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aInstitute of Mechanics and Advanced Materials, Cardiff School of Engineering, Cardiff University,
Queen’s Buildings, The Parade, CARDIFF CF24 3AA, Wales, United Kingdom.

bCentro de Investigación de Tecnologia de Vehı́culos (CITV), Universitad Politècnica de València, E-46022-Valencia, Spain.

Abstract

In this paper, we present an upper bounding technique for reduced order modelling applied to homogenisation. The
error estimate relies on the construction of a reduced model for the stress field. Upon ensuring that the reduced stress
satisfies the equilibrium in the finite element sense, we can indeed obtain the desired bounding property. We show that
the sharpness of the estimate can be seamlessly controlled by changing the parameters of the reduced order model for the
stress field.
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1. Introduction

Reduced order modelling is becoming an increasingly popular tool to solve parametrised, stochastic or time-dependent
problems (see for instance [1, 2, 3, 4, 5, 6, 7]). However, the field of error estimation for such techniques is not mature
yet. In the applied mathematics community, reliable error estimates and error bounding techniques have been developed
for the Reduced Basis Method [8], and the Galerkin-POD approach [9], but such methods require a strong background in
numerical analysis in order to be understood and implemented. In the engineering community, some empirical methods
based on hierarchical enrichment [10] or the Dual-Weighted Residual method [11] have been proposed for the Galerkin-
POD, but the resulting estimates do not have bounding properties.

In this contribution, we reconcile these two visions of the problem by proposing an “engineer-friendly” error bounding
technique for projection-based reduced order modelling, which we specialise to linear elasticity. The estimate relies on
the constitutive relation error, which only requires to manipulate the concepts of displacement and stress admissibilities.
The paper is strongly inspired by the work proposed in [12], which applies a similar concept, albeit in a different setting
(estimation of the average error introduced by a Proper Generalised Decomposition over the considered parameter space).

Specifically, we apply the Galerkin-POD as a reduced order modelling technique for a parametric problem of elasticity
formulated in its primal form (“displacement approach”) and discretised by the finite element method. The bounding
technique proposes to compute a recovered stress field that is admissible in the finite element sense. To obtain such a field,
a snapshot-POD is performed for the finite element stress field, which permits to ensure that the numerical complexity
of evaluating the reduced order model and associated error estimate does not depend on the size of the reference finite
element problem.

The paper is organised as follows. In the first section, we formulate the parametrised problem of elasticity and
introduce the reduced order model. In the second section, we introduce the basics of the proposed error estimate, and give
some details about its computation. We conclude the paper with some remarks and potential extensions of the work.

2. Reduced order modelling for Parametric problem of elasticity

We formulate the parametrised problem of an elastic body occupying a bounded domain Ω in a physical space of
dimension d ∈ {2, 3}. We consider that the input quantities characterising the problem of elasticity are functions of a finite
set of nµ scalar variables that are represented by a vector µ ∈ P ⊂ Rnµ . Let M be an arbitrary point of domain Ω and

let x = x1 e1 + ... + xd ed + ... be its coordinates in the reference frame R =
(
O
R
, e1, e2, e3

)
. We look for a sufficiently

regular displacement field u(µ) ∈ U(Ω) = H1(Ω) that is continuous and satisfies the Dirichlet boundary conditions
u = w(µ) on the part ∂Ωw of the domain boundary ∂Ω. Any displacement field that satisfies the conditions of regularity
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and the Dirichlet boundary conditions is said to be kinematically admissible and belongs to space UAd(Ω; µ) ⊂ U(Ω).
We introduce the Cauchy stress tensor field σ(µ) which belongs to a space S(Ω) of sufficiently regular tensor fields. A
density of tractions t(µ) is applied to the structure on the part ∂Ωt = ∂Ω\∂Ωw of the domain. A density of forces denoted
by b(µ) is applied over Ω. D’Alembert’s principle of virtual work expresses the static admissibility, or equilibrium, of an
arbitrary stress field that belongs to SAd(Ω) ⊂ S(Ω) as follows:

