-

known covariance matrix has been handled in [168]. However,

in many applications, the additive noise term may neglected be-

cause the noise power is very small.When that is not the case but

the signal subspace has much lower dimension than the number

of bands, then, as seen in Section III-A, the projection onto the

signal subspace largely reduces the noise power. Under this cir-

cumstance, and assuming that is invertible and the

observed spectral vectors are independent, then we can write

where is the fractional abundance pdf, and compute the em

maximum likelihood (ML) estimate of . This is

precisely the ICA line of attack, under the assumption that the

fractional abundances are independent, i.e., .

The fact that this assumption is not valid in hyperspectral ap-

plications [158] has promoted research on suitable statistical

models for hyperspectral fractional abundances and in effec-

tive algorithms to infer the mixing matrices. This is the case

with DECA [169], [170]; the abundance fractions are modeled

as mixtures of Dirichlet densities, thus, automatically enforcing

the constraints on abundance fractions imposed by the acquisi-

tion process, namely nonnegativity and constant sum. A cyclic

minimization algorithm is developed where: 1) the number of

Dirichlet modes is inferred based on the minimum description

length (MDL) principle; 2) a generalized expectationmaximiza-

tion (GEM) algorithm is derived to infer the model parameters;

3) a sequence of augmented Lagrangian based optimizations are

used to compute the signatures of the endmembers.

Piecewise convex unmixing, mentioned in the geometrical

approaches section, has also been investigated using a Bayesian

approach.7 In [171] the normal compositional model is used to

represent each convex set as a set of samples from a collection

of random variables. The endmembers are represented as Gaus-

sians. Abundance multinomials are represented by Dirichlet

distributions. To form a Bayesian model, priors are used for

the parameters of the distributions. Thus, the data generation

model consists of two stages. In the Þrst stage, endmembers

are sampled from their respective Gaussians. In the second

stage, for each pixel, an abundance multinomial is sampled

from a Dirichlet distribution. Since the number of convex sets

is unknown, the Dirichlet process mixture model is used to

identify the number of clusters while simultaneously learning

the parameters of the endmember and abundance distributions.

7It is an interesting to remark that by taking the negative of the logarithm of
a fuzzy clustering objective function, such as in (13), one can represent a fuzzy
clustering objective as a Bayesian MAP objective. One interesting difference is
that the precisions on the likelihood functions are the memberships and are data
point dependent.



Fig. 17. Left: Scatterplot of the SusgsP3SNRinfXSmix dataset jointly with the true and estimated endmembers. Right: Scatterplot of a Cuprite data subset jointly
with the projections of Montmorillonite, Desert Varnish, and Alunite, witch are known to dominate this subset, and estimated endmembers.

This model is very general and can represent very complex

data sets. The Dirichlet process uses a Metropolis-within-Gibbs

method to estimate the parameters, which can be quite time

consuming. The advantage is that the sampler will converge

to the joint distribution of the parameters, which means that

one can select the maximum a-posterior estimates from the

estimated joint distributions. Although Gibbs samplers seem

inherently sequential, some surprising new theoretical results

by [172] show that theoretically correct sampling samplers

can be implemented in parallel, which offers the promise

of dramatic speed-ups of algorithms such as this and other

probabilistic algorithms mentioned here that rely on sampling.

Fig. 17, left, presents a scatterplot of the simulated data

set SusgsP3SNRinfXSmix and the endmember estimates

produced by VCA, MVES, MVSA, MVC-NMF, SISAL, and

DECA algorithms. This data set is generated with a mixing

matrix sampled from the USGS library and with

endmembers, spectral vectors, and fractional

abundances given by mixtures of two Dirichlet modes with

parameters [6, 25, 9] and [7, 8, 23] and mode weights of 0.67

and 0.33, respectively. DECA Dirichlet parameters were ran-

domly initialized and the mixing probabilities uniformly. This

setting reßects a situation in which no knowledge of the size

and the number of regions in the scene exists. The parameters

of the remaining methods were hand tuned for optimal perfor-

mance.8 See [170] for more details. The considered data set

corresponds to a highly mixed scenario, where the geometrical

based algorithms performs poorly, as explained in Section IV.

On the contrary, DECA yields useful estimates.

Fig. 17, right, is similar the one in the left hand side for a

Cuprite data subset of size 50 90 pixels shown in Fig. 18.

