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The spectrum arising from the (π∗)2 configuration of the chalcogen dimers, namely, the X21, a2, and
b0+ states, is calculated using wave-function theory based methods. Two-component (2c) and four-
component (4c) multireference configuration interaction (MRCI) and Fock-space coupled cluster
(FSCC) methods are used as well as two-step methods spin-orbit complete active space perturba-
tion theory at 2nd order (SO-CASPT2) and spin-orbit difference dedicated configuration interaction
(SO-DDCI). The energy of the X21 state corresponds to the zero-field splitting of the ground state
spin triplet. It is described with high accuracy by the 2- and 4-component methods in comparison
with experiment, whereas the two-step methods give about 80% of the experimental values. The b0+

state is well described by 4c-MRCI, SO-CASPT2, and SO-DDCI, but FSCC fails to describe this
state and an intermediate Hamiltonian FSCC ansatz is required. The results are readily rationalized
by a two-parameter model; �ε, the π∗ spinor splitting by spin-orbit coupling and K , the exchange
integral between the π∗

1 and the π∗
−1 spinors with, respectively, angular momenta 1 and −1. This

model holds for all systems under study with the exception of Po2. © 2011 American Institute of
Physics. [doi:10.1063/1.3636084]

I. INTRODUCTION

Paramagnetic species with total effective spin S ≥ 1 may
show a zero-field splitting (ZFS) of the ground state: it stems
from a splitting of the 2S + 1 MS levels even in the absence of
an external magnetic field. It determines largely the tunneling
barrier and the critical barrier of single molecular magnets,
and a rational understanding of the microscopic factors gov-
erning the sign and the magnitude of this effect is crucial.1

This can be achieved by an accurate description of this ef-
fect by quantum mechanical methods. The calculation of ZFS
from first principles methods is, however, still a challenging
task and calls for benchmark studies of small molecules to
establish the methodology. The ZFS has two contributions:
(i) the direct dipolar spin-spin coupling that dominates in or-
ganic radicals and (ii) the spin-orbit coupling (SOC) con-
tribution that dominates in systems containing heavy atoms.
The spin-spin coupling is a first-order term due to the direct
dipolar interaction between the spin momenta of two elec-
trons. This contribution was analyzed in the early days of
quantum mechanics2, 3 and has a long history of calculation4–8

as well. It is nowadays routinely evaluated from first princi-
ples, either using multiconfigurational wave function theory
(WFT) (Refs. 9–11) or density functional theory (DFT).12, 13

It has been shown that this term can exceed 1 cm−1.14 The

a)Electronic mail: bolvin@irsamc.ups-tlse.fr.

SOC contribution has been analyzed very early by second-
order perturbation theory using crystal-field theory3, 4, 15 and
later using ligand-field theory.16 The semi-empirical angu-
lar orbital model of Bencini is still widely used for transi-
tion metal complexes. Recent approaches are based on DFT
using the formalism proposed by Pederson and Khanna,17

where SOC is taken into account perturbatively. It has been
argued underlined by numerical results that the method can
be improved by changing some of the prefactors18, 19 and
the formalism has been extended to hybrid functionals solv-
ing coupled-perturbed equations. A two-component (2c) non-
collinear DFT approach has been proposed by Reviakine
et al.:20 in this case, the ZFS is deduced from the difference
of energy of two MS components. WFT has been applied by
Michl et al.9, 21 and Ågren et al.10, 22 on organic radicals us-
ing the complete active space self consistent field (CASSCF)
method for the calculation of the spin-spin contribution. In
two-step methods, the SOC is calculated by a state interaction
and the spin-orbit complete active space perturbation theory
at 2nd order (SO-CASPT2) method has successfully been ap-
plied to the calculation of anisotropic parameters.23–26 To the
best of our knowledge, 2c or four-component (4c) relativistic
WFT methods have never been applied to the calculation of
the ZFS in molecules.

The aim of this article is to assess and compare differ-
ent WFT methods for the calculation of ZFS from first prin-
ciples. The chalcogen series has been chosen as benchmark
molecules for the following reasons: (i) these molecules are

0021-9606/2011/135(11)/114106/13/$30.00 © 2011 American Institute of Physics135, 114106-1
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small and permit the use of highly accurate methods; (ii) the
ZFS is very large at the lower end of the series and compari-
son to experimental and previous DFT studies is possible. For
completeness, we have calculated all the low lying states aris-
ing from the (π∗)2 configuration and compared our results to
available experimental data. Two types of methods are con-
sidered in this work: (i) one step-methods which are based
on the Dirac equation and include SOC variationally from the
start, and (ii) two-step methods, where scalar relativistic ef-
fects and electron correlation are included in a first step and
the SOC treated perturbatively in a second step. In the one-
step methods relativistic effects are naturally included, but
the inclusion of correlation effects is more expensive due to
the reduction of symmetry. We have used 2c and 4c general
active space configuration interaction (GASCI), Fock-space
coupled-cluster (FSCC), and intermediate Hamiltonian Fock-
space coupled-cluster (IHFSCC) methods. As two-step meth-
ods, spin orbit difference-dedicated configuration interaction
(SO-DDCI) and SO-CASPT2 methods have been considered
in this work.

The paper is organized as follows: In Sec. II we introduce
a two-parameter model which distills the physics of the ZFS
in the chalcogen series and is later employed to rationalize
our results. In Sec. III a short description of the methods and
computational details is given. In Sec. IV A we report cali-
bration studies of two molecules, Te2 and TeSe, studying the
effect of the choice of basis set, electron correlation spaces,
starting orbitals, and other computational parameters in order
to fix these parameters for the rest of the series. In Sec. IV B
we report and interpret our results for the complete series in
light of our two-parameter model. Final remarks are given in
Sec. V.

II. MODELIZATION OF ZFS

The chalcogen dimers are open-shell molecules with
two electrons in the π∗

(g) orbitals (the subscript g holds for
homonuclear molecules and will be omitted in the following).
The ground spin-orbit free (SOF) state X3�− is split by ZFS
in � = 0+ and � = 1 states (denoted X10+ and X21 in spec-
troscopic literature). The remaining excited states from the
(π∗)2 configuration are a1� and b1�+ which become a2 and
b0+ upon inclusion of SOC.