∀µ ∈ P, ∀ u? ∈ UAd,0(Ω), −

∫
Ω

σ(µ) : ε(u?) dΩ +

∫
Ω

b(µ) · u? dΩ +

∫
∂Ωt

t(µ) · u? dΓ = 0 , (1)

where the vector space of virtual displacementsUAd,0(Ω) associated toUAd(Ω; µ) is such that
UAd,0(Ω) = {u ∈ U(Ω) sufficiently regular | u|∂Ωw = 0}. In the previous equation, ε(u) = 1

2 (Ou + OuT ) is the displacement

gradient. The solution of the problem of elasticity is an admissible pair (u, σ) ∈ UAd(Ω; µ) × SAd(Ω) that verifies the

isotropic linear constitutive law σ(µ) = D˜ (µ) : ε
(
u(µ)

)
where D˜ (µ) is the fourth-order Hooke’s elasticity tensor. Let us

define C˜ (µ) def
= D˜ (µ)−1.

By substitution of the constitutive law into the principle of virtual work, the parametrised problem of elasticity can be
recast in the primal variational form, for any µ ∈ P,

Find u0(µ) ∈ UAd,0(Ω) such that ∀ u? ∈ UAd,0(Ω), a(u0(µ), u?; µ) = l(u?; µ) − a(up(µ), u?; µ) , (2)

where up(µ) def
= u(µ) − u0(µ) is a particular field ofUAd(Ω; µ), and the symmetric bilinear form and the linear form associ-

ated with the problem of elasticity are respectively defined, for any fields v and u? ofU(Ω), by

a(v, u?; µ) =

∫
Ω

ε(u?) : D˜ (µ) : ε(v) dΩ , l(u?; µ) =

∫
Ω

b(µ) · u? dΓ +

∫
∂Ωt

t(µ) · u? dΓ . (3)

2.1. Discretisation

We approximate the solutions to the parametrised elasticity problem, for any µ ∈ P, by making use of a classical finite
element subspaceUh,0(Ω) ofUAd,0(Ω). The approximation uh,0(µ) ∈ Uh,0(Ω) of u0(µ) is found by solving:

Find uh,0(µ) ∈ Uh,0(Ω) such that ∀ u? ∈ Uh,0(Ω), a(uh,0(µ), u?; µ) = l(u?; µ) − a(up(µ), u?; µ) , (4)

In the following, we assume that the finite element space is sufficiently fine so that any measure of the finite element
error eh(µ) def

= uh(µ) − u(µ) is small enough for all µ ∈ P, with uh(µ) def
= uh,0(µ) + up(µ).

2.2. Projection-based reduced order modelling

Let us introduce a basis (φ
i
)i∈J1,nφK ∈

(
Uh,0(Ω)

)nφ
of a representative subspaceUr,0(Ω) ⊂ Uh,0(Ω) in which uh,0(µ) will

be approximated for any µ ∈ P. This basis is, for instance, obtained by making use of the Snapshot POD. For any µ ∈ P,
we look for an approximation ur(µ) of uh(µ) to the parametric problem of elasticity in the form

uh(µ) ≈ ur(µ) def
= ur,0(µ) + uh,p(µ) where ur,0(µ) =

nφ∑
i=1

φ
i
αi(µ) , (5)

where, for simplicity, uh,p(µ) = up(µ). The interpolation weights (αi)i∈J1,nφK can be optimally computed by using a Galerkin
formulation of the elasticity problem in the reduced space. The reduced order model corresponding to an arbitrary param-
eter value µ ∈ P reads

Find ur,0(µ) ∈ Ur,0(Ω) such that ∀ u? ∈ Ur,0(Ω), a(ur,0(µ), u?; µ) = l(u?; µ) − a(uh,p(µ), u?; µ) . (6)

This small system of equations can be solved inexpensively, for any parameter value µ of interest.
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3. A posteriori error estimation

3.1. Definition of the interpolation error bound
For any µ ∈ P, the reduced order model delivers a kinematically admissible displacement field ur(µ) ∈ UAd(Ω; µ).

However, the stress field σr(µ) def
= D˜ (µ) : ε

(
ur(µ)

)
does not satisfy the equilibrium in the finite element sense a priori.