This subset is dominated by Montmorillonite, Desert Varnish,

and Alunite, which are known to dominate the considered

subset image [6]. The projections of this endmembers are rep-

resented by black circles. DECA identiÞed modes, with

parameters , ,

, , and ,

and mode weights , , , ,

and . These parameters correspond to a highly

8MVC-MNF regularization parameter: ; MVES tolerance: ;
SISAL regularization parameter ; SPICE regularization parameter

; SPICE sparsity parameter ; SPICE stopping parameter .

Fig. 18. AVIRIS subset and of 30 (wavelength ) used to com-
pute the results plotted in Fig. 17, right.

non-uniform distribution over the simplex as could be inferred

from the scatterplot. Although the estimation results are more

difÞcult to judge in the case of real data than in the case on

simulated data, as we not really sure about the true endmem-

bers, it is reasonable to conclude that the statistical approach

is producing similar to or better estimates than the geometrical

based algorithms.

The examples shown Fig. 17 illustrates the potential and

ßexibility of the Bayesian methodology. As already referred to

above, these advantages come at a price: computational com-

plexity linked to the posterior computation and to the inference

of the estimates.

VI. SPARSE REGRESSION BASED UNMIXING

The spectral unmixing problem has recently been approached

in a semi-supervised fashion, by assuming that the observed

image signatures can be expressed in the form of linear com-

binations of a number of pure spectral signatures known in ad-

vance [173]�[175] (e.g., spectra collected on the ground by a

Þeld spectro-radiometer). Unmixing then amounts to Þnding the

optimal subset of signatures in a (potentially very large) spec-

tral library that can best model each mixed pixel in the scene.

In practice, this is a combinatorial problem which calls for ef-

Þcient linear sparse regression techniques based on sparsity-in-

ducing regularizers, since the number of endmembers partici-



pating in a mixed pixel is usually very small compared with

the (ever-growing) dimensionality and availability of spectral

libraries [1]. Linear sparse regression is an area of very active

research with strong links to compressed sensing [79], [176],

[177], least angle regression [178], basis pursuit, basis pursuit

denoising [179], and matching pursuit [180], [181].

Let us assume then that the spectral endmembers used to

solve the mixture problem are no longer extracted nor gener-

ated using the original hyperspectral data as input, but instead

selected from a library containing a large number

of spectral samples, say , available a priori. In this case, un-

mixing amounts to Þnding the optimal subset of samples in the

library that can best model each mixed pixel in the scene. Usu-

ally, we have and therefore the linear problem at hands

is underdetermined. Let denote the fractional abun-

dance vector with regards to the library . With these deÞni-

tions in place, we can now write our sparse regression problem

as

(19)

where denotes the number of non-zero components of

and is the error tolerance due to noise and modeling er-

rors. Assume for a while that . If the system of linear equa-

tions has a solution satisfying ,

where is the smallest number of lin-

early dependent columns of , it is necessarily the unique solu-

tion of (19) [182]. For , the concept of uniqueness of the

sparsest solution is replaced with the concept of stability [176].

In most HU applications, we do have

and therefore, at least in noiseless scenarios, the solutions of

(19) are unique. However, problem (19) is NP-hard [183] and

therefore there is no hope in solving it in a straightforward way.

Greedy algorithms such as the orthogonal matching pursuit

(OMP) [181] and convex approximations replacing the norm

with the norm, termed basis pursuit (BP), if , and

basis pursuit denoising (BPDN) [179], if , are alternative

approaches to compute the sparsest solution. If we add the

ANC to BP and BPDN problems, we have the constrained

basis pursuit (CBP) and the constrained basis pursuit denoising

(CBPDN) problems [184], respectively. The CBPDN optimiza-

tion problem is thus

(20)

An equivalent formulation to (20), termed constrained sparse

regression (CSR) (see [184]), is

(21)

where is related with the Lagrange multiplier of the

inequality , also interpretable as a regularization

parameter.

Contrary to the problem (19), problems (20) and (21) are

convex and can be solved efÞciently [184], [185]. What is, per-

haps, totally unexpected is that sparse vector of fractional abun-

dances can be reconstructed by solving (20) or (21) provided

that the columns of matrix are incoherent in a given sense

[186]. The applicability of sparse regression to HU was studied

in detail in [173]. Two main conclusions were drawn:

a) hyperspectral signatures tend to be highly correlated what

imposes limits to the quality of the results provided by

solving CBPDN or CSR optimization problems.

b) The limitation imposed by the highly correlation of the

spectral signatures is mitigated by the high level of spar-

sity most often observed in the hyperspectral mixtures.

