N
N

N

HAL

open science

ACTIVITYDIAGRAM2PETRINET :
TRANSFORMATION-BASED MODEL IN
ACCORDANCE WITH THE OMG SYSML

SPECIFICATIONS

Damien Foures, Vincent Albert, Jean-Claude Pascal

» To cite this version:

Damien Foures, Vincent Albert, Jean-Claude Pascal.
TRANSFORMATION-BASED MODEL IN ACCORDANCE WITH THE OMG SYSML SPECIFI-
CATIONS. Eurosis, The 2011 European Simulation and Modelling Conference, Oct 2011, Guimaraes,

Portugal. p429-p433. hal-00760783

HAL Id: hal-00760783
https://hal.science/hal-00760783

Submitted on 4 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

ACTIVITYDIAGRAM2PETRINET :

https://hal.science/hal-00760783
https://hal.archives-ouvertes.fr

ACTIVITYDIAGRAM2PETRINET : TRANSFORMATION-BASED MODEL IN
ACCORDANCE WITH THE OMG SYSML SPECIFICATIONS

Damien Foures, Vincent Albert, Jean-Claude Pascal
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
University of Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077 Toulouse Cedex 4, France
{dfoures, valbert, jep}@Qlaas.fr

KEYWORDS

MDE, ATL, TINA, transformation, verification, Petri
Nets, SysML, OMG, VHDL-AMS, Ecore

ABSTRACT

This study aims to automate the transformation of
activity diagrams (AD) to Petri nets (PN). Based on
specifications given by the Object Management Group
(OMG), we have established transformation rules in
ATLAS Transformation Language (ATL) to obtain
a model consistent with our Petri Net meta-model
(model2model). The semantic of Activity Diagram
was verified with PetriNet2Tina transformation
(model2text) and has allowed us to verify that was the
same in the corresponding PN. This verification is done
with the ”model-checker” TIme petri Net Analyzer
(TINA) and Linear Temporal Logic (LTL) language.
The user needs only to set up the Activity Diagram
from the stakeholder requirements; the transformation
and verification is automatic. PetriNet formalism could
enable us to provide valuable information on a Activity
Diagram, to execute and simulate it.

INTRODUCTION

Context

The present work is based on the general context of sys-
tems engineering and integration of heterogeneous sys-
tems. These systems have software and hardware com-
ponents, they generally hold high real-time constraints
and disciplines (electrical, mechanical, information, hy-
draulic...). We seek to propose methods and tools for
controlling the development cycle of such systems. The
use of models and simulation is becoming dominant
component in the development cycle, and we seek to
improve (and eventually to automate) their use. The
use of meta-modeling moves in this direction as it aims
to make the modeling. Based on the instantiation of the
meta-model, more clearer and less ambiguous.

Approach

Our approach uses the concepts advocated by the OMG
through Model Driven Architecture (MDA), itself based
on modeling and automatic transformation of models
into other models. Presently we have the TINA for-
malism (LAAS 2011), TINA toolbox (LAAS 2011), and
a transformation procedure from PN to VHDL-AMS
(Albert et al. Octobre 2005). TINA formalism allows
us to verify formally that Activity Diagram properties
are preserved, using its model-checking tool (selt). The
transformation to VHDL-AMS (IEEE 1999) allows us
to propose a simulation phase, commonly called virtual
prototyping. The addition of these two approaches al-
lows us to validate the discrete and continuous part of
the activity diagrams, and hence predict functional char-
acteristics of the system.

In this work, we begin with a method to create meta-
models of AD and PN. We will see a suggestion of con-
cept mapping and its verification, and finally a simple
example of transformation.

Till date transformation from State Machine to PetriNet
were made (Bernardi et al. 2002), (Campos and
Merseguer 2006), but Activity Diagrams (ADs) accen-
tuate the internal control and data flow of systems. Fur-
ther work on ADs were made (Bonhomme et al. 2008),
(Lopez-Grao et al. 2004) or (Thierry-Mieg and LHillah
2008) but do not take into account many properties of
ADs.

