

Carbon dioxide, argon, nitrogen and methane clathrate hydrates: Thermodynamic modelling, investigation of their stability in Martian atmospheric conditions and variability of methane trapping

Jean-Michel Herri, Eric Chassefière

▶ To cite this version:

Jean-Michel Herri, Eric Chassefière. Carbon dioxide, argon, nitrogen and methane clathrate hydrates: Thermodynamic modelling, investigation of their stability in Martian atmospheric conditions and variability of methane trapping. Planetary and Space Science, 2012, 73 (1), pp.376-386. 10.1016/j.pss.2012.07.028. hal-00760636

HAL Id: hal-00760636 https://hal.science/hal-00760636

Submitted on 4 Dec 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Carbon dioxide, argon, nitrogen and methane clathrate hydrates:
2	thermodynamic modelling, investigation of their stability in Martian
3	atmospheric conditions and variability of methane trapping
4	
5	Jean-Michel Herri ¹ , Eric Chassefière ^{2,3}
6	
7	¹ École Nationale Supérieure des Mines de Saint-Étienne, SPIN-EMSE, CNRS : FRE3312,
8	Laboratoire des Procédés en Milieux Granulaires, 158 Cours Fauriel, F-42023 Saint-Étienne
9	² Université Paris-Sud, Laboratoire IDES, UMR8148, Bât. 504, Orsay, F-91405, France;
10	³ CNRS, Orsay, F-91405, France.
11	
12	Submitted to Planetary and Space Sciences, December ?? 2011
13	
14	
15	Corresponding author
16	Jean-Michel Herri
17	Centre SPIN, École Nationale Supérieure des Mines de Saint-Étienne, 158 cours Fauriel, 42023
18	Saint-Étienne, France
19	Phone: +33 (0)4 77 42 02 92
20	Fax : +33 (0)4 77 42 96 94
21	E-mail: <u>herri@emse.fr</u>
22	
23	

1 Abstract

2

3 This paper deals with the stability of clahtrate hydrates at low temperature and low pressure in the 4 conditions prevailing in the atmosphere and at the surface of Mars. We fit the classical van der 5 Waals model to compare deviation from experimental results published in the literature. It appears 6 to be acceptable and allows to simulating a Martian gas, CO₂ dominated (95.3%) plus nitrogen 7 (2.7%) and argon (2%). The hydrate is a CO₂-based hydrate which is unstable during Mars' 8 summer and stable during Mars' winter. The proportion of methane in the hydrate is estimated and 9 is found to be from one tenth to one third of the composition of the gas phase. The proportion 10 depends on the crystallographic structure which is assumed to be formed. In fact, both the structure I and II appear to be stable in the conditions of Mars' winter. The consequences of these results on 11 our understanding of the atmospheric cycle of Martian methane are drawn and analyzed. We 12 propose upper limits on (i) the seasonal variation of methane due to a hypothesized alternate 13 14 formation of CO₂/N₂/Ar/CH₄ hydrates on the seasonal polar caps, and (ii) on the lifetime of 15 atmospheric methane with respect to an hypothesized continuous trapping under hydrate form on the south polar cap. We show that these mechanisms have only small effects, and cannot play a 16 17 significant role in the dynamics of methane in present Mars'atmosphere. Hypothesized clathrate hydrates trapped in the permanent south polar cap could include methane in relative proportions 18 19 between 0.1 and 0.4 times the average global atmospheric ratio. Searching for the spectral signatures of clathrate hydrates on the caps and, if detectable, of inhomogeneities of the CH₄ 20 mixing ratio in possible local atmospheric plumes forming during the sublimation of polar hydrate 21 pockets in spectroscopic data from existing (Mars Express, MRO) and future (TGO-Exomars) 22 23 missions is an interesting challenge of Mars science and astrobiology.

24

1 Keywords: Mars, clathrate hydrate, nitrogen, carbon dioxide, argon, methane, equilibrium

Introduction

Methane has been detected in Mars' atmosphere from both Earth and orbital probes (Mars Express, Mars Global Surveyor) at an average ~10-20 ppb level (Krasnopolsky et al., 2004; Formisano et al., 2004; Mumma et al., 2009; Fonti and Marzo, 2010; Geminale et al., 2011). One of the most striking characteristics of the observed CH₄ is its high temporal and spatial variability, implying a lifetime of 200 days (Lefèvre and Forget, 2009), much shorter than the currently admitted value of 300 yr based on existing photochemical models (see e. g. Krasnopolsky, 2006). The nature of CH₄ sink is unknown. Spacecraft data (MGS, Mars-Express) which now span ~6 Martian years (MY24-MY29) and Earth-based measurements show a globally consistent and reproducible seasonal behavior of the CH₄ mixing ratio, with definitely less CH₄ in the atmosphere during northern winter. More generally, existing observations show that CH₄ is spatially and temporally highly variable (Fonti and Marzo, 2010; Geminale et al., 2011). The origin or methane is not known. It could have been produced by hydrothermal processes in the crust (Oze and Sharma, 2005; Lyons et al., 2005), or possibly biogenically (Atreya et al., 2006), then stored in the cryosphere under the form of hydrates for long periods of time before being released to the atmosphere (Chassefière and Leblanc, 2011, Chastain and Chevrier, 2007). The space and time variability of atmospheric CH₄ is still poorly understood. One possible explanation could be the erosion within the atmosphere of suspended metastable CH₄ clathrate hydrate particles by condensation/sublimation processes (Chassefière, 2009). Adsorption in the regolith, although significant, has been shown to play a minor role in the CH₄ seasonal variability (Meslin et al., 2011). Also none of the mechanisms presented has kinetics fast enough to explain the very rapid variations of methane in the atmosphere.

The goal of the present paper is to investigate the possible contribution of an hypothesized alternate $CO_2/N_2/Ar/CH_4$ clathrate hydrate formation cycle, resulting from the alternate condensation of CO_2 and H_2O on seasonal hemispheric polar caps, on the seasonal cycle of CH_4 . A model of the (Pressure-Temperature) equilibrium of clathrate hydrates in the atmosphere of Mars is presented. Following the contributions of Chastain and Chevrier (2007) and Thomas et al. (2009), we applied a model based on the approach of van der Waals and Platteeuw (1959). Chastain and Chevrier (2007) and Thomas et al. (2009) have simulated the equilibrium conditions of hydrate stability in Martian conditions by extrapolating the model to very low temperature. Our contribution is to validate this extrapolation by comparing the model to experimental data at low temperature. We point the necessity to modify the internal parameters, and especially the Kihara parameters. Our contribution strengthens the conclusion of Chastain and Chevrier (2007) about the stability of gas hydrate on Mars. We conclude also that gases are fractionated from atmosphere to hydrate with fractionation factors similar to the ones proposed by Thomas et al. (2009).