At this point, we make a brief comment about the role of ASC

in the context of CBPDN and of CSR problems. Notice that if

belongs to the unit simplex (i.e., for ,

and ), we have . Therefore, if we add

the sum-to-one constraint to (20) and (21), the corresponding

optimization problems do not depend on the norm . In

this case, the optimization (21) is converted into the well known

fully constrained least squares (FCLS) problem and (20) into a

feasibility problem, which for is

(22)

The uniqueness of sparse solutions to (22) when the system is

underdetermined is addressed in [187]. The main Þnding is that

for matrices with a row-span intersecting the positive orthant

(this is the case of hyperspectral libraries), if this problem ad-

mits a sufÞciently sparse solution, it is necessarily unique. It

is remarkable how the ANC alone acts as a sparsity-inducing

regularizer.

In practice, and for the reasons pointed Section III-B, the

ASC is rarely satisÞed. For this reason, and also due to the pres-

ence of noise and model mismatches, we have observed that the

CBPDN and CSR often yields better unmixing results than CLS

and FCLS.

In order to illustrate the potential of the sparse regression

methods, we run an experiment with simulated data. The hyper-

spectral library , of size and , is a pruned

version of the USGS library in which the angle between any two

spectral signatures is no less than 0.05 rad (approximately 3 de-

grees). The abundance fractions follows a Dirichlet distribution

with constant parameter of value 2, yielding a mixed data set

beyond the reach of geometrical algorithms. In order to put in

evidence the impact of the angles between the library vectors,

and therefore the mutual coherence of the library [187], in the

unmixing results, we organize the library into two subsets; the

minimum angle between any two spectral signatures is higher

the 7 degrees in the Þrst set and lower than 4 in the second

set.

Fig. 19 top, plots unmixing results obtained by solving the

CSR problem (21) with the SUNSAL algorithm introduced in

[184]. The regularization parameter was hand tuned for op-

timal performance. For each value of the abscissa , rep-

resenting the number of active columns of , we select

elements of one of the subsets above referred to and generate

Dirichlet distributed mixtures. From the sparse re-

gression results, we estimate the signal-to-reconstruction error

(SRE) as



Fig. 19. Sparse reconstruction results for a simulated data set generated from the USGS library. Top: Signal to reconstruction error (SRE) as a function of the
number of active materials. Bottom: Number of incorrect selected material as a function of the number of active materials.

where and stand for estimated abundance fraction vector

and sample average, respectively.

The curves on the top left hand side were obtained with the

noise set to zero. As expected there is a degradation of perfor-

mance as increases and decreases. Anyway, the ob-

tained values of SRE correspond to an almost perfect recon-

struction for . For the reconstruction

is almost perfect for , as well, and of good quality

for most unmixing purposes for .

The curves on the top right hand side were obtained with

. This scenario is much more challenging than

the previous one. Anyway, even for , we get

for, , corresponding to a useful performance

in HU applications. Notice that best values of SRE for

are obtained with , putting in evidence the

regularization effect of the norm in the CSR problem (21),

namely when the spectral are strongly coherent.

The curves on the bottom plot the number of incorrect se-

lected materials for . This number is zero for

. For each value of , we compare the

larger elements of with the true ones and count the number

of mismatches. We conclude that a suitable setting of the reg-

ularization parameter yields a correct selection of the materials

for .

The success of hyperspectral sparse regression relies cru-

cially on the availability of suitable hyperspectral libraries.

The acquisition of these libraries is often a time consuming

and expensive procedure. Furthermore, because the libraries

are hardly acquired under the same conditions of the data sets

under consideration, a delicate calibration procedure have to be

carried out to adapt either the library to the data set or vice versa

[173]. A way to sidestep these difÞculties is the learning of the

libraries directly from the dataset with no other a priori infor-

mation involved. For the application of these ideas, frequently

termed dictionary learning, in signal and image processing see,

e.g., [188], [189] and references therein). Charles et al. have

recently applied this line of attack to sparse HU in [190]. They

have modiÞed an existing unsupervised learning algorithm to

learn an optimal library under the sparse representation moldel.