SYSML PRESENTATION

SysML is a graphical modeling language developed by
OMG and INCOSE. SysML is a UML profile adapted to
systems engineering emerged in the 2000s. It can model
the behavior of systems (continuous and discrete), with
a hierarchical approach. OMG SysML specifications ap-
peared only in 2007. We extracted the meta-model from
(OMG 2010c¢) and (OMG 2010b) .

Activity Diagram
The activity diagram is one of the four behavioral dia-

grams included in SysML. They are useful to describe a
hierarchical behavior, delayed, or a mixed systems. The

TOPCASED framework permits to describe graphically
all AD in accordance with the AD meta-model, itself in
accordance with the Ecore(Budinsky et al. 2003) meta-
meta-model. The Meta-Object Facility (MOF) is pre-
conized by OMG, but Ecore is more or less aligned on
Essential MOF (EMOF).

Activity Diagram Meta-model

The AD meta-model was extracted from OMG speci-
fication as described therein, without addition. Small
part of it with ControlNode meta-class is shown in fig-
ure 1. We see that FlowFinalNode and ActivityFinalN-
ode inherit FinalNode. The FinalNode inherits to Con-
trolNode as InitialNode, similarly ForkNode, JoinNode
and MergeNode. To create the AD meta-model, it is
easier to begin with basic node of AD, directly after-
wards all properties, all links with other meta-class were
extracted. The biggest difficulty was to know where
to stop the meta-model extraction. Indeed, in (OMG
2010c) and (OMG 2010b) all classes inherit from many
other classes from SysML and UML metamodels. Subse-
quently it uses the AD meta-model from TOPCASED
I framework. First, we have verified compliance with
OMG specification for parts we have used.

1
| gard
1.1
value ‘\.. Sp ification'
,[FinalNode JControINode: 1.1
g A 1 | joinSpec
1]
FlowFinalNode| [ActivityFinalNode — Node|
1 ! 1 Y ! ‘InltlaINode FotkNode Werg isCombineDuplicate:by
[L 1] L 1]
L

Figure 1: Part of Complete Activity Diagram in accor-
dance with OMG specification.

PETRINET PRESENTATION

A PetriNet is a mathematical modeling language. There
are currently a lot of Petri nets classes. Gradually basic,
hierarchical and differential predicate transition Petri
nets, will be transformed to, the control part, the hi-
erarchy, and finally the continuous part of the activity
diagram. A Petri net is composed of places, transitions,
and arcs. Arcs connect a place to a transition or a tran-
sition to place, others possibilities are forbidden. This
kind of constraint must appear in the meta-model of
PN.

Thttp://www.topcased.org/

PetriNet Meta-model

The PN meta-model established in (Albert et al. Oc-
tobre 2005) was adapted to this new work. Macro-
place and macro-transition were removed because they
are restrictive. For example, if an ActionNode of AD
is transformed into macro-place it is impossible to put
new value in this macroplace during execution. During
execution macro-node becomes totally independant, so
we decided to work flat. Flat PN, without hierarchy, are
more easy to master communication links. TINA works
also on only one abstraction level.

Figure 2 shows a simplified version of PN meta-model.
We can read on it: PetriNet is composed of Node and
ArcClassic. A node can be a Transition or a Place and
they are linked with ArcClassic. A node can have mul-
tiple incoming or outgoing ArcClassics. An ArcClassic
can only have one Source Node and one Target Node.
This interpretation includes a description of the pre-
vious paragraph. However, constraints do not appear,
they must be expressed, for example in Object COn-
straint Language (OCL)(OMG 2010a).

[| [_PetriNet |

Name:string ’4—‘

inputlinks 0,<[__ArcClassic /|

Transition | [Place H !
TokenNbint Ml T /

Figure 2: Petri Net model conforms to simple Petri Net
meta-model.

TRANSFORMATION WITH ATL AND
ECLIPSE MODELLING FRAMEWORK
(EMF)

Initially, our work was to be, totally in accordance with
OMG. Tools for model transformation suggested by the
OMG are still evolving, and to date we prefer to use
EMF with Ecore meta meta-model and ATL language
which seems to be the best choice, with a framework that
has been already tried and tested. Our transformation
choices are pointed out in figure 3.