For pure gases and in winter Martian conditions (temperature estimated in the range from 140-160 K), the model reveals to fit experimental data in the range 140-273 K with a mean deviation of 4-20%, depending on the gas. Then, modelling is applied to a gas which composition is that of the atmosphere of Mars. The hydrate appears to be a CO₂-based hydrate which is stable at temperature below 150 K (Structure II being assumed to form) or 148.8 K (Stucture I being assumed to form). We have used a pressure at the surface of Mars of 0.6 kPa. The pressure of Mars' atmosphere seasonally varies in the range from 0.6 to 0.9 kPa. By using a slightly different value of 0.9 kPa (Thomas et al, 2009), the hydrate is stable at temperature below 154 K (Structure I) or 156.8 K (Structure II). It results that the Martian gas hydrate is strongly suspected to be stable during the winter season. The proportion of methane in the hydrate is estimated and compared to the

estimation performed by Thomas et al. (2009). The consequences of the results on the seasonal and long-term variability of atmospheric CH₄ are presented and discussed.

Modelling

Introduction

The van der Waals and Platteeuw (1959) model describes the equilibrium of hydrate phases by means of a convergence between a statistical thermodynamics approach implementing Kihara parameters and a classical approach implementing reference state parameters. It is the most common model used because of its physical relevance and easy implementation in codes. In a recent publication (Herri et al, 2011), we have optimized the Kihara parameters versus the different sets of reference state parameters which are published in the literature (Dharmawardhana et al., 1980; John et al., 1985; Handa and Tse, 1986). The Kihara parameters have been optimized to fit equilibrium data concerning methane, carbon dioxide and nitrogen, taken as pure gases or in mixtures. Equilibrium data were not only classical (Pressure, Temperature) equilibrium curves but also the envelope curves for gases mixtures consisting in (Pressure, Temperature, gas composition, hydrate composition) equilibrium data. We observed the Handa and Tse (1986) reference state parameters to be the best to fit our data. In the following work, we use these reference state parameters to simulate hydrate equilibrium in Mars condition. In Herri et al (2011), the Kihara parameters have been optimized in (Pressure, Temperature) conditions for which we can get a maximum of experimental data from literature, obtained mainly at Earth's ambient temperature 273-293 K and pressures in the range from 1 to some tens MPa. The ambient Martian conditions are very different. Pressure varies over Mars surface from 0.3 to 1 kPa depending on location and season. In winter period, on the southern permanent CO_2 ice polar cap, the temperature can be as low as 148 K (temperature of CO_2 condensation at 0.6 kPa) and even reach 143 K due to the high altitude of the top of the south polar cap. During the summer period, at low latitude and sunny time, temperature can reach 273 K exceptionally.

So, the possibility to extrapolate the van der Waals and Platteeuw models from Earth's conditions to Martian conditions needs to be carefully examined. In this paper, we validate the model against available data of pure gas hydrates in Martian conditions. We observe that the Kihara parameters need to be optimized again and are different from the ones optimized at positive temperature (Herri et al, 2011).

The composition of the Martian atmosphere is CO₂ dominated (95.3%) plus nitrogen (2.7%) and Argon (2%) and traces of other compounds: O₂ (1200±100 ppm), CO (700±200 ppm), H₂O (<1000 ppm with an average at 200 ppm), H₂ (20 ppm), O₃ (<0.2 ppm) and CH₄ (<50ppb with an average at 15 ppb) (Owen et al., 1977; Mumma et al., 2009).

Hydrate structure

Three different structures have been identified : SI, SII and SH. They differ by their crystallographic structure in which water is organized in a three dimensional network. It liberates internal cavities of different polyhedral cavities called 5^{12} , $5^{12}6^2$, $5^{12}6^4$, $4^35^66^3$ and $5^{12}6^8$ (e^f describes a polyhedron: e is the number of edges of the face, and f is the number of faces with e edge). In Table 1 are described more precisely the SI and SII structures, the only ones that can be formed due to the nature of the Martian gases.

Table 1

Modelling

In the case of hydrates, in thermodynamic equilibrium, the equality of chemical potentials of water in the ice (or liquid) phase and in the hydrate phase can be written by introducing a reference state which is a hypothetical phase β that corresponds to a hydrate with empty cavities.

$$\Delta \mu_{\rm w}^{\rm H-\beta} = \Delta \mu_{\rm w}^{\rm L-\beta} \tag{1}$$

Where $\Delta \mu_{w}^{H-\beta}$ and $\Delta \mu_{w}^{L-\beta}$ are the differences of the chemical potentials between water in hydrate or liquid phase and water in the reference phase, respectively.

Modelling of $\Delta \mu_{w}^{H-\beta}$

 $\Delta \mu_{w}^{H-\beta}$ is then determined from statistical thermodynamics whereas $\Delta \mu_{w}^{L-\beta}$ is determined by means of relations from classical thermodynamics.

$$\Delta \mu_{\rm w}^{\rm H-\beta} = RT \sum_{i} \nu_i \ln \left(1 - \sum_{j} \theta_j^i \right)$$
⁽²⁾

In Eq. (2) v_i is the number of cavities of type *i* per mole of water and θ_j^i is the occupancy factor $(\theta_j^i \in [0,1])$ of the cavities of type *i* by the gas molecule *j*. This last parameter is essential to define the thermodynamic equilibrium and to determine the hydrate properties.

The occupancy factor is described by a model based on ideas considering the analogy between the gas adsorption in the 3-dimensional hydrate structure and the 2-dimensional Langmuir adsorption. It can be expressed as a function of the fugacity f_j of the gas j as:

$$\Delta \mu_{\rm w}^{\rm H-\beta} = RT \sum_{i} \nu_i \ln \left(1 - \sum_{j} C_j^i f_j(T, P) \right),\tag{3}$$

where C_j^i is the Langmuir constant of component *j* in the cavity *i* that describes the interaction potential between the encaged guest molecule and the surrounding water molecules evaluated by assuming a spherically symmetrical cage that can be described by a spherical symmetrical potential:

$$C_j^i = \frac{4\pi}{kT} \int_0^\infty \exp\left(-\frac{w(r)}{kT}\right) r^2 dr, \qquad (4)$$

where w is the interaction potential between the cavity and the gas molecule according to the distance r between the guest molecule and the water molecules over the structure. The interaction potential can be determined by different models such as e.g. the van der Waals and Platteeuw model (1959), the Parrish and Prausnitz model (1972) or the so-called Kihara model. The latter, being the most precise (McKoy, 1963), can be expressed as:

$$w(r) = 2z\varepsilon \left[\frac{\sigma^{12}}{\overline{R} r} \left(\delta^{10} + \frac{a}{\overline{R}} \delta^{11}\right) - \frac{\sigma^{6}}{\overline{R} r} \left(\delta^{4} + \frac{a}{\overline{R}} \delta^{5}\right)\right]$$
(5)

$$\delta^{N} = \frac{1}{N} \left[\left(1 - r/\overline{R} - a/\overline{R} \right)^{-N} - \left(1 + r/\overline{R} - a/\overline{R} \right)^{-N} \right]$$
(6)

The gas parameters ε , σ and a are the so-called Kihara parameters and can be calculated from experimental data by fitting the model equations to corresponding hydrate equilibrium

experimental data. In this description, the interaction potential is only dependent on the properties of the gases (via the Kihara parameters), and on the geometrical properties of the cavities (through their coordination number *z* and their average mean radius \overline{R} , see Table 2).