A. A Hückel model for the construction
of molecular spinors

The aim of this subsection is to build a molecular spinor
diagram from the 12 atomic np valence spinors using a
Hückel model. We will, in particular, show that for the sys-
tems under study we can neglect second-order SOC which
induces mixing of σ and π orbitals, which we will refer to as
the spin-orbit hybridization. We start out in a 2-spinor basis in
which the valence atomic spinors pX(j,mj ) localized on the
center X = A,B are
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where unbarred (barred) spherical harmonics Ylm refer to mul-
tiplication with α(β) spin.

We first consider the homonuclear case. The z axis is
taken as the intermolecular axis. The Hückel Hamiltonian h

is defined through its matrix elements:

one-center integrals,〈
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2 , where ζ is the atomic SOC constant.
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2 ;
two-center integrals,

〈
Rj (rA) YA

10

∣∣h∣∣Rj ′(rB) YB
10

〉 = βσ
j,j ′ ,

〈
Rj (rA) YA

1±1

∣∣h∣∣Rj ′ (rB) YB
1±1

〉 = βπ
j,j ′ , (4)

for (j, j ′) ∈ {
1
2 , 3

2

}
. βσ

j,j ′ is positive and larger than the
absolute value of βπ

j,j ′ which is negative.

Note that the two-center integrals are defined with re-
spect to spatial orbitals such that our definition of the Hückel
Hamiltonian implies complete neglect of two-center spin-
orbit interaction. The overlap between orbitals is neglected.
The reference energy is taken as ε0 = 0. The Hamiltonian ma-
trix in subspace mj = 1

2 is
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and in subspace mj = 3
2 is
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In the following we will assume that the radial parts of p1/2

and p3/2 orbitals are identical, that is, we neglect spin-orbit
polarization and accordingly set R1/2 = R3/2 = R, which im-
plies β

ξ

j,j ′ = βξ for ξ = σ, π . This approximation further-
more allows us to transform from the 2-spinor atomic basis
to a basis of pure spin molecular orbitals:
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.

Matrices (5) and (6) become after corresponding rotation

π∗
1/2 σ1/2 π1/2 σ ∗

1/2

−βπ − 1
2ζ 1√

2
ζ 0 0

1√
2
ζ −βσ 0 0

0 0 βπ − 1
2ζ 1√

2
ζ

0 0 1√
2
ζ βσ

, (8)

π∗
3/2 π3/2

−βπ + 1
2ζ 0

0 βπ + 1
2ζ

. (9)

Matrices (8) and (9) are both diagonal when ζ = 0. The ef-
fect of SOC is at 1st order to split the π

(∗)
1/2-π (∗)

3/2 orbitals by ζ ,

the π
(∗)
1/2 being the lowest. At 2nd order, it mixes bonding σ1/2

(π1/2) with anti-bonding π∗
1/2 (σ ∗

1/2) orbitals, which we refer
to as the spin-orbit hybridization. There is neither π1/2/σ1/2

nor π∗
1/2/σ

∗
1/2 mixing because these orbitals have opposite in-

version symmetry. The σ -π mixing due to SOC can be eval-
uated pertubatively as ζ 2

2(βσ +|βπ |)2 (the 1st order SOC is ne-
glected in the denominator). βσ and βπ can be estimated from

CASSCF calculations. We have calculated them as half the
difference of the canonical energies of the antibonding and the
corresponding bonding orbitals using complete active space
(CAS)(8,6) and all-root state-averaged CAS(8,6) calculations.
The constants ζ are evaluated in the Appendix. In Table I we
report our calculated parameters ζ , βσ , and βπ and the σ − π

hybridization predicted from our Hückel model. In practice,
we find that the SO hybridization is negligible for all systems
except Po2 where the σ orbital contributes 7.8% to the π1/2

orbital.
For heteronuclear molecules, there is no inversion cen-

ter. Let 2δε be the energy gap between SOF np orbitals of A

and B and δζ be the difference between the two atomic SOC
constants. Equations (2) and (3) become〈

pA
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The SOF eigenvectors of matrices (5) and (6) are

π3/2 = sin
θ

2
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11 + cos
θ

2
R(rB)YB

11,

π∗
3/2 = cos

θ
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R(rB)YB

11,

π1/2 = sin
θ

2
R(rA)Ȳ A

11 + cos
θ

2
R(rB)Ȳ B

11,

TABLE I. Hückel parameters βσ and βπ deduced from CASSCF calcula-
tions, SOC constant ζ . σ -π mixing and energy shift δε due to σ /π hybridiza-
tion. All energies are in cm−1.

Hybridization

βσ βπ ζ
|βπ |
βσ

ζ
βσ σ − π (%) δε

S2 44 500 −19 200 250 0.43 0.009 0.002 1
Se2 36 500 −14 500 1200 0.40 0.06 0.05 32
Te2 28 700 −10 600 3138 0.37 0.09 0.2 87
Po2 24 900 −8800 12 369 0.35 0.49 7.8 2545



114106-4 Rota et al. J. Chem. Phys. 135, 114106 (2011)
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with
tan φ = −βπ

δε
,

tan θ = βσ

δε
. (12)

The solutions of the homonuclear case are found again for
φ = θ = π

2 . On the basis of Eqs. (11), matrices (5) and (6)
become

π∗
1/2 σ1/2 π1/2 σ ∗
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− sin θ βπ +cos θ δε− 1
2 ζ− 1
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2 sin θ δζ sin θ βπ − cos θ δε + 1

2ζ − 1
2 cos θ δζ

. (14)

In heteronuclear molecules, the inversion center is removed
and consequently the g,u symmetry. There is hybridization by
σ ∗-π∗ and σ -π couplings and those coupling terms become
predominant in the case of large difference of electronegativ-
ity 2δε between the two atoms. At the limit, θ = φ = 0, one
retrieves the atomic solutions of Eq. (10). In the case of our
most asymmetric molecule, TeO, δε = 18 585 cm−1 as evalu-
ated from ionization energies. The β are taken as mean values
of the two species, one finds φ = 31◦, θ = 19◦, and matrices
(13) and (14) are (in cm−1)

π∗
1/2 σ1/2 π1/2 σ ∗

1/2

22 410 1145 −450 1755
1145 −41 050 240 0
−450 240 −24 105 715
1755 0 715 41 050

, (15)

π∗
3/2 π3/2

24 230 450
450 −23 535

. (16)

These matrices are still dominated by the diagonal energies
determined by the internuclear β parameters. The σ ∗-π∗ mix-
ing of the wave function is 0.9%.