Mapping of Concepts

The original contribution of our transformation is to
match an activity diagram artefact to a PN block which
will preserve the AD semantic, related to this artefact
as defined by OMG. Such a PN block must also handle
alternatives in AD modeling, e.g. an input pin may be
stereotyped ”optional” and becomes useless to start the
activity. Table 4 illustrates the main mapping.

Conform to

Meta-meta-mode
ECORE

M3 Meta-meta-model

Conform to Conform to

M2 Meta-model

Activity Diagram

Conform to Utilise Conform to

M1 Model

¢ tansomation %
> engine

MO Real Word

Real dynamic
system

Figure 3: Meta-modelling Transformation.

AD artefacts PN Blocks
Initial Node o~
= X
Final Node _\)7_
L J
Flow Final Node ‘:;: 4
— T
{ Action | (51
5
Y =
Comtrol Flow ?f‘"""»’
®
R4

Figure 4: Basic Concepts Mapping: from AD to PN

These design choices, reflects the analysis based on the
generality of blocks (SendSignalAction or CallBehav-
iorAction inherited from Action),on block interconnec-
tion facility but also on properties defined by (OMG
2010c) and (OMG 2010b). For example, a ControlFlow
can be modelised as a single transition (Thierry-Mieg
and LHillah 2008), it can be also included on nodes
like in (Bonhomme et al. 2008). In figure 4 the ulti-
mate PN block acts as a buffer to respect ControlFlow
properties written in OMG specification. They define
ControlFlow like an edge that starts an activity node
after the previous one is finished, with this simple defi-
nition an PetriNet arc is a correct model, but OMG add
many specification on ControlFlow or which influences
behavior. Finally, PetriNet arc is inadequate to meet
all properties. Let’s look at an excerpt of the properties
and define possible solutions to respect them:

Property 1 (from ControlFlow): Tokens offered by the
source node are all offered to the target node.

Property 2 (from ActionNode): When an action accepts
the offer for control and object tokens, the tokens are
removed from the original sources that offered them. If
multiple control tokens are available on a single incom-
ing control flow, they are all consumed.

.ecore

Solutions: We can do with the property 1 that the first
intuition is good, PetriNet arc carry tokens too. Prop-
erty 2 and many others shows that the ControlFlow has
behavior of token storage like a PetriNet place. The in-
ability to know dynamically the number of token in a
place to empty correctly ControlFlow brings us to the
model as a buffer. Indeed, the presence of token is im-
portant but not the token multiplicity.

The same work was done with almost every ActivityDi-
agram node. Many stereotypes can be applied to nodes
and was not considered to date.

The transition from one column to another in figure 4 is
possible at M2 level (see figure 3) with ATL rules and
Eclipse Modeling Framework. We'll see how we built a
block PN during a small example.

Complex Petri Net

It was already seen how to build an atomic block. Build-
ing complex PN is relatively simple, in an activity dia-
gram every or almost every node are connected to an-
other by ”ControlFlow” or ”ObjectFlow”. They will
just have to connect each atomic block (can be viewed
as:Transition-Place-Transition) to controlflow or object-
flow block (can be viewed as:Arc-Place-Arc).We remind
the reader that, analysis at model level should be higher
than meta-model level to establish the rules in MDE
context. Using the hierarchy can significantly reduce the
amount of transformation rules. With AD2PN trans-
formation, we could see that ATL cannot use easily the
advantages of hierarchy. The language must be well con-
trolled to limit significantly the coding rules.

VERIFICATION

After establishing the rules for ”control flow” part, it
is important to verify formally the transformation and,
thus, verify that the PN had the same behavior as the
activity diagram. In other words, it must check, through
PN, to find the operational semantics of an AD. Subse-
quently, it is possible to imagine that users adds con-
straints (OCL) to the model, their validity in the PN
can be proved with verification.

ResolveTemp Meta-model

Each PN block can be reduced to a sequence, Transition-
Place-Transition. This meta-model defines each type of
block to give essential features, but no behavior. It per-
forms double transformation AD2PN and synchronized
AD2ResolveTemp. This is to retrieve the name of input
transitions (isStarted), output transitions (isFinished),
running place (isRunning) and this incoming/outgoing
(incomming/outgoing) (see figure 5). Sometimes at-
tributes are added to define better LTL property (is-
NotRunning, optionnallncoming,...)