Table 2

Modelling of $\Delta \mu_w^{\varphi-\beta}$

The reference conditions are the temperature $T_0 = 273.15$ K and the pressure $P_0 = 0$. The difference of the chemical potential of water between the reference phase (Ice in our case, but it could be liquid phase or vapour phase) and the (hypothetical) empty hydrate phase β , $\Delta \mu_w^{\rho-\beta}$, can be written as follows:

$$\Delta \mu_{w}^{L-\beta} = T \frac{\Delta \mu_{w}^{L-\beta} \Big|_{T^{0},P^{0}}}{T^{0}} - T \int_{T^{0}}^{T} \frac{\Delta h_{w}^{L-\beta} \Big|_{P^{0}}}{T^{2}} dT + \int_{P^{0}}^{P} \Delta v_{w}^{L-\beta} \Big|_{T} dP - RT \ln a_{w}^{L} \Big|_{T,P}$$
(7)

The activity of water in the ice is 1. If liquid water is present, a_w^L is given as the product of the mole fraction of water in the liquid phase, x_w , and the activity coefficient of water in that phase, γ_w^L , hence $a_w^L = x_w \gamma_w^L$. In a good approximation, the aqueous phase can be regarded as ideal and the activity coefficient therefore be set to a fixed value of 1, resulting in $a_w^L \equiv x_w$.

A refinement of the model is given by Sloan (1998, 2008) that takes into account the temperature dependence of the difference of molar enthalpy $\Delta h_{w}^{L-\beta}\Big|_{p^{0}}$ (J/mol H₂O) using the well-known classical thermodynamic relationship

$$\Delta h_{w}^{L-\beta}\Big|_{p^{0}} = \Delta h_{w}^{L-\beta}\Big|_{T^{0}, p^{0}} + \int_{T^{0}}^{T} \Delta c_{p, w}^{L-\beta}\Big|_{p^{0}} dT$$
(8)

assuming a linear dependence of the difference of molar heat capacity $\Delta c_{p,w}^{L-\beta}\Big|_{p^0}$ (J/K/mol H₂O) on temperature according to :

$$\Delta c_{p,w}^{L-\beta}\Big|_{p^0} = \Delta c_{p,w}^{L-\beta}\Big|_{T^0,p^0} + b_{p,w}^{L-\beta} \left(T - T^0\right)$$
(9)

The values of the reference state parameters are given in Table 3.

Table 3

Equilibrium

Equilibrium is achieved as equality of $\Delta \mu_{w}^{H-\beta} = \Delta \mu_{w}^{L-\beta}$ is achieved.

A minimization algorithm has been implemented in GasHyDyn Sofware (Java language), to determine (P, T, gas composition, hydrate composition) equilibrium from computing by using Kihara parameters and reference state parameters, or inversely, to determine parameters from (Pressure, Temperature, gas composition, hydrate composition) experimental data base (more details may be found in Herri et al, 2011).

The procedure is the following. First, according to Mehta and Sloan (1996), the value of *a* is fixed by using the correlation of Tee et al (1996). Then, for a given set of Kihara parameters ε_j and σ_j , and a given temperature (resp. a given pressure), the calculated equilibrium pressure P_{calc} (resp. the calculated equilibrium temperature T_{calc}) corresponds to the value such as $\Delta \mu_w^{H-\beta} = \Delta \mu_w^{L-\beta}$. Then the calculated pressure (resp. the calculated temperature) is compared to the experimental one P_{exp} (resp. T_{exp}) and a deviation function can be defined as:

$$F(\varepsilon_j, \sigma_j) = \sum_{l=1}^{N} \left| \frac{P_{calc}}{P_{exp}} - 1 \right| \to \min (\text{resp. } F(\varepsilon_j, \sigma_j) = \sum_{l=1}^{N} \left| \frac{T_{calc}}{T_{exp}} - 1 \right| \to \min)$$
(10)

In Eq. (10), the index l assigns the specific data point and the summation has to be performed over all N data of the set.

Kihara parameters given in Table 2 are optimized to minimize the error and fit the experimental results at low temperature implemented in the data base which is detailed below.

Data Base

The data base of GasHyDyn Sofware has been completed with the data at low temperature compiled in the review of Fray et al. (2010) concerning methane and CO_2 clathrate below the ice points. Very few data can be found for N₂ clathrate below the point, and in a very limited range of temperature of 261.7-270K (Mohammadi and Richon, 2010). For argon, few data has been found but in a wide range of temperature of 90 to 291 K in Holder et al., 1980 (original data from Saito and Kobayashi, 1965, and original data from Barrer and Edge, 1967). Data have been completed with the first two points of the history from de Forcrand (1923).

Comment on the geometric description of the cavity

Theoretically, in equation 4, the interaction potential w(r) needs to be integrated from 0 to infinity. It means that the gas molecule interacts with the overall structure, not only with its first hydration shell (i.e. the water molecules of the cavity inside which the gas molecule is encapsulated), but also interacts with other molecules localized away from it. In fact, John and Holder (1982) have showed that 2^{nd} and 3^{rd} hydration shells contribute significantly to the Langmuir constant with a resulting change of this Langmuir constant by 1-2 orders of magnitudes (Sparks and Tester, J.W., 1992). Also, even with a rigorous integration of the interaction potential over all the hydration shells, the John and Holder model (1982) can give rigorous results only for spherical molecules (such has Kr, Ar, CH₄...). John et al (1985) have introduced a correction factor to take into account the asymmetry of the encapsulated molecules. All these refinement methods tend to give a physical signification to the interaction potential w(r) and Kihara parameters but results in a time consuming calculation. For this reason, we have retained an integration of the cell potential over the first hydration shell.

Comment on the reference properties

Special attention has to be paid when assigning value for $\Delta \mu_{w}^{L-\beta}\Big|_{T^{0},P^{0}}$ in Eq. (8) and $\Delta h_{w}^{L-\beta}\Big|_{T^{0},P^{0}}$ in Eq. (7) since the corresponding data found in the literature vary strongly from one author to the other, mainly due to the difficulties arising when determining these quantities experimentally. The values can be found in the open literature as cited by Sloan (1998, 2007). However, in a previous work (Herri et al, 2010), we tested the different values in simulating the equilibrium conditions and composition of phases for gas hydrates formed from gas mixtures (CO₂-N₂), (CO₂-CH₄) and (CH₄-N₂) and liquid water. We observed the values of Handa and Tse (1986) to be the best ones.

Conclusion of comments

In the end, the Kihara parameters remain adjustable parameters. As it has been claimed by John et al (1987) and reported by Mehta and Sloan (1996): the wrong kihara parameters, wrong cell potential, wrong Langmuir constants (and we can add from Herri et al (2010) the wrong reference parameters) could still lead to the right dissociation pressures.