The model can be improved by incorporating SO polar-
ization that will increase the σ -π hybridization. According to
the present model, SO hybridization is small, and to a good
approximation, the “π∗” spinors can be considered to be pure
π spin orbitals. According to Eqs. (11), one can write

π∗
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where φ±1 (φ̄±1) is a pure spin spinor with spin α (β) and
spatial part φ̃±1 with angular momentum along the molecular
axis ML = ±1.

B. A two-parameter model of ZFS

As shown in Subsection II A, for all systems except Po2,
the bonding σ -contributions to the four π∗ spinors can be ne-
glected and the π∗ spinors are thus pure spin spinors. Using
these spinors, within the (π∗)2 configuration, the following
determinants |MJ 〉 can be built:

symmetry � = 0,

|0〉 = |π∗
1/2π

∗
−1/2| = |φ̄1φ−1|, (18)
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∗
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�ε = ε3/2 − ε1/2 is the energy gap between the π∗
3/2 and

π∗
1/2 spinors. Its value is about the same order of mag-

nitude as ζ , the SOC constant in the case of homonu-
clear molecules (see Appendix). J = (φ̃1φ̃1 | φ̃−1φ̃−1) and K
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= (φ̃1φ̃−1|φ̃1φ̃−1) are the Coulomb and exchange two-
electron integrals (Mulliken notations have been used). The
energy of the b2 and a1 states is ε1/2 + ε3/2 + J and ε1/2

+ ε3/2 + J − K , respectively, while the energies of the states
corresponding to the � = 0 states are obtained as the eigen-
values of the following matrix:

|0〉 |0∗〉
2ε1/2 + J −K

−K 2ε3/2 + J

. (24)

Finally, the energies of the four states become, after shifting
the zero point of the energy to ε3/2 + ε1/2 + J ,

Eb0+ =
√

�ε2 + K2, (25)

Ea2 = 0, (26)

EX21 = −K, (27)

EX10+ = −
√

�ε2 + K2. (28)

The ZFS is then calculated as the difference between the en-
ergies of the two lowest states X10+ and X21:

D = −K +
√

�ε2 + K2. (29)

Within the two-step approach, one considers the SOF
functions, |X1

3�−; MS = 0〉 = 1√
2
(|0〉 − |0∗〉) and |b 1�+〉

= 1√
2

(|0〉 + |0∗〉) and on this basis, the Hamiltonian matrix
becomes (keeping the same energy origin)∣∣X3�−; MS = 0

〉 ∣∣b1�+〉
−K �ε

�ε K

. (30)

Without SOC, �ε = 0, and the
∣∣3�−; MS = 0

〉
and

|3�−
(g); MS = ±1〉 states are degenerate, as expected.
To conclude this section, the ZFS within the (π∗)2 con-

figuration is governed by the competitive interplay of the SOC
splitting �ε that favours the closed shell (π∗

1/2)2 state and the
exchange energy K between the π∗

1 and π∗
−1 with current cir-

culating in opposite sense which tends to give the ground state
as a two-determinant state degenerate with the 1(g) state. Both
spin-orbit polarization and spin-orbit hybridization have been
neglected in this model. With spin-orbit polarization, π∗

1/2
and π∗

3/2 do not have the same radial dependence and it adds
some Coulomb contribution to the ZFS expression. Spin-orbit
hybridization mixes a σ contribution into the above “π∗

1/2”
spinor such that it is no longer a pure spin π∗ spinor.

III. COMPUTATIONAL DETAILS

A. One-step SOC methods

One-step SOC calculations were carried out with the
DIRAC10 (Ref. 27) program. Four-component calculations
are based on the Dirac-Coulomb Hamiltonian which com-
prises spin-orbit interaction induced by the relative motion

of electrons with respect to the nuclei as well as spin-same
orbit (SSO) interaction between electrons. Calculations were
also carried out with the molecular mean-field (mmf) Dirac-
Coulomb-Gaunt (DCG) Hamiltonian,28 where the Gaunt term
adds spin-other orbit (SOO) interaction (as well as spin-spin
interaction). As a further approximation we eliminated all
two-electron integrals containing small components from the
4-index transformation, thus providing a significant speedup.
In the notation used in Ref. 28, this constitutes the mmf-
4DCG∗∗ scheme. The latter approximation was carefully
tested for the molecules studied in this paper, and was found
to give negligible errors.

Two-component calculations were based on the one-step
eXact 2-component (X2C) relativistic Hamiltonian of Iliaš
and Saue.29 Two-electron SSO and SOO contributions were
included via atomic mean-field integrals (AMFI).30, 31

1. FSCC and IHFSCC

The FSCC (Ref. 32) method is a multireference coupled
cluster method and is fully size-extensive for both ground
and excited states, including electron correlation to infinite
order. In order to use this method one needs to start from a
closed-shell reference which in our case can be either the
di-anionic or di-cationic system. The FSCC schemes for
the dianion calculations can be written as: XY2−(0h, 0p)
→ XY−(1h, 0p) → XY (2h, 0p). For the heaviest dimers
(Po2 and Te2), one may also start from the neutral system
because in its ground state these molecules are closed-shell
systems. The FSCC schemes for the neutral calculations
can, for example, similarly be written as: XY (0h, 0p)
→ {XY+(1h, 0p), XY−(0h, 1p)} → XY∗ (1h, 1p). From
this it follows that only monoexcitations compared to the
|π1/2π−1/2| determinant are considered and that the X10+

state is described by a single determinant, whereas the b0+

state cannot be described at all. The total correlation space
comprises in either scheme the npσ and npπ spinors and
inner valence ns and (n − 1)d shells in combination with the
npπ∗ spinors in the active model space.

Seizing the suggestions of one of the referees, fur-
ther calculations have been performed within the IHFSCC
ansatz.32–34 In these calculations, carried out in the framework
of the above described dianion approach, two total active
spaces P = Pm + PI have been considered, where Pm and PI

denote the model and intermediate spaces, respectively. In the
scheme denoted [a], Pm = [npπ∗ ] and PI = [npσ , npπ ], while
the electrons of the inner valence ns and (n − 1)d shells are
correlated. In the scheme denoted [b], Pm = [npσ , npπ, npπ∗ ]
and PI = [ns, (n − 1)d]. In both schemes, 32 electrons are
correlated but the larger active space used in scheme [b] per-
mits a better relaxation of the wave function with correlation.
As suggested by our referee, we have considered two sets of
spinors: either the canonical spinors of the XY2− dianion or
the spinors obtained by an average-of-configuration HF cal-
culation obtained with 2 electrons in 4 spinors (π∗

1/2, π∗
3/2).