The idea behind the proposed error estimate law, which relies on the constitutive relation error [13] is to post-process
an equilibrated stress field σ̂(µ) ∈ S(Ω) in the finite element sense, called a “recovered” stress field. This admissibility
condition reads:

∀ u? ∈ Uh,0(Ω),
∫

Ω

σ̂(µ) : ε(u?) dΩ =

∫
Ω

b(µ) · u? dΩ +

∫
∂Ωt

t(µ) · u? dΓ . (7)

Theorem. The distance νup between the stress field σr(µ) = D˜ (µ) ε(ur(µ)) obtained by direct evaluation of the reduced

order model and the recovered stress field σ̂(µ) can be used to bound the error of reduced order modelling er def
= ur(µ)−uh(µ)

as follows:
νup(µ) = ‖σr(µ) − σ̂(µ)‖C˜ (µ) ≥ ‖er(µ)‖D˜ (µ) , (8)

where ‖u?‖2D˜ (µ) =

(∫
Ω
ε(u?) : D˜ (µ) : ε(u?) dΩ

) 1
2

is the energy semi-norm associated to an arbitrary displacement field

u? ∈ U(Ω), and ‖σ?‖2C˜ (µ) =

(∫
Ω
σ? : C˜ (µ) : σ? dΩ

) 1
2

is the energy norm associated to an arbitrary stress field σ? ∈ S(Ω).

Proof. Let us write the trivial identity

‖σr(µ) − σ̂(µ)‖2C˜ (µ) =

∥∥∥∥∥(σr(µ) − σh(µ)
)

+

(
σh(µ) − σ̂(µ)

)∥∥∥∥∥2

C˜ (µ)
, (9)

where σh(µ) def
= D˜ (µ) : ε

(
uh(µ)

)
is the reference finite element stress field. Then, by using the constitutive relation for

σh(µ) and σr(µ) and the definition of the energy norms for displacement and stress fields respectively, equation (9) can be
expanded as follows:

‖σr(µ) − σ̂(µ)‖2C˜ (µ) = ‖ur(µ) − uh(µ)‖2D˜ (µ) + ‖σh(µ) − σ̂(µ)‖2C˜ (µ) + 2
∫

Ω

(
σh(µ) − σ̂(µ)

)
:
(
ε
(
ur(µ)

)
− ε

(
uh(µ)

))
dΩ . (10)

Recall that both the finite element stress field and the recovered stress field are equilibrated in the finite element sense, and
that the finite element displacement field and the displacement field obtained by solving the reduced order model belong
to Uh,0(Ω) + {up(µ)}. We therefore obtain that the last term in (10) vanishes. The proof is concluded by noticing that
‖σh(µ) − σ̂(µ)‖2C˜ (µ) is positive. �

3.2. Construction of the recovered stress field: principle
In order to build the recovered stress field, we propose to build a POD-based reduced order model for the finite element

stress. We formally split the finite element stress into two parts, as follows

∀ µ ∈ P, σh(µ) = σh,0(µ) + σh,p(µ) . (11)

The first part σh,0(µ) satisfies the homogeneous equilibrium conditions associated with the finite element problem:

∀ u? ∈ Uh,0(Ω),
∫

Ω

σh,0(µ) : ε(u?) dΩ = 0 . (12)

The second term of splitting (11) is a particular stress field that satisfies the equilibrium in the finite element sense:

∀ u? ∈ Uh,0(Ω),
∫

Ω

σ̂h,p(µ) : ε(u?) dΩ =

∫
Ω

b(µ) · u? dΩ +

∫
∂Ωt

t(µ) · u? dΓ . (13)

The first part σh,p(µ) will be explicitly defined for any µ ∈ P, while the complementary part σh,0(µ) will be approxi-
mated using the snapshot POD:

σh(µ) ≈ σ̂(µ) def
= σr,0(µ) + σh,p(µ) , (14)

where the approximate stress σr,0(µ) is such that it satisfies the homogeneous equilibrium equations

∀ u? ∈ Uh,0(Ω),
∫

Ω

σr,0(µ) : ε(u?) dΩ = 0 . (15)
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3.3. Riesz representation of the parametric static load
Let us build the particular equilibrated (in the FE sense) stress field σh,p(µ). We assume an affine form of the Neumann

boundary conditions and body forces, which reads

∀ µ ∈ P, ∀ x ∈ Ω, t(x, µ) =

nt∑
i=1

t̄i(x) γt
i(µ) ,

∀ µ ∈ P, ∀ x ∈ Ω, b(x, µ) =

nt+nb∑
i=nt+1

b̄i(x) γb
i (µ) .