Simulation of Martian Hydrates

The equilibrium is at first order governed by the dominating gas (CO₂, 95.7%) and secondly affected by second order constituents (N₂, 2.7%, and Ar, 2%). It is not affected by very low concentration components such as O₂ (1200±100 ppm), CO (700±200 ppm), H₂O (<1000 ppm, with an average of 200 ppm), H₂ (20 ppm), O₃ (<0.2 ppm) and CH₄ (<50 ppb with an average of 15 ppb). Methane gas is a trace, but we will model it as precisely as possible because we want to understand its repartition between atmosphere and solid hydrate.

Pure gas equilibrium in atmospheric Martian conditions

Pure CO₂ hydrates

Figure 1 plots the deviation between the experimental data and simulation depending on the values of ε and σ . We compare 32 experimental results from Yasuda and Ohmura (2008), Adisasmito et al. (1991), Falabella (1975), Miller and Smythe (1970) which cover a range of temperature from 151.52K to 282.9K and a pressure range from 0.535kPa to 4370kPa. In Figure 1, we can see that

the ε and σ values which minimize the deviation are located in a deep valley. The figure 2 plots the ε and σ values in the valley, and the corresponding deviation. The minimum deviation corresponds to values of ε and σ reported in Table 2.

Figure 1

Figure 2

The Figure 3 shows the deviation from the model implemented with the values of ε and σ reported in Table 2. The experimental data cover a wide range of temperature, from 273 K down to 150 K, i.e. down to Martian winter temperature. The model simulates both the structure I and II. At high temperature, the stable structure is sI. For example, at a temperature of 271K, the respective equilibrium pressure of sI and sII structures are 1.08 MPa and 1.38 MPa. But at lower temperature, especially in the range of temperature pertaining to Mars' winter period, there is an inversion of the stability. At a pressure of 0.6 kPa, the respective equilibrium temperatures of the structures sI and sII are 150K and 148.8K. Experimentally, the observed equilibrium temperature is 155 K (interpolated value from experimental data). It is the reason why Martian gas hydrate are suspected to be stable (Miller and Smythe, 1970)

Figure 3

Pure CH₄ hydrate

We optimised the kihara parameters from a set of 27 experimental results from Fray et al (2010), Yasuda and Ohmura (2008), Adisasmito et al. (1991) which cover a range of temperature from 145.75 to 286.4K and a pressure range from 2.4kPa to 10570kPa. The figure 4 plots the ε and σ values in the valley, and the corresponding deviation. The minimum deviation corresponds to values of ε and σ reported in Table 2.

Figure 4

Figure 5 shows the deviation from the model implemented with the values of ε and σ reported in Table 2. The experimental data covers a very wide range of temperature, from 273 K down to 80 K. The model fits with data for temperature below the ice point and deviates as the temperature decreases. In the temperature range close to 148 K, the model fits in between the data from Fray et al (2010) with an average deviation of 9.8%, and the data of Falabella and Vanpee (1974) with an average deviation of 19.75%. It must be said that the data sets from the two authors are significantly different, and that our model is in better agreement with the experimental corpus of Fray et al (2010).

Figure 5

Pure Ar hydrate

Figure 4 plots experimental data, and simulation from GasHyDyn software with Kihara parameters from Table 2. Data are the results of Saito and Kobayashi (1965) which have be found in Holder et al (1980), data from Barrer et Edge (1967), de Forcrand (1923) and Mohammadi and Richon (2011). The data from von Stackelberg (1949) are not reported because they appear not to be correct (Mohammadi and Richon, 2011). They cover a range of temperature from 283 K down to 90K. The deviation of the model is very good down to 138.7K with an average deviation of 2.59%. At temperature of 133.2K, deviation remains acceptable (10.9%) but diverges completely down to 115.9 K. In Martian conditions (down to 140-150 K), model and data are therefore in very good agreement.

Figure 6

Pure N₂ hydrate

In the literature, we can find one set of experimental data from Mohammadi and Richon (2010) and Kuhs et al (2000) at high temperature just under the ice formation conditions, and down to 250 K only. We added points at positive temperature to look at the model on the upper range of temperatures (from Jhaveri and Robinson, 1965). Model and data are plotted in Figure 3. The optimisation of the kihara parameters has been simplified because there is no data enough to distinguish the best value of ε and σ . For example, with CO₂ or CH₄, it can be observed from figure 2 or figure 4 that the deviation from model and experiments presents a clear minimum. We can retain the value of ε and at this minimum. But, for Nitrogen, there is no clear minimum. So, we retained the value of σ from Herri and Kwaterski (2011) and we optimized only ε . The result is given in Table 2.

The model fits pretty well with data of Jhaveri and Robinson (1965), above 0°C, and Mohammadi and Richon (2000), below 0°C. The change of the slope of the curve at the temperature of 0°C corresponds to a change of the phases in equilibrium. At positive temperature, the equilibrium is in between gas, liquid water and hydrate. Below 0°C, the equilibrium is in between Ice, Hydrate and Gas. At lower temperature, the model deviates very rapidly from the data of Kuhs et al (2000). So, it is difficult to predict how the model will simulate the nitrogen equilibrium in Martian conditions around 148 K. We need additional experimental data in Martian conditions to cross validate model and experiments. But we will see later that nitrogen only very slightly contributes to the stability of Martian hydrates in reason of a very poor integration in the hydrate structure. So, the precision of the model towards pure nitrogen hydrates is second order.

Figure 7

Intermediate conclusion

From a comparison between data and model in the temperature range around 148 K (corresponding to Martian conditions during winter above CO_2 ice caps), it can be seen that the model fits very well for argon and is acceptable for CO_2 (mean deviation of 12% in the range [151.5-171.5K] for sI structure, and 7% for sII structure) from the data of Miller and Smythe (1970)).

For pure methane hydrate, the model is between the data of Fray et al. (2010) and data Falabella and Vanpee (1974). From data of Fray et al. (2010), the model differs with a mean deviation of 25.7% at 145.8 K. The model differs from the data of Falabella and Vanpee (1974) with a deviation of 26.5% at 148.8 K and 22.5% at 159.9 K.

For N_2 , we didn't find low temperature data enough to validate the Kihara parameters at low temperature.