Triple zeta (TZ), and quadruple zeta (QZ) basis sets
of Dyall35 for the heavier and Dunning-type basis sets for
the lighter elements, respectively, augmented with diffuse
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functions were employed in uncontracted form in all
(IH)FSCC calculations, which typically necessitates the use
of a cutoff in the virtual space. We set the threshold to
about 46 hartree, such that all recommended core-valence and
valence-correlation functions as well as the diffuse functions
were included in the virtual correlation space. Calculations
with the QZ basis sets were necessarily performed at the 4c
level since the AMFI code interfaced to DIRAC10 cannot han-
dle h functions.

2. GASCI

GASCI calculations have been carried out with the rela-
tivistic double group configuration interaction (CI) program
LUCIAREL (Ref. 36) which recently has been extended37

for parallel computer applications implemented in DIRAC10.
The molecular spinors for the CI calculations have been ob-
tained by an average-of-configurations Hartree-Fock calcula-
tion, where the open shells are defined as the two partially
occupied Kramers pairs of π∗ character as for IHFSCC cal-
culations. Using the concept of general active space,38 two
correlation schemes were constructed. In the first (second)
scheme denoted v-GASCI (cv-GASCI), the 12 (32) electrons
of the ns and np (and (n − 1)d) shells are correlated. The or-
bital space is subdivided into a CAS(6,4) comprising 6 elec-
trons in the npπ and npπ∗ spinors and a second orbital space
comprising the npσ , ns (and (n − 1)d) spinors, the latter be-
ing restricted to 0, 1, and 2 holes. From the total reference
space, single and double excitations are allowed. The TZ and
QZ basis sets of Dyall35 were employed in uncontracted form.
In the case of Te2, valence correlating functions were added
to the basis set, and the cutoff for virtual spinors was set to
10 a.u. For all the other molecules treated with GASCI,
valence- and core-correlating functions were added, and the
cutoff of the virtual was set to 20 a.u.

B. Two-step SOC methods

1. SO-DDCI

SO-DDCI calculations were performed with the pro-
gram ORCA 2.7.0.39 The ORCA implementation of DDCI is
based on spin-adapted configuration state functions rather
than individual determinants and is described in Ref. 40.
No symmetry is used in the calculations. SOF calcula-
tions are performed at the CAS + DDCIn level.41 Scalar
relativistic effects are included using either the second-
order Douglas-Kroll-Hess (DKH) Hamiltonian42 or the ze-
roth order regular approximation (ZORA) Hamiltonian.43

The spin orbit mean field operator (SOMF) was used;
it differs from the AMFI by avoiding the one-center
and frozen atomic density approximations as described in
Ref. 18. Basis sets of TZP quality are used;44 calculations
with basis sets of QZ quality were not possible for technical
reasons.

Orbitals were optimized by an average CASSCF calcu-
lation on 20 triplet and 20 singlet states. A CAS(6,4) is used
as in the GASCI calculations specified in Subsection III A.
All occupied and virtual orbitals were taken into account and,

consequently, all the electrons. Different levels of correlation
are taken into account; the CAS + DDCIn space is formed by
the determinants such as nh being the total number of holes
in the occupied and np being the number of particles in the
virtual is nh + np ≤ n with nh ≤ 2 and np ≤ 2. When n = 4,
it is a CAS + SD space. Furthermore, determinants are prese-
lected by a perturbative criterion with a coefficient threshold
Tpre of 10−10 hartree. Test calculations have revealed that this
threshold provides converged results. The SOC is calculated
as the state interaction between the 40 SOF states.

2. SO-CASPT2

SO-CASPT2 calculations were performed with the
MOLCAS7 package.45 The atomic natural orbital (ANO)-RCC
(Refs. 46 and 47) basis functions were used with the standard
TZP and QZP contractions. Scalar relativistic effects were
included using the second-order DKH transformation. Wave
functions have been determined by state-averaged CASSCF
calculations.48 Three active spaces are considered; CAS(2,2)
with 2 electrons in the π∗ orbitals, CAS(6,4) with 6 elec-
trons in the π and π∗ orbitals, and CAS(8,6) with 8 elec-
trons in the orbitals issued from all the atomic np orbitals.
All the SOF roots up till 70 000 cm−1 have been taken into
account. Dynamical correlation is included using the multi
state-CASPT2 method49 using the default values for the IPEA
shift and the frozen orbitals. SOC is calculated as a state in-
teraction between the SOF states using SO-RASSI (Ref. 50)
and AMFI.30, 31 For SO-CASPT2, the state interaction is cal-
culated with the wavefunctions obtained by the MS-CASPT2
procedure.

IV. RESULTS AND DISCUSSIONS

Our series of diatomic molecules, with the exception of
Po2, is well characterized by spectroscopy. Relevant exper-
imental data is listed in Table VI. It should be noted that
many values of the energies of the X21 state differ from the
experimental values given in Refs. 18, 20, which employed
older data taken from Ref. 51. The ZFS varies by three or-
ders of magnitude between O2 and Te2 and different tech-
niques have been used in order to measure it. Rotational spec-
troscopy brings insights into the components of the ground
state X3�−. This splitting is sufficiently small in O2 and
Se2 to be directly measured by electron paramagnetic reso-
nance. Rotational bands are split due to spin-rotation coupling
and this energy splitting is related to the ZFS. The coupling
scheme according to Hund’s classification varies within the
series from case b to case a and c for the heaviest elements52

and the ZFS is deduced from the � doubling of the rota-
tional bands. The b1�+ to the X3�− transitions can be ob-
served by chemiluminescence. These bands are in the near
infrared: while these transitions are electric dipole allowed
for heteronuclear molecules, only the b0+

b → X21g magnetic
dipole transition is allowed for the homonuclear species.53–59

This method has permitted the detection of the a1� → X3�−

transition in SO and S2. Finally, in the emission spectra
using high-resolution Fourier transform laser fluorescence
spectroscopy, the B0+

u → b1�+
g , B0+

u → X1g and B0+
u
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TABLE II. First excited states energies (in cm−1) of Te2 calculated with 2c and 4c methods. For α2, see Sec. IV A 1.