AD node

.........................

.
H
'
Incoming
d
'
v

.........................

Outgoi
f, Outgoing

[,

Figure 5: PN block definition

LTL Properties and selt

Owing to lack of space, we will not present LTL lan-
guage. Our approach has been to develop, properties in
blocks with properties with inputs and outputs. In ac-
cordance with transitivity relationship A = B and B =
C then A = C. If block satisfies this properties, and if
properties with connected blocks are satisfied then entire
PN is verified. This verifies formally correct construc-
tion of the Petri net. This technique shows limitations
indeed to have the expected Petri net (no problem in
the construction). But it does not involve checking of
correct behavior of the Petri net. If the building blocks
have a limited or incorrect behavior, the model will be
wrong and yet the verification will be positive. The user
must know the limits of model transformation used.

EXAMPLE:
PETRI NET

ACTIVITY DIAGRAM TO

We can see in figure 6, at left, a simple AD. When Ac-
tivityl is running, executes Actionl, when this one is
finished, starts parallel execution of both action (action
2 and 3). If action? is finished, action & can run, but if
action 3 is the first to finished, at this moment, Activ-
ityl is stoped, and all action in Activity! are stopped.
We can see figure 6, at right, the resulting petri net after
AD2PN transformation. It is more complex in appear-
ance, it takes the behavior of Activity Diagram, that
part is not really readable but does not provide specific
information aditional. To make this transformation, we
must establish rules for each meta-class present through
these instances in the model. For example: The ATL
transformation rule for InitialNode meta-class.

rule initialnode_place{
from a:MMAD!InitialNode
to b:MMH!Place (
Name<-’p_Initial_’+a.name+’_’+a.activity.name,
OutputLink<-c,
),
c:MMH!ArcClassic(
Name<-’a2_Initial_’+...
),
d:MMH!Transition(
OutputLink<-a.outgoing,
Name<-...

)

For each instance of InitialNode, a marked place is cre-
ated, arc connects the latter to a transition. This tran-
sition is associated with meta-class instance after trans-
formation, present in outgoing InitialNode argument (
Outputlink«—a.outgoing). This graphical version under
TINA is possible with a second transformation, from
Petri Net to Tina (model2text). To make this transfor-
mation we have used ” Query” (LINA-INRIA 2006) from
ATL :

helper context Hiles!Transition def:genTransition():
String = ’tr ’ + self.Name + ’> [0O,w[°’
+ self.InputLink->iterate(arc;accPlAm:String=""|
accPlAm+arc.Source.Name +’ ’) + > -> 7
+ self.OutputLink—>iterate(arc;accPlAv:String="|
accPlAv+arc.Target.Name +’ ’) + ’\n’ ;

On this part of ”Query”, it is automatically generated
the ”arc part” of tina text. When the equivalent PN
is implemented in TINA toolbox, we use "selt” and its
model-cheking tool. To generate automatically prop-
erties in LTL language, we use an other transforma-
tion: from ResolveTemp to LTL (model2text) and other
”Query” (LINA-INRIA 2006):

helper context ResolveTemp!RTCF def:getPCF():String =
>[1 (’+self.isRunning+’+’+self.isNotRunning+’=1);\n’+...

The automated property created after this query
is about ControlFlow and verifies invariant under
block,the label ’[]” means that this invariant must al-
ways be true to validate this property.

[1 (p2_CFlow_CF1_Activityl+p3_CFlow_CF1_Activityl= 1);

The OMG specification says:” If multiple control tokens
are available on a single incoming control flow, they are
all consumed.” (OMG 2010c).To respect this semantic,
controlflow is modelised as seen in concepts of mapping
subsection (presence or exclusively absence of tokken in
ControlFlow).

L

[Action3 Action2]

CF6 CF5

- NG

Figure 6: Simple AD2PN example

CONCLUSION AND FUTURE WORK

This work, has already set up a complex management of
AD in accordance with the OMG specifications. OMG
Specifications regularly contrain to refrain some short-
cuts, which could simplify development. PN provides
a mathematical formalism which is, at this step of the
project not really exploited. It should eventually allow
to highlight the invariant properties in AD, execute ac-
tivity diagram in parallel with VHDL-AMS, to cover all
the possibilities offered by the activity diagrams.