1

2

Composite Martian hydrates

- 3
- We perform a simulation by assuming the presence of the dominating gases, only CO₂, N₂ and Ar.
 Table 4 shows the results of the simulation in the range 139-161 K. It reports equilibrium pressure
 of Structure I and Structure II hydrates. We can see that Structure II is the most stable structure to

7	be formed. The table 4 reports also the equilibrium pressure of pure CO ₂ hydrate. We can see that
8	the mixture on Mars with 2.7% of N_2 and 2% of Ar gives a less stable hydrate which shifts the
9	equilibrium temperature, in a negligible manner. Secondly, if we look at the composition of the "with a slight s
10	hydrate phase, we can observe that the hydrate is practically one hundred percent CO ₂ hydrate
11	with traces of nitrogen and argon. So, the chemical influence of secondary gases such as nitrogen
12	and argon is negligible because they do not participate in the structure. The shift in the equilibrium
13	temperature of Martian gas hydrates (CO ₂ dominated but with 5 % of other gases) is principally
14	due to a decrease of the partial pressure of CO ₂ .
15	
16	Table 4
17	
18	Also, we can state that the equilibrium cannot be affected by the tertiary gases, at very low
19	concentrations, such as O_2 (1200±100 ppm), CO (700±200 ppm), H ₂ O (<1000 ppm, with an
20	average at 200 ppm), H_2 (20 ppm), O_3 (<0.2 ppm) and CH_4 (<50 ppb, with an average at 15 ppb).
21	
22	For an atmospheric pressure on Mars of 0.6 kPa, the temperature at which the hydrates are stable is
23	149.3K (if SI structure is assumed) or 152.8K (if sII structure is assumed). Because winter surface
24	temperature on the south polar cap can reach 148K, the formation of CO ₂ dominated clathrate is
25	possible during winter. Because summer temperature is much above 160 K in most regions of
26	Mars, most of these hydrates dissociate. Nevertheless, stable hydrates can survive during several
27	seasonal cycles at the top of or inside the south CO ₂ ice polar cap, and transient hydrates can form
28	on seasonal polar caps during winter. So, we can postulate cycles of formation and dissociation of
29	hydrates associated with the winter/summer cycles, and the formation of stable hydrates over long
30	time scales on the south permanent polar cap.

Commentaire [ÉC1]: Veux-tu dire "with a slight shift of the equilibrium

31

32 The case of methane

33

34 Methane is a very low concentration gas (15 ppb) and it has no influence on the equilibrium 35 (Pressure, Temperature) curve.

36

Table 5 reports the fractionation (or abundance fraction following the definition of Thomas et al,
2009) between gas and hydrate, that is the ratio between the molar fraction of a component in the
hydrate and the molar ratio of the same component in the gas.

40

At low Martian temperatures, methane composition in the hydrate structure SI is in the range from 12% to 18% (Table 5). Thomas et al (2009) reported a coefficient of 16.6% in condition similar to ours (that means a very low methane concentration). The models give very similar results. If we assume the structure II to be formed, the methane composition is higher, in the range from 26% to 35% (Table 6).

46

But, whatever the value of the abundance fraction (25-33% for structure II, 12-18% for structure 47 I), we can observe that methane is rather well encapsulated in the structure compared to nitrogen 48 or argon. As we said before, both gases do not effectively participate into the structure, first 49 because of their low concentration in the gas, but also due to their low affinity with the hydrate 50 structure. So, nitrogen and argon are not affected by the formation and dissociation of hydrate 51 52 between winter and summer. In comparison, methane, which is in a very low concentration, does not disturb the hydrate equilibrium, but methane is affected by the formation of hydrate because it 53 can participate in the formation. Its abundance ratio (table 5) is one order of magnitude higher than 54

for nitrogen and argon. So, theoretically, methane in the gas phase is affected by the cycles of formation and dissociation between winter and summer, and its concentration at the poles could be different.

- 58
- 59 60

Table 5

- 61 Discussion
- 62

From a thermodynamical point of view, CO₂/N₂/Ar/CH₄ clathrate hydrates can form on both 63 64 seasonal polar caps and on the residual south polar cap. At seasonal scale, an upper limit of the amount of CH₄ alternately trapped under hydrate form in the seasonal caps can be estimated by 65 assuming that all condensing/ sublimating water results in the formation of hydrate. Knowing that 66 only a fraction of condensing water is involved in hydrate formation, and that existing laboratory 67 experiments suggest that the kinetics of CO₂ hydrate formation is slow at low Martian 68 temperature, with time scales potentially several orders of magnitude above 1 Martian year 69 (Falenty et al., 2011), doing so results in a significant overestimation of the part of methane 70 seasonal variation due to hydrate formation/dissociation. The amount of water exchanged between 71 seasonal polar caps is of the order of 10¹² kg per Martian year (Richardson and Wilson, 2002). 72 Using an abundance ratio of CH₄ of 0.3 (average value between the abundance ratio in structure II 73 -Table 5- and the abundance ratio in structure I -Table 6-), a CH₄ concentration in hydrate three 74 times smaller than in the atmosphere, and assuming that all this water in involved in hydrate 75 formation, the corresponding exchanged mass of methane is $\approx 7 \ 10^2$ kg. If clathrates are formed 76 77 during the massive condensation flow of CO₂ on the south polar cap during southern winter, the mixing ratio of non-condensible gases (CH₄, N₂, Ar) is enhanced by a factor 4-5 at high southern 78

14 latitudes due to the frictional effect of the CO_2 flow (Lefèvre and Forget, 2009). The previous 15 value could be therefore underestimated by a similar factor, with a very maximum of the CH₄ 16 exchanged mass of 3 tons. The amount of methane in Mars atmosphere is of the order of 100 tons 17 (Geminale et al., 2011). It results that at most 1 %, or a few percents (up to 3 %), of the 17 atmospheric content of methane can be seasonally exchanged between the two hemispheres. The 17 true value is probably much smaller and the effect of the seasonally alternate formation of 18 clathrates on the CH₄ atmospheric content is therefore small, if not negligible.

86

It is thought that there is a net annual transfer of water from the north permanent polar cap to the 87 south permanent polar cap, due to very low temperatures on the south cap, which acts as a trap for 88 water vapor. The net water transfer rate is estimated to be $\sim 10^{11}$ kg/yr, that is a thin water ice layer 89 of 1 mm thickness per year (Richardson and Wilson, 2002). The residence time of water in the 90 91 south permanent polar cap is large, typically several million years (time since the last obliquity 92 transition, see e. g. Levrard et al., 2004), and this water interacting with CO₂ ice can possibly result in the formation of stable $CO_2/N_2/Ar/CH_4$ clathrate hydrates, progressively buried within the 93 caps. Because of the enhancement of the CH₄ mixing ratio by a factor 4-5 during southern winter 94 above the south polar cap, the effective abundance ratio of CH₄ with respect to the globally 95 averaged atmospheric CH₄ mixing ratio in these hydrates could be slightly larger than 1 (1.2-1.5), 96 with a CH₄/CO₂ ratio in the hydrate similar to, or slightly larger than, the atmospheric ratio. 97 Assuming that all condensing water is involved in hydrate formation, the time required to remove 98 99 the total atmospheric content would is the order of \sim 300 years. This value of the CH₄ lifetime with respect to hydrate formation on the south permanent polar cap is probably much underestimated, 100 because only a fraction of the incorporated water ice is involved in hydrate formation, and 101 therefore of the same order as the photochemical lifetime of methane (300 yr, Krasnopolsky, 102

2006). Because the true lifetime of methane is much shorter (a few months or years, Lefèvre and
Forget, 2009), the net removal of methane by hydrate formation on the south polar cap may be
considered as a minor sink.

106

107 Conclusions

108

In this work, we have proposed a set of Kihara parameters to model pure gas clathrate hydrate equilibrium in Martian winter conditions. We validated the model against experimental model and obtained a good correlation, within a few percent in the best case (Ar) and 20-30% in the worst case, for CO_2 and CH_4 . The model for N_2 has not been validated because of the lack of data at very low temperature. Also, we observed an inversion of the stability of the CO_2 hydrate which can be probably a structure II in Martian winter conditions, and not a structure I as it is commonly observed at higher temperature.