Method Gaunt # corr. e− Options Basis set X21g a 2g b 0+
g α2

Expt. 1975 9600
2c-GASCI yes 12e TZ 1836 5050 9664

32e TZ 1929 5037 9717
4c-GASCI no 32e TZ 1964 5069 9783

32e QZ 2018 5005 9743 0.889
2c-FSCC yes 32e dication TZ 1537 4811 10 570 0.843

yes 32e neutral TZ 1898 6549 ... 1
yes 12e dianion TZ 1685 5663 12 310 0.836
yes 32e dianion TZ 1840 5754 12 351 0.848
no 32e dianion TZ 1874 5785 12 417

4c-FSCC yes 32e dianion TZ 1839 5752 12 348 0.848
yes 32e dianion QZ 1959 5769 12 507 0.854

4c-IHFSCC yes 32e [a]/dianion spinors QZ 2105 5563 11 649 0.869
yes 32e [a]/neutral spinors QZ 2128 5046 10 289 0.894
yes 32e [b]/neutral spinors QZ 2178 5029 9724 0.898

→ X0+
g transitions have been observed for Se2, TeSe, and

Te2.60–62 The a1� state has not been observed for the heavi-
est elements of the series.

Experimental bond lengths taken from Ref. 51 have been
employed throughout this work, except for Po2 for which no
experimental data are available. For this molecule, we per-
formed a geometry optimization at the 2c-coupled-cluster sin-
gle double triple level using the augmented TZ basis including
both SSO and SOO contributions. We obtained an equilibrium
bond distance Re of 2.795 Å and a harmonic frequency ωe of
155.6 cm−1. In Sec. IV A we report calibration studies of the
homonuclear Te2 and the heteronuclear TeSe molecules play-
ing extensively with the computational parameters. Then, in
Sec. IV B we present and discuss our results for the whole
series calculated with the chosen set of parameters.

A. Calibration studies of Te2 and TeSe

1. One-step SOC methods

Results are summarized in Tables II and III. α2 is the
renormalized weight of the |π∗

1/2π
∗
−1/2| determinant in the

X10g state. The calculations performed at the best level of
each theory compare very well to the experimental values.
With both GASCI and FSCC methods, the comparison be-

TABLE III. First excited states energies (in cm−1) of TeSe calculated with
2c and 4c methods. For α2, see Sec. IV A 1.

Method Options Basis set X21 a 2 b 0+ α2

Expt. 1234 8785
GASCI 12e TZ 1131 4686 8933 0.827

32e TZ 1200 4667 9000 0.834
FSCC dianion TZ 1067 5510 11 943 0.784

neutral TZ 1100 6195 ... 1
dianion QZ 1188 5554 12 218 0.794

IHFSCC [a]/dianion spinors QZ 1323 5278 11 225 0.812
[a]/neutral spinors QZ 1152 4372 9166 0.827
[b]/neutral spinors QZ 1239 4305 8523 0.842

tween the results with 12 and 32 correlated electrons shows
that the correlation of the (n − 1)d sub-shell brings an im-
portant contribution: it increases the energy of the first ex-
cited X21 state by more than 100 cm−1. The effect on the
other states is not as large. With GASCI, when the calcula-
tion is performed with only one hole allowed in the (n − 1)d
sub shell, one obtains similar results; it shows that the largest
contribution from this sub-shell is polarization. The use of ba-
sis sets of QZ quality plays an important role as well: it im-
proves the results by about 80 cm−1 compared to TZ basis
sets. The Gaunt interaction contribution is about −20 cm−1.
By adding the contributions due to the Gaunt operator to
the 4c-GASCI/32/QZ result, the final result would be about
1983 cm−1, almost spot on the experimental value.

With FSCC, when the spinors optimized for the dication
are used in a dication scheme, the value of the ZFS is largely
underestimated. This can perhaps be understood by the fact
that at the SCF level, the π∗ orbitals are virtual in the SCF
procedure. Their poor description at the HF level is not im-
proved by the correlation treatment, whereas a dianion FSCC
approach based on dianion SCF orbitals clearly yields a bet-
ter ZFS value. Considering next the results obtained with the
neutral-molecule FSCC scheme, we observe that the energy
of the X21 root is in even closer agreement with experiment,
but in this case, the X10+ state is monodeterminantal and the
b0+ cannot be calculated. The energy of the b0+ state is, on
the other hand, much too high compared to the experimental
value, about 1000 and 3000 cm−1 with spinors of the dication
and dianion, respectively.

IHFSCC results have been added in the revised version
of the manuscript. A comparison of the IHFSCC using the [a]
scheme and dianon MOs with its FSCC counterpart reveals
a sizeable importance of π2 → π∗2 excitations on all excita-
tion energies and on the composition of the wave function in
the model space. The use of non-canonical neutral molecule
SCF orbitals in the dianion IHFSCC[a] framework yields a
significant improvement of the description of the X10+, a2,
and b0+states for both Te2 and TeSe while it slightly enlarges
(reduces) the ZFS in Te2 (TeSe). These findings support the
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TABLE IV. First excited states energies (in cm−1) of Te2 calculated with two-step methods. V is the SOC matrix element between 3�−
g and 1�+

g states.

SOF SOC

Method CAS Rel. Basis set 1�g
1�+

g X21g a 2g b 0+
g V

Expt. 1975 9600
SO-CASSCF CAS(2,2) DKH DZP 5390 10 784 638 6025 12 062 2701

CAS(2,2) DKH TZP 5188 10 740 652 5800 12 046 2726
CAS(2,2) DKH QZP 5118 10 722 651 5769 12 056 2725
CAS(6,4) DKH DZP 2900 5397 1856 4755 9104 3665
CAS(6,4) DKH TZP 2947 5555 1860 4811 9271 3710
CAS(6,4) DKH QZP 2956 5577 1857 4815 9287 3712
CAS(8,6) DKH DZP 2797 5947 1684 4244 9052 3774
CAS(8,6) DKH TZP 2716 6009 1700 4180 9153 3807
CAS(8,6) DKH QZP 2725 5994 1713 4171 9164 3821