The future work will use differential predicate transi-
tion PN(Genrich 1987) for dataflow management. To-
day this first step can say if data are presents or not, but
it does not convey any information. With this new class
of petri nets, the TINA formalism becomes unuseful and
we'll go to validation by simulation (VHDL-AMS). Dur-
ing this work, it was also possible to show that manage-
ment of interrupts areas is possible with basic PN.

We express concern about management of many changes
which allows users (stereotype, optional attribute,...),
to manage all of these cases seems to overload rules of
transformation. ATL language has sometimes seemed
a bit complex, it will be interesting to see the contri-
bution of Query / View / Transformation (QVT) lan-
guage. The development of the reverse chain; Petri nets
to activity diagram in this work will be completed by
providing the user with an AD modified or re-organized
according to the invariant or error detected in PN. Ver-
ification should be transparent to the user, however, a
good mastery of AD seems crucial to create a really ex-
ploitable PN for us.

REFERENCES

Albert V.; Nketsa A.; and Pascal J.C., Octobre 2005.
Towards a metal-model based approach for hierarchi-
cal Petri net transformations to VHDL. FEuropean
Sitmulation and Modelling Conference, Porto.

Bernardi S.; Donatelli S.; and Merseguer J., 2002. From
UML sequence diagrams and statecharts to analysable
petri net models. In Proceedings of the 3rd interna-
tional workshop on Software and performance. ACM,
New York, NY, USA, WOSP ’02. ISBN 1-58113-
563-7. URL http://doi.acm.org/10.1145/584369.
584376.

Berthomieu B.; Vernadat F.; and Ribet P.O., 2000.
Manual Reference Pages - selt (n).

Bonhomme S.; Campo E.; Estve D.; and Guennec J.,
2008. Methodology and Tools for the Design and Ver-
ification of a Smart Management System for Home
Comfort. 4th International IEEE Conference ”Intel-
ligent Systems”.

Budinsky F.; Brodsky S.A.; and Merks E., 2003. Eclipse

Modeling Framework. Pearson Education. ISBN
0131425420.

Campos J. and Merseguer J., 2006. On the Integration
of UML and Petri Nets in Software Development. In
Application and Theory of Petri Nets. 19-36. doi:
10.1007/11767589_2.

Genrich H.J., 1987. Predicate/Transition Nets. In Lec-
ture Notes in Computer Science.

Gomez C.; Pascal J.C.; and Esteban P., 2010. From
Embedded Systems Requirements to Physical Repre-
sentation: A Model-based Methodology in Accordance
with the EIA-632 Standard.

IEEE, 1999. Institute of Electrical and FElectronics En-
gineers Standard VHDL Analog and Mixed-Signal Ex-
tensions. , no. IEEE Std 1076.1-1999.

LAAS, 2011. http://homepages.laas.fr/bernard/tina/.

LINA-INRIA A., 2006. ATL:Atlas Transformation Lan-
guage ATL User Manual. OMG specification, , no.
version 0.7.

Lépez-Grao J.P.; Merseguer J.; and Campos J., 2004.
From UML activity diagrams to Stochastic Petri nets:
application to software performance engineering. SIG-
SOFT Softw Eng Notes, 29, 25-36. ISSN 0163-5948.
doi:http://doi.acm.org/10.1145/974043.974048. URL
http://doi.acm.org/10.1145/974043.974048.

OMG, 2010a. OMG Object Constraint Language (OCL),
Superstructure. OMG specification, , no. 2.3, 1-256.

OMG, 2010b. OMG Systems Modeling Language (OMG
SysML). OMG specification, , no. 1.2, 1-246.

OMG, 2010c. OMG Unified Modeling Language(OMG
UML), Superstructure. OMG specification, , no. 2.3,
1-742.

Thierry-Mieg Y. and LHillah o.M., 2008. UML be-
havioral consistency checking using instantiable Petri
nets. ISSE, 4, no. 3, 293-300.