116

Then, we did a simulation of the Martian gas hydrate equilibrium and we found that the hydrate 117 can be considered as stable during the winter, and unstable during the summer. Even if methane 118 119 does not participate actively in the hydrate equilibrium because of its low relative abundance, its concentration in the gas phase may be affected by the hydrate formation. The reason is that the 120 enclathratation of methane in the structure is not negligible (relative abundance of methane in the 121 hydrate is one third to one fourth of its value in the atmosphere). So, the concentration of methane 122 in the atmosphere may be a priori affected by the cycle of formation and dissociation of hydrates 123 between winter and summer if such cycles are existing. 124

125

126 We estimated an upper limit on the possible seasonal variation of methane generated by a 127 hypothetical alternate formation of hydrates on the seasonal polar caps. This upper limit is a few 128 percent of the atmospheric content of methane and can be considered as negligible. We similarly 129 proposed an upper limit for the lifetime of methane with respect to trapping on the south 130 permanent polar cap through hydrate formation, and found a minimum lifetime of 300 years, of the 131 same order as the photochemical lifetime and much longer than the presumably short lifetime of six months derived from dynamical modelling. These mechanisms are therefore not expected to 132 133 play a significant role in the present dynamics of Martian methane, although they could have been significant at early times, when the atmosphere contained more methane. 134

135

Interestingly, hypothesized clathrate hydrates trapped in the permanent south polar cap could include methane in relative proportions between 0.3 (equilibrium value) and 1.5 (due to frictional enhancement by CO_2 condensing flow) times the average global atmospheric ratio. Searching for the spectral signatures of clathrate hydrates on the caps and, if detectable, of inhomogeneities of the CH_4 mixing ratio in possible local atmospheric plumes forming during the sublimation of polar hydrate pockets in spectroscopic data from existing (Mars Express, MRO) and future (TGO-Exomars) missions is clearly an interesting challenge of Mars science and astrobiology.

143

144 Acknowledgments: We acknowledge support from CNRS EPOV interdisciplinary program

References

- Adamson, A.W., Jones, B.R., 1971. Physical Absorption of Vapor on Ice. IV. Carbon dioxide. J. Colloid Interface Sci. 37, 831-835
- Atreya, S. K., Mahaffy, R. P., Wong, A., 2006. Methane and related trace species on Mars: Origin, loss, implications for life, and habitability, Planet. Space Sci. 55, 358-369.
- Barrer, R.M., and Edge, A.V.J., 1967. Gas Hydrates Containing Argon, Krypton and Xenon: Kinetics and Energetics of Formation and Equilibria. Proc. R. Soc. London, Ser. A., A. 300, 1-24
- Chassefière, E., 2009. Metastable methane clathrate particles as a source of methane to the Martian atmosphere, Icarus 204, 137-144.
- Chassefière E., Leblanc, F. 2011. Methane release and the carbon cycle on Mars, Planet. Space Sci. 59, 207-217.
- Chastain, B. K., Chevrier, V., 2007. Methane clathrate hydrates as a potential source for Martian atmospheric methane, Planet. Space Sci. 55, 1246–1256.
- de Forcard, M.R., 1923. Sur les hydrates d'Argon et de Krypton. Comptes rendus de l'académie des Sciences, 355-358
- Deaton, W.M., Frost, E.M., 1946. Gas Hydrates and Their Relation to operation of Natural-Gas Pipelines. U.S., Bur. Mines Monogr. 8, 1-101
- Delsemme A.H., Wenger A., 1970. Physical-Chemical penomena in comets -I.Experimental study of snows in a ccometary environment. Planet. Space Sci. 18, 709-715
- Falabella, B.J., 1975. A study of Natural Gas Hydrates, Ph.D. Thesis, University of Massachussetts, Ann Arbor, MA
- Falabella, B.J., Vanpee, M., 1974. Experimental Determination of Gas Hydrate Equilibrium below the Ice Point. Ind. Eng. Chem. Fundam.13, 228-231

- Falenty, F., Genov, G., Hansen, T.C., Kuhs, W.F., Salamentin, A.N., 2011. Kinetics of CO₂ Hydrate Formation from Water Frost at Low Temperatures: Experimental Results and Theoretical Model, J. Phys. Chem. C. 115, 4022–4032.
- Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., 2004. Detection of methane in the atmosphere of Mars. Science 306, 1758-1761.
- Fonti, S., Marzo, G.A. 2010. Mapping the methane on Mars, Astron. Astrophys., 512, A51.
- Fray, N, Marboeuf, U., Brissaud, O., Schmidtt, B., 2010. Equilibrium Data of Methane, Carbon Dioxide, and Xenon Clathrate Hydrates below the Freezing Point of Water. Applications to Astrophysical Environments., J. Chem. Eng. Data 55(11), 5101-5108
- Geminale, A., Formisano, V., Sindoni, G., 2011. Mapping methane in Martian atmosphere with PFS-MEX data, Planet. Space Sci. 59, 137-148.
- Handa, Y.P., Tse, J.S., 1986, J. Phys. Chem. 23, 5917.
- Herri, J.-M. , Bouchemoua, A., Kwaterski, M., Fezoua, A., Ouabbas, Y., Cameirao, A., 2011. Gas Hydrate Equilibria from CO2-N2 and CO2-CH4 gas mixtures – Experimental studies and Thermodynamic Modelling. Fluid Phase Equilibria 301, 171-190
- Holder, G.D., Corbin, G., and Papadopoulos, K.D., 1980. Ind. Eng. Chem. Fundam. 19, 282-286
- Jhaveri, J. and Robinson, D.B., 1965. Can. J. Chem. Eng. 43, 75
- John, V. T., Holder, G. D., 1982, Journal of Physical Chemistry 86(4), 55-459.
- John, V. T., Papadopoulos, K. D., Holder, G. D., 1985, A generalized model for predicting equilibrium conditions for gas hydrates, AIChE J., 31, 252-259.
- Krasnopolsky, V. A., Maillard, J.-P., Owen, T. C., 2004. Detection of methane in the Martian atmosphere: evidence for life?, Icarus 172, 537.
- Krasnopolsky, V.A., 2006. Some problems related to the origin of methane on Mars, Icarus 180, 359-367.
- Kuhs, W.F., Klapproth, A., Chazallon, 2000. B., Chemical Physics of air clathrate hydrates, in: Physics of Ice-Core Records. Ed. T. Hondoh, Hokkaido University Press, Sapporo, pp 373-392, ISBN 4-8329-0282-2