SO-CASPT2 CAS(2,2) DKH DZP 3654 7128 908 4836 8944 2701
CAS(2,2) DKH TZP 3124 6484 994 4170 8473 2726
CAS(2,2) DKH QZP 2905 6171 1031 3985 8234 2725
CAS(6,4) DKH DZP 3253 6139 1722 5010 9570 3671
CAS(6,4) DKH TZP 2753 5664 1859 4610 9369 3732
CAS(6,4) DKH QZP 2567 5500 1893 4512 9275 3734
CAS(8,6) DKH DZP 3440 6016 1651 4829 9041 3778
CAS(8,6) DKH TZP 3025 5588 1753 4540 8831 3818
CAS(8,6) DKH QZP 2838 5430 1793 4464 8756 3835

SO-CAS+DDCI1 CAS(6,4) DKH TZP 3194 6145 1717 4911 9580 3674
CAS(6,4) ZORA TZP 3195 6147 1628 4823 9404 3558

SO-CAS+DDCI-2 CAS(6,4) DKH TZP 3679 6575 1645 5324 9865 3677
CAS(6,4) ZORA TZP 3679 6577 1559 5238 9695 3580

SO-CAS+DDCI-3 CAS(6,4) DKH TZP 3356 5820 1794 5151 9409 3696
CAS(6,4) ZORA TZP 3357 5821 1703 5060 9228 3580

SO-CAS+SD CAS(6,4) DKH TZP 3219 5782 1790 5010 9365 3682
CAS(6,4) ZORA TZP 3220 5788 1699 4919 9186 3566

hypothesis by one of the referees that our original dianion
orbital dianion FSCC scheme possibly lacks significant wave
function relaxation effects. Finally, the increase of the size of
the total active space within the IHFSCC[b] scheme further
improves the overall performance of the multi-reference cou-
pled cluster approach, in particular, with respect to the ground
X10+and b0+ state description. The value of α obtained with
this approach is very close to the GASCI one and the excita-
tion energies of b0+state are very close to experimental ones:
it shows that the bad description of this state by FSCC method
is essentially due to the lack of decontraction of the wave
function in the model space. Interestingly, the IHFSCC[b] ap-
proach yields for TeSe a perfect agreement of the ZFS with
experiment, whereas it exhibits for Te2 the largest deviation
from experiment among all tested dianion (IH)FSCC models.

To conclude, the ZFS is close to the experimental value,
20 cm−1 below using FSCC and about 10 cm−1 over using
GASCI, while the IHFSCC[b] approach tends to slightly over-
shoot with regard to the ZFS (Te2), but more importantly this
scheme provides a consistent description of all four electronic
states of present interest. The correlation of only 12 electrons
is insufficient, the inclusion of the correlation involving the
(n − 1)d shell is necessary, at least for polarization, and ba-
sis sets of QZ quality have to be used. GASCI calculations
are expensive and have only been carried out for the SeO,
TeO, TeSe, and Te2. For these molecules, we have correlated
22 electrons in the case of the oxides, and 32 electrons for

the other two using the above-described TZ basis sets and
the X2C + Gaunt operator. The whole series has been de-
scribed by IHFSCC calculations within the dianion scheme,
the large total active space ([b]), correlating 32 electrons, us-
ing average-of-configuration spinors of the neutral molecule
XY, and using the QZ basis sets. Results for the whole series
obtained by FSCC calculations within the dianion scheme us-
ing dianion spinors and QZ basis sets are given as supplemen-
tary material.69

2. Two-step SOC methods

Results are summarized in Tables IV and V. The SOC
matrix element between X3�− and b1�+ states is given: it
is denoted V ; according to the model proposed in Sec. II and
Eq. (30), it is the SOC splitting of the π∗ spinors �ε. This
matrix element plays a key role in the calculation of the ZFS.
The energy of the X21 state calculated at the CASSCF level
with CAS(2,2) is too small while the value shifts to about the
right order of magnitude once the π orbitals are included in
the active space. This is due to the large non-dynamical corre-
lation of the bond as was also deserved in the one-step calcu-
lations: the natural population of the anti-bonding π∗ orbital
at the CASSCF level is about 0.9. Although this correlation is
partly recovered at the CASPT2 level, the minimal CAS(2,2)
is not accurate enough; the energy of b1�+ is too high and the
coupling V is too small. In Te2, using CAS(6,4), only excited
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TABLE V. First excited states energies (in cm−1) of TeSe calculated with two-step methods. For V , see Table IV.

SOF SOC

Method CAS Rel. Basis set 1� 1�+ X21 a2 b0+ V

Expt. 1234 8785
SO-CASSCF CAS(2,2) DKH DZP 5677 11 469 374 6051 12 218 2105

CAS(2,2) DKH TZP 5575 12 325 382 5955 12 325 2137
CAS(2,2) DKH QZP 5562 11 588 385 5949 12 359 2147
CAS(6,4) DKH DZP 3280 6180 968 4226 8207 2699
CAS(6,4) DKH TZP 3338 6333 970 4284 8366 2731
CAS(6,4) DKH QZP 3336 6340 971 4284 8377 2735
CAS(8,6) DKH DZP 2980 6117 1021 3868 8086 2812
CAS(8,6) DKH TZP 2948 6156 1034 3848 8151 2833
CAS(8,6) DKH QZP 2909 6120 1045 3823 8139 2844

SO-CASPT2 CAS(2,2) DKH DZP 3872 7394 557 4430 9516 2105
CAS(2,2) DKH TZP 3175 6691 624 3800 7940 2137
CAS(2,2) DKH QZP 2947 6388 655 3603 7692 2147
CAS(6,4) DKH DZP 3399 6524 994 4380 8550 2758
CAS(6,4) DKH TZP 2967 6089 1064 4021 8258 2786
CAS(6,4) DKH QZP 2846 5918 1079 3914 8114 2755
CAS(8,6) DKH DZP 3567 6501 996 4429 8402 2856
CAS(8,6) DKH TZP 3228 6144 1053 4147 8162 2875
CAS(8,6) DKH QZP 3123 5998 1073 4063 8058 2879