Using this learned library they have shown that the sparse

representation model learns spectral signatures of materials in

the scene and locally approximates nonlinear manifolds for

individual materials.

VII. SPATIAL-SPECTRAL CONTEXTUAL INFORMATION

Most of the unmixing strategies presented in the previous

paragraphs are based on a objective criterion generally deÞned

in the hyperspectral space. When formulated as an optimiza-

tion problem (e.g., implemented by the geometrical-based al-

gorithms detailed in Section IV), spectral unmixing usually re-

lies on algebraic constraints that are inherent to the observation



space : positivity, additivity and minimum volume. Simi-

larly, the statistical- and sparsity-based algorithms of Sections V

and VI exploit similar geometric constraints to penalize a stan-

dard data-Þtting term (expressed as a likelihood function or

quadratic error term). As a direct consequence, all these algo-

rithms ignore any additional contextual information that could

improve the unmixing process. However, such valuable infor-

mation can be of great beneÞt for analyzing hyperspectral data.

Indeed, as a prototypal task, thematic classiÞcation of hyper-

spectral images has recently motivated the development of a

new class of algorithms that exploit both the spatial and spectral

features contained in image. Pixels are no longer processed in-

dividually but the intrinsic 3D nature of the hyperspectral data

cube is capitalized by taking advantage of the correlations be-

tween spatial and spectral neighbors (see, e.g. [191]�[198].

Following this idea, some unmixing methods have targeted

the integration of contextual information to guide the end-

member extraction and/or the abundance estimation steps.

In particular, the Bayesian estimation setting introduced in

Section V provides a relevant framework for exploiting spatial

information. Anecdotally, one of the earliest work dealing

with linear unmixing of multi-band images (casted as a soft

classiÞcation problem) explicitly attempts to highlight spatial

correlations between neighboring pixels. In [199], abundance

dependencies are modeled using Gaussian Markov random

Þelds, which makes this approach particularly well adapted to

unmix images with smooth abundance transition throughout

the observed scene.

In a similar fashion, Eches et al. have proposed to exploit the

pixel correlations by using an underlying membership process.

The image is partitioned into regions where the statistical prop-

erties of the abundance coefÞcients are homogeneous [200]. A

Potts-Markov random Þeld has been assigned to hidden labeling

variables to model spatial dependencies between pixels within

any region. It is worthy to note that, conditionally upon a given

class, unmixing is performed on each pixel individually and

thus generalizes the Bayesian algorithms of [201]. In [200], the

number of homogeneous regions that compose the image must

be chosen and Þxed a priori. An extension to a fully unsuper-

vised method, based on nonparametric hidden Markov models,

have been suggested by Mittelman et al. in [202].

Several attempts to exploit spatial information have been also

made when designing appropriate criteria to be optimized. In

addition to the classical positivity, full additivity and minimum

volume constraints, other penalizing terms can be included in

the objective function to take advantage of the spatial struc-

tures in the image. In [203], the spatial autocorrelation of each

abundance is described by a measure of spatial complexity, pro-

moting these fractions to vary smoothly from one pixel to its

neighbors (as in [199]). Similarly, in [204], spatial information

has been incorporated within the criterion by including a regu-

larization term that takes into account a weighted combination

of the abundances related to the neighboring pixels. Other op-

timization algorithms operate following the same strategy (see

for examples [205]�[207]).

Extended morphological operations have been also used as

a baseline to develop an automatic morphological endmember

extraction (AMEE) algorithm [208] for spatial-spectral end-

member extraction. Spatial averaging of spectrally similar

endmember candidates found via singular value decomposition

(SVD) was used in the spatial spectral endmember extraction

(SSEE) algorithm [209]. Recently, a spatial preprocessing

(SPP) algorithm [210] has been proposed which estimates, for

each pixel vector in the scene, a spatially-derived factor that

is used to weight the importance of the spectral information

associated to each pixel in terms of its spatial context. The

SPP is intended as a preprocessing module that can be used

in combination with an existing spectral-based endmember

extraction algorithm.