(16)

We precompute a set of global finite element vectors (ψ̃i)i∈J1, nt+nbK ∈
(
Uh,0(Ω)

)nt+nb
corresponding to the summand of the

affine form identities. These pre-computations consists in solving the finite element problems:

∀ i ∈ J1, ntK, ∀ u? ∈ Uh,0(Ω), a(ψ̃i, u?; µ0) =

∫
∂Ωt

t̄i · u
? dΓ ,

∀ i ∈ Jnt + 1, nt + nbK, ∀ u? ∈ Uh,0(Ω), a(ψ̃i, u?; µ0) =

∫
Ω

b̄i · u
? dΩ .

(17)

The choice of the bilinear form a( . , . ; µ0) is arbitrary.

When evaluating the reduced model for a given parameter µ ∈ P, we can simply estimate the field ũh,p(µ) ∈ Uh(Ω) by
using the formula

ũh,p(µ) =

nt∑
i=1

ψ̃i γ
t
i(µ) +

nt+nb∑
i=nt+1

ψ̃i γ
b
i (µ) . (18)

It is then easy to verify that the stress field σh,p(µ) def
= D˜ (µ0) : ε (̃uh,p(µ)) is statically admissible in the finite element sense.

Therefore, the quantity ‖σh,p(µ) − σr(µ)‖C˜ (µ) is an upper bound for the error measure ‖ur(µ) − uh(µ)‖D˜ (µ), which will be

sharpened in the next paragraph by computing the complement σr,0(µ).

3.4. Snapshot POD for the finite element stress
We apply a snapshot POD technique, and precompute the snapshot set {σr(µ) | µ ∈ P̃}, where P̃ is a discrete subset of

P. By substracting the corresponding values of the previously computed admissible stress component σh,p(µ), we obtain a

set of stress fields {σh,0(µ) | µ ∈ P̃} satisfying the homogeneous equilibrium equations. Now, we compute a singular value

decomposition of this set. We look for a set of ñφ basis tensor fields (φ̃
i
)i∈J1,ñφK ∈ (S(Ω))ñφ that are orthogonal with respect

to the inner product < . , . >C˜ (µ0)=
∫

Ω
. : C˜ (µ0) : . dΩ of space S(Ω), and that are solutions to the following optimisation

problem:
(φ̃

i
)i∈J1,ñφK = argmin

(φ̃
?

i
)i∈J1,ñφK∈(S(Ω))ñφ , <φ̃

?

i
, φ̃

?

j
>C˜(µ0)=δi j ∀ (i, j)∈J1,ñφK2

J̃
(
(φ?

i
)i∈J1,ñφK

)
,

where J̃
(
(φ̃

?

i
)i∈J1,ñφK

)
=

∑
µ∈P̃

∥∥∥∥∥∥∥∥σh,0(µ) −
ñφ∑
i=1

〈
σh,0(µ), φ̃

?

i

〉
C˜ (µ0)

φ̃
?

i

∥∥∥∥∥∥∥∥
C˜ (µ0)

.
(19)

The solution to optimisation problem (19) can be obtained by solving the eigenvalue problem

H̃
s
γ̃ = λ̃ γ̃ where H̃s

i j =

〈
σh,0(µs

i ), σ
h,0(µs

j)
〉

C˜ (µ0)
∀ (i, j) ∈ J1, ñφK2 . (20)

After arranging the eigenvalues (̃λi)i∈J1,nsK of H̃
s

in descending order and denoting the corresponding eigenvectors by
(̃γ

i
)i∈J1,nsK, the solution to the Snapshot POD optimisation problem (19) is given by