SO-CAS+DDCI1 CAS(6,4) DKH TZP 3751 7146 883 4616 8966 2573
CAS(6,4) ZORA TZP 3752 7147 857 4589 8907 2653

SO-CAS+DDCI-2 CAS(6,4) DKH TZP 4060 7393 884 4931 9188 2719
CAS(6,4) ZORA TZP 4060 7394 859 4906 9135 2674

SO-CAS+DDCI-3 CAS(6,4) DKH TZP 3790 6532 950 4727 8472 2691
CAS(6,4) ZORA TZP 3791 6534 926 4703 8421 2649

SO-CAS+SD CAS(6,4) DKH TZP 3680 6586 931 4598 8494 2676
CAS(6,4) ZORA TZP 3686 6596 906 4577 8447 2633

states with double π2 → π∗2 excitations couple by SOC with
the low lying states of configuration (π∗)2. In TeSe, there is
no inversion center and states with monoexcitations couple as
well. The improvement of the ZFS value from CAS(2,2) to
CAS(6,4) is not due to the presence of more states in the state
interaction step but to the better description of the states aris-
ing from the (π∗)2 configuration; both V and K are affected
and Eq. (29) with V and K obtained with CAS(6,4) leads to
the correct value of the ZFS. In CAS(8,6), which, in addition,
comprises the σ and σ ∗ orbitals and the corresponding elec-
trons, the monoexcited states σ → π∗ and π → σ ∗ are taken
into account and couple by SOC to the two ground X states.
This increase of the active space worsens the results. In this
case, the states of � symmetry play a differential role. The
effect is quite important for Te2 (100 cm−1) while less signif-
icant for TeSe. The effect of the size of the active space illus-
trates the main drawback of the two-step methods: increasing
the quality of the calculation does not systematically improve
the quality of the results. This already has been discussed for
the calculation of g factors.63

In contrast to the one-step methods discussed above, the
use of basis sets of QZ quality improves only slightly the re-
sults with respect to TZ quality. As soon as the π∗ are in-
cluded in the CAS, that is, from CAS(6,4) and beyond, the
effect of correlation is not very important. The CASSCF re-
sults are already reasonably converged; neither the energy
of b1�+ state nor the coupling element V vary significantly

with the additional dynamical correlation. Comparing DDCIn
calculations, results are converged at the DDCI3 level show-
ing that the 2 holes-2 particles contributions do not play any
role. This is generally the case for the calculation of verti-
cal excitations.64 The SO-CASSCF results are similar with
the MOLCAS and ORCA codes using the same quality for
the basis set and the same active space although basis sets
and the SOC mean-field integrals are not identical. However,
CASSDCI results are lower than the SO-CASPT2 ones us-
ing both CAS(6,4). This is disappointing since the SO-DDCIn
approach should be more accurate in the sense that the SOC
state interaction is calculated using the whole DDCI wave-
functions, while in the case of SO-CASPT2, CASSCF wave-
functions are used and the energy matrix is dressed with 2nd
order energies. The results obtained with ZORA differ from
those obtained with DKH due to the SOC step; V is smaller
with the former and consequently the ZFS.

The whole series will be described by the SO-
CAS(8,6)PT2 with QZP basis set and SO-DDCI3 with TZP
basis sets.

B. Description of the whole series

Results obtained with the four methods are summarized
in Table VI and are compared to available experimental val-
ues and previous DFT calculations (see Table VII). Compar-
isons between calculated and experimental values are plotted
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TABLE VI. Calculated vertical excitations energies (in cm−1) in comparison with experimental data. For α2, see Sec. I and for V , see Table IV.

R(Å)a Expt. GASCI IHFSCC SO-DDCI3 SO-CASPT2

S2 X2 1 1.889 23.5b 25 18 19
a 2 5730c 4637 4760 4161
b 0+ 7960c 8612 8156 7758
α2 0.551
V 384 387

SeO X2 1 1.648 166a-182d 147 137 112 138
a 2 ≈5300 5614 5115 5533 4782
b 0+ 9677d 10 261 9166 9586 9211
α2 0.618 0.624
V 1062 1143

SeS X2 1 2.037 205a-207d 192 135 165
a 2 4240 4494 3930
b 0+ 7587d 7950 7810 7513
α2 0.651
V 1044 1129

Se2 X2 1 2.166 510a 574 394 446
a 2 4242 4293 3470
b 0+ 7417d-7936e-7958f 7939 7731 7463
α2 0.744
V 1701 1809

TeO X2 1 1.825 679g 670 468 517 635
a 2 5543 4526 5366 4427
b 0+ 9930h 10 540 9019 9465 9127
α2 0.743 0.744 2400
V 2691

TeS X2 1 2.230 836i 619 590 675
a 2 3993 4594 3975
b 0+ 8446i 8177 8220 7912
α2 0.775
V 2198 2307

TeSe X2 1 2.372 1233j-1241k 1200 1238 950 1073
a 2 7752j 4667 4305 4727 4063
b 0+ 8785k 9000 8523 8472 8058
α2 0.834 0.842
V 2691 2879

Te2 X2 1 2.557 1975a 1929 2178 1794 1793
a 2 5037 5029 5151 4464
b 0+ 9600l 9717 9724 9409 8756
α2 0.889 0.898
V 3696 3825

Po2 X2 1 2.795m 7470 6903
a 2 9665 7619
b 0+ 16 864 16 271
α2 0.974
V 11 370

aFrom Ref. 51.
bFrom Refs. 65 and 66.
cFrom Ref. 54.
dFrom Ref. 55.
eFrom Ref. 56.
fFrom Ref. 60.
gFrom Ref. 67.
hFrom Ref. 57.
iFrom Ref. 57.
jFrom Ref. 59.
kFrom Ref. 58.
lFrom Ref. 61.
mOptimized in this work.
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FIG. 1. Comparison of calculated and experimental values of the energy of
X21 state.

in Figure 1 for the X21 state and Figure 2 for the b0+

state. Concerning the X21 state, GASCI, IHFSCC, SO-DDCI,
and SO-CASPT2 give the experimental values to within 6%,
14%, 25%, and 15%, respectively. SO-DDCI systematically
overestimates the excitation energy of the b1�+ states and
underestimates the coupling V . Turning to the b0+ state,
these methods are able to reproduce the experimental val-
ues to within 4%, 5%, 3%, and 5%, respectively. There
are three experimental studies of the b0+

g state of Se2: the
first one using chemiluminescence gives 7417 cm−1 for the
b0+

g → X10+
g transition.55 The next study, using high res-

olution Fourier transform fluorescence spectroscopy, gives
7958 cm−1 for the same transition.60 New chemilumines-
cence experiments reassign the 7417 cm−1 to the b 0+

g

→ X2 1g transition which is magnetic dipole allowed, giving
7960 cm−1 for the b0+

g → X10+
g transition.56 However, the

calculated values for the b0+ state by the three different meth-
ods give smaller values for Se2 than for SeS. The experimen-
tal value of 7417 cm−1 for this state is more in line with our
calculations.