- Larson, S.D., 1955, Phase Studies of the Two Component Carbon Dioxide-Water System Involving the carbon Dioxide Hydrate, Ph.D. Thesis, University of Illinois, Urbana, IL
- Lefèvre, F. Forget, F., 2009. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics, Nature 460, 7256, 720-723.
- Levrard, B., Forget, F., Montmessin, F., Laskar, J. 2004. Ice-rich deposits formed at high latitude on Mars by sublimation of unstable equatorial ice during low obliquity, Nature 431, 7012, 1072-1075.
- Lyons, J., Manning, C., Nimmo, F., 2005. Formation of methane on Mars by fluid-rock interaction in the crust, Geophys. Res Lett. 32, 13, L13201.1-L13201.4.
- Makogon, T., Sloan, E.D., 1995. Phase Equilibria for Methane Hydrate from 190 to 262K. J. Chem. Eng. Data 40, 344
- Meslin, P.-Y., Gough, R., Lefèvre, F., Forget, F., 2011. Little variability of methane on Mars induced by adsorption in the regolith, Planet. Space Sci. 59, 247-258.
- Mehta, A.P., Sloan, E.D., 1996. Improved thermodynamic parameters for prediction of structure H hydrate equilibria, 42(7), 2036-2046
- Miller, S.L., Smythe, W.D., 1970. Carbon Dioxide Clathrate In The Martian Ice Cap, Science 170, 531-533
- Mohammadi, A.H., Richon, D., 2008. Equilibrium Data of Nitrous Oxide and Carbon Dioxide Clathrates Hydrates, J. Chem. Eng. Data 54, 279-281
- Mohammadi, A.H., Richon, D., 2010. Ice-Clathrate Hydrate-Gas Equilibria for Air, Oxygen, Nitrogen, Carbon Monoxide, Methane or Ethane + Water System. Ind. Eng. Chem. Res. 49, 3976-3979
- Mohammadi, A., Richon, D., 2011. Ice Clathrate Hydrate Gas Phase Equilibria for Argon + Water and Carbon Dioxide + Water Systems, Ind. Eng. Chem. Res. 50, 11452–11454
- Mckoy, V., Sinagoglu, O. J., 1963. Theory of dissociation pressures of some gas hydrates. J Chem. Phys. 38, 2946
- Mumma, M. J., Villanueva, G. L., Novak, R. E., Hewagama, T., Bonev, B. P., DiSanti, M. A., Mandell, A. M., Smith, D. M., 2009. Strong Release of Methane on Mars in Northern Summer 2003, Science, 323, 1041-1045.

- Owen, T., K. Biemann, D.R. Rushneck, J.E. Biller, D.W. Howarth, and A.L. LaFleur, 1977. The composition of the atmosphere at the surface of Mars. J. Geophys. Res., 82, 4635-4639
- Oze, C., Sharma, M., 2005. Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars, Geophys. Res. Lett. 32, L10203.
- Parrish, W.R., Prausnitz, J. M., 1972. Dissociation pressure of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Process Develop., 11, 26-35
- Richardson, M.I., Wilson, R.J., 2002. Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model, J. Geophys. Res. 107, E5, 5031, 10.1029/2001JE001536.
- Saito S., and Kobayashi, R., 1965. AIChE J., 11(1), 96.
- Schmitt, B., 1986. La surface de la glace: structure, dynamique et interactions implications astrophysique. Ph.D. Thesis, University of Grenoble, Grenoble, France

Sloan, E.D., 1998. Clathrate hydrates of natural gases. 2nd Ed. Marcel Decker, New York

- Sloan, E.D., Koh, C.A., 2007. Clathrate hydrates of natural gases. 3nd Ed. CRC Press
- Sparks, K.A., Tester, J.W., 1992, Intermolecular potential-energy of water clathrates The inadequacy of the nearest-neigbor approximation, Journal of Physical Chemistry, 96(22), 11022-11029
- Tee, L.S., Gotoh, S., Stewart, W., 1966. Molecular Parameters for Normal Fluids. The Kihara Potential for Sperical Core, I&EC Fudamentals, 5(3) 363-367
- Thomas, C., Mousis, O., Picaud, S., Ballenegger, V., 2009. Variability of the methane traping in martian subsurface clathrate hydrates. Planetary and Space Science, 57, 42-47,
- van Der Waals, J.D., 1959. Clathrate solution. Advances in chemical physic. 2, 1-57
- Von Stackelberg, M., 1949. Feste Gashydrate. Die Naturwissenschaften, 36(12), 359-362
- Yasuda, K., Ohmura, R., 2008. Phase Equilibrium of Clathrate Hydrates Formed with Methane, Ethane, Propane or Carbon Dioxyde at temperatures below the Freezing Point of Water. J. Chem. Eng. Data, 53, 2182-2188

Tables :

Table 1							
Structure of SI and SII gas Hydrates							
	2	រា	2	Ш			
Cav:ty	51262	513	5"%6"				
Type of cavity (j. indexing number)	I	2	1	3			
Number of cavities (m)	2	6	16	8			
Average cavity racius (am) (1)	0.395	0.433	0.391	0.473			
Vertation in radius, % (2)	3.4	14.4	5.5	1.73			
Coordination number	20	24	20	28			
Number of water molecules	42		136				
Cell parameters (nn) Cell volume (rm ³) Sloan (1998, p. 33)	a= 1 1956 (3) 1.709 (3)		a=1.7315 (4) 5.192 (4)				

(1) Sloan (1998, p. 33).
 (2) Variation in distance of oxygen atoms from centre of cages (Sloan, 1998, p. 33).
 (3) For ethane hydrate, from (Udachin, 2002).
 (4) For tetrahydrofuran hydrate, from Udachin (2002).

	$\frac{\varepsilon}{k}$	а	σ	
CO_2	178.21	0.6805	2.873	This work
CH_4	166.36	0.3834	3.05	
N_2	133.13	0.3526	3.0993	
Ar	174.14	0.184	2.9434	
CO_2	171.41	0.6805	2.9830	Herri et al,
CH_4	158.71	0.3834	3.1503	2011
N_2	138.22	0.3526	3.0993	

Table 2 Kihara parameters optimized during this work

Table 3	

Reference state parameters							
	Structure II						
$\Delta \mu_{\mathrm{w}}^{I-eta,0}$	J mol	1287	1068				
$\Delta h_{ m w}^{ m I-eta,0}$	J mol	931	764				
$\Delta v_{\rm w}^{{\rm L}-eta}\Big _{T^0}$	10 ⁻⁶ m ³ /mol	4.5959	4.99644				
$\Delta c_{p,\mathrm{w}}^{\mathrm{L}-eta,0}$	J/(mol K ⁻¹)	-38.12	-38.12				
$b_{p,\mathrm{w}}^{\mathrm{L}-oldsymbol{eta}}$	J/(mol K ⁻²)	0.141	0.141				

 $\Delta \mu_{\rm w}^{\rm L-\beta,0}, \ \Delta h_{\rm w}^{\rm L-\beta,0}: \text{Handa and Tse, 1986}$ $\Delta v_{\rm w}^{\rm L-\beta}\Big|_{T^0}, \ \Delta c_{p,\rm w}^{\rm L-\beta,0}, \ b_{p,\rm w}^{\rm L-\beta}: \text{Sloan, 1998}$