∀ i ∈ J1, ñφK, φ̃
i
=

ns∑
j=1

σh,0(µs
j)
γ̃i, j√
λ̃i

. (21)

The recovered stress field can now be expressed over the whole parameter domain by the following surrogate model:

∀ µ ∈ P, σ̂(µ) = σr,0(µ) + σh,p(µ) =

ñφ∑
i=1

φ̃
i
α̃i(µ) + σh,p(µ) (22)

where (α̃i)i∈J1,ñφK ∈ Rñφ are interpolation coefficients, and are the only unknowns left to be computed when evaluating the
reduced model. The next paragraph aims at explaining how to compute these coefficients in an optimal manner.
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Figure 1: Error estimatation of a POD-based reduced order model in the homogenisation of a particulate composite material.

3.5. Optimimum upper bound

When evaluating the reduced order model for a particular µ ∈ P, the recovered stress σ̂(µ) can be computed optimally
in the sense of the maximisation of the efficiency of the error estimate νup(µ). In other words, we look for a recovered
stress field that is compatible with the surrogate model and is solution to the optimisation problem:

σ̂(µ) = argmin
σ?(µ)∈Sr(Ω;µ)

‖σ?(µ) − σh(µ)‖C˜ (µ) , (23)

where the space of admissibility for the reduced stress field is defined by Sr(Ω; µ) = {σ? ∈ S(Ω) |σ? =
∑ñφ

i=1 φ̃
i
α?i +

σh,p(µ), ∀ (α?i )i∈J1,ñφK ∈ Rñφ }. This problem of optimisation can be recast in the variational form

Find σ̂(µ) ∈ Sr(Ω; µ) such that ∀σ? ∈ Sr,0(Ω),
∫

Ω

σ̂(µ) : C˜ (µ) : σ? dΩ =

∫
Ω

ε
(
uh(µ)

)
: σ? dΩ , (24)

where the constitutive relation has been used to obtain the right-hand side of the equation, and the space Sr,0(Ω) is defined
by Sr,0(Ω) = {σ? ∈ S(Ω) |σ? =

∑ñφ
i=1 φ̃

i
α?i , ∀ (α?i )i∈J1,ñφK ∈ Rñφ }.

Now, by writing that uh(µ) = uh,0(µ) + uh,p(µ) and taking into account (15), we obtain the following variational form
for the determination of the recovered stress field:

∀σ? ∈ Sr,0(Ω),
∫

Ω

σr,0(µ) : C˜ (µ) : σ? dΩ =

∫
Ω

ε
(
uh,p(µ)

)
: σ? dΩ . (25)

4. Application to computational homogenisation

Figure 1 shows numerical results corresponding to the application of the previously described methodology in compu-
tational homogenisation. The structure consists of a matrix phase and circular inclusions. The ratio between the young’s
modulus of the inclusions and the Young’s modulus of the matrix, called elastic contrast, is the only scalar parameter of
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the problem, and ranges from 0.1 to 10. Parameter-independent Dirichlet boundary conditions are applied on the boundary
of the domain, as illustrated in the figure.

The snapshot for both the reduced model and the error estimate is computed by sampling the parameter domain at
6 points spaced regularly. The singular value decomposition for the displacement field is truncated at order 3, while the
singular value decomposition for the stress field is first truncated at order 3 (curve labelled ”Upper bound”) then at order
4 (curve labelled ”Improved upper bound”). The curves show the two corresponding error estimates, the exact error,
which is of course not available in practice, and a lower bound obtained by enriching the reduced model (the SVD for the
displacements is truncated at order 4), as a function of the elastic contrast.

When the distance between the upper and lower bound is too large, both bounds can be sharpened by increasing the
order of truncation of the corresponding SVDs. If this is insufficient, an enrichment of the snapshot is necessary.

5. Conclusions

We have presented a simple methodology to bound the error introduced when using projection-based reduced or-
der models to solve parametrised elliptic problems. The upper bound can be sharpened by allowing to allocate more
computational power to the computation of the bound.
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