The FSCC results are given as supplementary material.
We did not manage to correctly describe molecules contain-
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FIG. 2. Comparison of calculated and experimental values of the energy of
b0+ state. Se2 (white circles) and Se′

2 (black circles) correspond to experi-
mental values of Refs. 55 and 60, respectively.

TABLE VII. ZFS calculated with DFT (in cm−1).

CP-B3LYPa 2c-BP98b

S2 10 20
SeO 157 70
SeS 84 186
Se2 224 498
TeO 368
TeS 402
TeSe 638
Te2 1115

aFrom Ref. 20.
bFrom Ref. 18.

ing an oxygen atom given the range of quality for the other
molecules: the results are strongly dependent on the starting
orbitals and provide another indication of the importance of
explicitly taking into account π → π∗ interactions which has
already been discussed in Sec. IV A. While the ZFS is very
good for the molecules without oxygen, the energy of the b0+

state is largely overestimated in the whole series.
The �ε and K parameters of Sec. II have been extracted

by a mean-square fit using the energies of the four states aris-
ing from the (π∗)2 configuration and are given in Table VIII
(corresponding FSCC values are given in the supplementary
material). The energy gap between π∗

3/2 and π∗
1/2 , correspond-

ing to �ε, can be directly obtained from one-step SOC cal-
culations: The orbital energy difference ε3/2 − ε1/2 has been
extracted from average-of-configuration Hartree-Fock calcu-
lations with one open-shell containing 2 electrons in 4 spinors
(π∗

1/2, π∗
3/2). It is systematically larger than V by some hun-

dreds of cm−1: This difference is rather constant and can
therefore not be due to σ/π hybridization by SOC. K de-
creases in the series since the orbitals become more and more
diffuse. The values of K extracted from IHFSCC and SO-
CASPT2 calculations are quite similar, whereas the GASCI
ones are slightly larger and the FSCC values vary signif-
icantly. The parameters obtained with the FSCC and IHF-
SCC methods are very different since the effective matrices
corresponding to matrix (24) are very different. As seen in
Figure 3, �ε varies almost linearly with K except for

1000 2000 3000 4000 5000

K (cm-1)

0

2000

4000

6000

8000

Δε
 (c

m
-1

)

Te
2

TeSe

S
2

Se
2

Po
2

TeS

SeOSeS

TeO

FIG. 3. �ε vs K from SO-CASPT2 calculations.
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TABLE VIII. Parameters �ε and K (in cm−1).

GASCI IHFSCC SO-CASPT2

�εa Ka ε3/2 − ε1/2
b �εa Ka ε3/2 − ε1/2

b �εa Ka V ζ c

S2 466 4347 501 386 3916 387 386
SeO 1230 5080 1546 1125 4552 1556 1123 4503 1143
SeS 1228 3836 1437 1106 3626 1129
Se2 2071 3450 2197 1755 3233 1809 1803
TeO 2585 4654 3241 2001 4044 3239 2315 3901 2400
TeS 2122 3330 2891 2211 3284 2307
TeSe 2987 3379 3349 3006 3032 3347 2740 2962 2879
Te2 3893 2965 4145 4072 2717 4105 3542 2602 3825 3915
Po2 8594 1208 6524 7952 1129 11 370 12 369

aOptimized by a mean-square fit using the energies of the four states arising from the (π∗)2 configuration.
bDifference between the canonical energies of π∗

1/2 and π∗
3/2 at the HF level.

cFrom Appendix.

oxygen-containing molecules that have larger values of K

than the rest of the series. The energy of the a2 state lies at√
�ε2 + K2 above the ground state. Its energy first dimin-

ishes due to the lowering of K and then increases due to the
increase of �ε.

As expected, �ε increases along the series. In general,
we find that the �ε and V extracted from SO-CASPT2 are
quite similar, in accordance with the model of Sec. II. Excep-
tions are Te2, presumably due to the effect of the � states,
and Po2, for which the model breaks down due to second-
order SOC. For the homonuclear species we observe that V

is, in general, close to the atomic SOC constant ζ . The model
proposed in Sec. II allows us to rationalize the evolution of all
the states arising from the π∗2 configuration.

V. CONCLUSIONS

The four low-lying states of the chalcogen diatomics have
been studied using wave function based methods. The first ex-
cited state, arising from the splitting of the ground state due to
SOC is described with high accuracy by the GASCI method,
while two-step methods and the IHFSCC method, on the other
hand, have an accuracy of about 80% for these states. The
third excited state b0+ is very well described by the four con-
sidered methods. The lower spectrum of these species can be
rationalized by two parameters: the SOC splitting of the π∗

spinors ultimately leads to a stabilized closed-shell ground
state, but is opposed by the exchange energy between the
same spinors.

TABLE IX. Experimental energies of the atomic states issued from the
np4 configuration, extracted parameters, and mean square error (in cm−1).
(See Ref. 68.)

3P1
3P0

1D2
1S0 ζ ED ES mse 2

3
3P0

O 158 226 15 867 33 792 153 15 790 33 713 1 151
S 396 573 9239 22 181 386 9029 22 181 .4 382
Se 1989 2534 9576 22 444 1803 8328 21 036 4 1689
Te 4751 4707 10 559 23 199 3915 7036 18 591 21 3138
Po 16 831 7514 21 679 42 718 12 369 6605 16 608 9 5009
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APPENDIX: ATOMIC SPIN-ORBIT CONSTANTS

The atomic SOC constant ζ can be evaluated from atomic
spectra. The p4 configuration gives rise to 3P , 1D, and 1S

states. The splitting of the SOF ground state 3P in 3P2, 2P1,
and 3P0 states by first order SOC gives a first estimate of ζ .
But, with increasing values of ζ , the Landé rule is not ful-
filled due to 2nd order SOC with the 1D2 and 1S1 states, and
for atoms heavier than Te, there even is an inversion of 2P1

and 3P0 states. A three-parameters extraction is possible us-
ing a mean square approach; in supplement to ζ , the energies
ED and ES of the SOF 1D2 and 1S1 states are introduced. Re-
sults are summarized in Table IX. The obtained value of ζ is
compared to the value obtained from the 1st order splitting of
3P . The discrepancy becomes large for Se and onwards.
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