	Pure CO ₂	CO ₂ -Ar-N ₂ Hydrate					
	Hydrate	Gas composition (0.95			D ₂ , 0.026Ar, 0.020N ₂)		
T (K)		brium Pressure			Hydrate composition		
	SII structure	SII structure	SI structure	θ	CO ₂	$N_2(x10^3)$	$Ar(x10^3)$
139	96	99	202	0.962	0.999	0.15	0.52
140	111	117	226	0.963	0.999	0.16	0.54
141	129	135	252	0.963	0.999	0.16	0.56
142	147	154	280	0.963	0.999	0.17	0.59
143	169	176	309	0.964	0.999	0.18	0.61
144	192	202	347	0.964	0.999	0.18	0.64
145	219	230	385	0.964	0.999	0.19	0.67
146	249	260	427	0.964	0.999	0.20	0.70
147	283	296	474	0.964	0.999	0.20	0.73
148	321	336	524	0.964	0.999	0.21	0.75
149	362	377	580	0.964	0.999	0.22	0.79
150	410	429	640	0.965	0.999	0.23	0.82
151	462	484	708	0.965	0.999	0.23	0.85
152	519	545	781	0.965	0.999	0.24	0.88
153	585	613	860	0.965	0.999	0.25	0.91
154	657	688	946	0.965	0.999	0.26	0.95
155	736	771	1039	0.965	0.999	0.26	0.98
156	824	863	1145	0.965	0.999	0.27	1.02
157	921	964	1255	0.965	0.999	0.28	1.06
158	1027	1064	1373	0.965	0.999	0.29	1.09
159	1145	1198	1511	0.965	0.999	0.30	1.13
160	1274	1333	1654	0.965	0.999	0.31	1.17
161	1410	1481	1809	0.965	0.998	0.32	1.21

 Table 4

 Equilibirum conditions of pure CO2 and Martian gas hydrates

		Abundance ration =xi/fi					
Equilibrium condition		xi : composition of i in the hydrate					
Gas= 95,3% CO ₂ , 2% Ar,		fi : composition of i in the gas					
2.7% N ₂ , 1	5 ppb CH₄	-	SII is supposed				
T (K)	P (kPa)	CO ₂	N_2	Ar	CH_4		
139	99.0	1.048	0.008	0.020	0.262		
140	117.3	1.048	0.008	0.021	0.266		
141	134.7	1.048	0.008	0.022	0.270		
142	154.4	1.047	0.008	0.023	0.274		
143	176.3	1.047	0.009	0.024	0.278		
144	201.6	1.047	0.009	0.025	0.282		
145	229.6	1.047	0.009	0.026	0.286		
146	259.7	1.047	0.010	0.027	0.291		
147	296.5	1.047	0.010	0.028	0.295		
148	335.5	1.047	0.011	0.029	0.299		
149	377.2	1.047	0.011	0.030	0.303		
150	429.4	1.047	0.011	0.031	0.307		
151	484.3	1.047	0.012	0.033	0.311		
152	545.4	1.047	0.012	0.034	0.315		
153	613.0	1.047	0.012	0.035	0.319		
154	688.0	1.047	0.013	0.036	0.323		
155	771.1	1.047	0.013	0.038	0.327		
156	862.7	1.047	0.014	0.039	0.331		
157	964.0	1.047	0.014	0.041	0.335		
158	1063.7	1.047	0.014	0.042	0.339		
159	1198.2	1.047	0.015	0.044	0.343		
160	1332.7	1.047	0.015	0.045	0.347		
161	1481.2	1.047	0.016	0.047	0.351		

 Table 5

 Abundance fraction of component in hydrate versus component in gas SII is supposed

		Abundance ration =xi/fi						
	n condition	xi : composition of i in the hydrate						
	CO ₂ , 2% Ar,	ti : compositi	on of i in the g					
2.7% N ₂ , 1				pposed				
T (K)	P (kPa)	CO ₂	N ₂	Ar	CH ₄			
139	202.2	1.048	0.003	0.005	0.126			
140	225.7	1.048	0.004	0.005	0.129			
141	251.6	1.048	0.004	0.006	0.131			
142	279.8	1.048	0.004	0.006	0.134			
143	309.2	1.048	0.004	0.006	0.137			
144	347.1	1.048	0.004	0.006	0.139			
145	385.4	1.048	0.005	0.007	0.142			
146	427.5	1.048	0.005	0.007	0.144			
147	473.9	1.048	0.005	0.007	0.147			
148	524.1	1.048	0.005	0.008	0.149			
149	579.8	1.048	0.005	0.008	0.152			
150	640.1	1.048	0.006	0.009	0.155			
151	708.1	1.048	0.006	0.009	0.157			
152	780.8	1.048	0.006	0.009	0.160			
153	860.4	1.048	0.006	0.010	0.163			
154	946.2	1.048	0.006	0.010	0.165			
155	1039.0	1.048	0.007	0.011	0.168			
156	1144.9	1.048	0.007	0.011	0.171			
157	1255.4	1.048	0.007	0.012	0.173			
158	1372.9	1.048	0.008	0.012	0.176			
159	1510.5	1.048	0.008	0.013	0.179			
160	1654.3	1.048	0.008	0.013	0.181			
161	1808.9	1.048	0.008	0.014	0.184			

 Table 6

 Abundance fraction of component in hydrate versus component in gas

 SI is supposed

Figure captions :

Figure 1: Deviation between experimental equilibrium data of pure CO_2 hydrate and model versus ε/k and σ . *a* value is taken from Table 2. Data are taken from Yasuda and Ohmura (2008), Adisasmito et al. (1991), Falabella (1975), Miller and Smythe (1970) which cover a range of temperature from 151.52K to 282.9K and a pressure range from 0.535kPa to 4370kPa.

Figure 2: ε/k versus σ at the minimum deviation with experimental data. *a* value is taken from Table 2. Pressure and temperature equilibrium data for CO₂ hydrate are taken from Yasuda and Ohmura (2008), Adisasmito et al. (1991), Falabella (1975), Miller and Smythe (1970) which cover a range of temperature from 151.52K to 282.9K and a pressure range from 0.535kPa to 4370kPa.

Figure 3 : Equilibrium pressure of pure CO_2 gas hydrate at low temperature down to the Martian winter Martian conditions (148K ±10K)

Figure 4: ε/k versus σ at the minimum deviation with experimental data. *a* value is taken from Table 2. Pressure and temperature equilibrium data for CH₄ hydrate are taken from Fray et al (2010), Yasuda and Ohmura (2008), Adisasmito et al. (1991) which cover a range of temperature from 145.75 to 286.4K and a pressure range from 2.4kPa to 10570kPa

Figure 5 : Equilibrium pressure of pure CH4 gas hydrate at low temperature down to the Martian winter Martian conditions ($148K \pm 5K$)

Figure 6 : Equilibrium pressure of pure Argon gas hydrate at low temperature (283-263K and 150-90K)

Figure 7 : Equilibrium pressure of pure Nitrogen gas hydrate in a limited range of temperature (273 down

to 250 K)