Finally, we mention very recent research directions aiming

at exploiting contextual information under the sparse regres-

sion framework. Work [185] assumes that the endmembers are

known and formulates a deconvolution problem, where a Total

Variation regularizer [211] is applied to the spatial bands to en-

hance their resolution. Work [212] formulates the HU problem

as nonconvex optimization problem similar to the nonnegative

matrix factorization (11), where the volume regularization term

is replaced with an regularizer applied to differences between

neighboring vectors of abundance fractions. The limitation im-

posed to the sparse regression methods by the usual high cor-

relation of the hyperspectral signatures is mitigated in [213],

[214] by adding the Total Variation [211] regularization term,

applied to the individual bands, to CSR problem (21). A related

approach is followed in [215]; here a collaborative regulariza-

tion term [216] is added to CSR problem (21) to enforce the

same set of active materials in all pixels of the data set.

VIII. SUMMARY

More than one decade after Keshava and Mustard�s tutorial

paper on spectral unmixing published in the IEEE Signal Pro-

cessing Magazine [1], effective spectral unmixing still remains

an elusive exploitation goal and a very active research topic in

the remote sensing community. Regardless of the available spa-

tial resolution of remotely sensed data sets, the spectral signals

collected in natural environments are invariably a mixture of

the signatures of the various materials found within the spa-

tial extent of the ground instantaneous Þeld view of the re-

mote sensing imaging instrument. The availability of hyper-

spectral imaging instruments with increasing spectral resolu-

tion (exceeding the number of spectral mixture components)

has fostered many developments in recent years. In order to

present the state-of-the-art and the most recent developments

in this area, this paper provides an overview of recent develop-

ments in hyperspectral unmixing. Several main aspects are cov-

ered, including mixing models (linear versus nonlinear), signal

subspace identiÞcation, geometrical-based spectral unmixing,

statistical-based spectral unmixing, sparse regression-based un-

mixing and the integration of spatial and spectral information

for unmixing purposes. In each topic, we describe the physical

or mathematical problems involved and many widely used al-

gorithms to address these problems. Because of the high level of

activity and limited space, there are many methods that have not

been addressed directly in this manuscript. However, combined,

the topics mentioned here provide a snapshot of the state-of-

the-art in the area of spectral unmixing, offering a perspective

on the potential and emerging challenges in this strategy for hy-



perspectral data interpretation. The compendium of techniques

presented in this work reßects the increasing sophistication of

a Þeld that is rapidly maturing at the intersection of many dif-

ferent disciplines, including signal and image processing, phys-

ical modeling, linear algebra and computing developments.

In this regard, a recent trend in hyperspectral imaging in

general (and spectral unmixing in particular) has been the

computationally efÞcient implementation of techniques using

high performance computing (HPC) architectures [217], [222],

[223]. This is particularly important to address applications of

spectral unmixing with high societal impact such as, monitoring

of natural disasters (e.g., earthquakes and ßoods) or tracking

of man-induced hazards (e.g., oil spills and other types of

chemical contamination). Many of these applications require

timely responses for swift decisions which depend upon (near)

real-time performance of algorithm analysis [218]. Although

the role of different types of HPC architectures depends heavily

on the considered application, cluster-based parallel computing

has been used for efÞcient information extraction from very

large data archives using spectral unmixing technniques [219],

while on-board and real-time hardware architectures such as

Þeld programmable gate arrays (FPGAs) [220] and graphics

processing units (GPUs) [221] have also been used for efÞcient

implementation and exploitation of spectral unmixing tech-

niques. The HPC techniques, together with the recent discovery

of theoretically correct methods for parallel Gibbs samplers and

further coupled with the potential of the fully stochastic models

represents an opportunity for huge advances in multi-modal

unmixing. That is, these developments offer the possibility

that complex hyperspectral images that contain that can be

piecewise linear and nonlinear mixtures of endmembers that

are represented by distributions and for which the number of

endmembers in each piece varies, may be accurately processed

in a practical time.

There is a great deal of work yet to be done; the list of ideas

could be several pages long! A few directions are mentioned

here. Proper representations of endmember distributions need to

be identiÞed. Researchers have considered some distributions

but not all. Furthermore, it may become necessary to include

distributions or tree structured representations into sparse pro-

cessing with libraries. As images cover larger and larger areas,

piecewise processing will become more important since such

images will cover several different types of areas. Furthermore,

in many of these cases, linear and nonlinear mixing will both

occur. Random Þelds that combine spatial and spectral informa-

tion, manifold approximations by mixtures of low rank Gaus-

sians, and model clustering are all methods that can be investi-

gated for this purpose. Finally, software tools and measurements

for large scale quantitative analysis are needed to performmean-

ingful statistical analyses of algorithm performance.
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