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The water waves equations: from Zakharov to Euler

T. Alazard, N. Burq, C. Zuily

Abstract

Starting form the Zakharov/Craig-Sulem formulation of the gravity water waves equa-
tions, we prove that one can define a pressure term and hence obtain a solution of the
classical Euler equations. It is proved that these results hold in rough domains, under
minimal assumptions on the regularity to ensure, in terms of Sobolev spaces, that the
solutions are C1.

1 Introduction

We study the dynamics of an incompressible layer of inviscid liquid, having constant
density, occupying a fluid domain with a free surface.

We begin by describing the fluid domain. Hereafter, d ≥ 1, t denotes the time variable
and x ∈ Rd and y ∈ R denote the horizontal and vertical variables. We work in a fluid
domain with free boundary of the form

Ω = { (t, x, y) ∈ (0, T )×Rd ×R : (x, y) ∈ Ω(t) },

where Ω(t) is the d + 1-dimensional domain located between two hypersurfaces: a free
surface denoted by Σ(t) which will be supposed to be a graph and a fixed bottom Γ. For
each time t, one has

Ω(t) = {(x, y) ∈ O : y < η(t, x)} ,

where O is a given open connected domain and where η is the free surface elevation. We
denote by Σ the free surface:

Σ = {(t, x, y) : t ∈ (0, T ), (x, y) ∈ Σ(t)},

where Σ(t) = {(x, y) ∈ Rd ×R : y = η(t, x)} and we set Γ = ∂Ω(t) \ Σ(t).
Notice that Γ does not depend on time. Two classical examples are the case of infinite

depth (O = Rd+1 so that Γ = ∅) and the case where the bottom is the graph of a function
(this corresponds to the case O = {(x, y) ∈ Rd ×R : y > b(x)} for some given function
b).

We introduce now a condition which ensures that, at time t, there exists a fixed strip
separating the free surface from the bottom.

(Ht) : ∃h > 0 : Γ ⊂ {(x, y) ∈ Rd ×R : y < η(t, x)− h}. (1)

No regularity assumption will be made on the bottom Γ.

The incompressible Euler equation with free surface

Hereafter, we use the following notations

∇ = (∂xi
)1≤i≤d, ∇x,y = (∇, ∂y), ∆ =

∑

1≤i≤d

∂2xi
, ∆x,y = ∆+ ∂2y .
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The Eulerian velocity field v : Ω → Rd+1 solves the incompressible Euler equation

∂tv + v · ∇x,yv +∇x,yP = −gey, div x,yv = 0 in Ω,

where g is the acceleration due to gravity (g > 0) and P is the pressure. The problem is
then given by three boundary conditions:

• a kinematic condition (which states that the free surface moves with the fluid)

∂tη =
√
1 + |∇η|2 (v · n) on Σ, (2)

where n is the unit exterior normal to Ω(t),

• a dynamic condition (that expresses a balance of forces across the free surface)

P = 0 on Σ, (3)

• the ”solid wall” boundary condition at the bottom Γ

v · ν = 0, (4)

where ν is the normal vector to Γ whenever it exists. In the case of arbitrary bottom this
condition will be implicit and contained in a variational formulation.

The Zakharov/Craig-Sulem formulation

A popular form of the water-waves system is given by the Zakharov/Craig-Sulem formula-
tion. This is an elegant formulation of the water-waves equations where all the unknowns
are evaluated at the free surface only. Let us recall the derivation of this system.

Assume, furthermore, that the motion of the liquid is irrotational. The velocity field
v is therefore given by v = ∇x,yΦ for some velocity potential Φ: Ω → R satisfying

∆x,yΦ = 0 in Ω, ∂νΦ = 0 on Γ,

and the Bernoulli equation

∂tΦ +
1

2
|∇x,yΦ|

2 + P + gy = 0 in Ω. (5)

Following Zakharov [7], introduce the trace of the potential on the free surface:

ψ(t, x) = Φ(t, x, η(t, x)).

Notice that since Φ is harmonic, η and Ψ fully determines Φ. Craig and Sulem (see [3])
observe that one can form a system of two evolution equations for η and ψ. To do so, they
introduce the Dirichlet-Neumann operator G(η) that relates ψ to the normal derivative
∂nΦ of the potential by

(G(η)ψ)(t, x) =
√
1 + |∇η|2 ∂nΦ|y=η(t,x)

= (∂yΦ)(t, x, η(t, x)) −∇xη(t, x) · (∇xΦ)(t, x, η(t, x)).

(For the case with a rough bottom, we recall the precise construction later on). Directly
from this definition, one has

∂tη = G(η)ψ. (6)

It is proved in [3] (see also the computations in §3.6) that the condition P = 0 on the free
surface implies that

∂tψ + gη +
1

2
|∇ψ|2 −

1

2

(
∇η · ∇ψ +G(η)ψ

)2

1 + |∇η|2
= 0. (7)
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The system (6)–(7) is in Hamiltonian form (see [3, 7]), where the Hamiltonian is given by

H =
1

2

∫

Rd

ψG(η)ψ + gη2 dx.

The problem to be considered here is that of the equivalence of the previous two
formulations of the water-waves problem. Assume that the Zakharov/Craig-Sulem system
has been solved. Namely, assume that, for some r > 1 + d/2, (η, ψ) ∈ C0(I,Hr(Rd) ×
Hr(Rd)) solves (6)-(7). We would like to show that we have indeed solved the initial
system of Euler’s equation with free boundary. In particular we have to define the pressure
which does not appear in the above system (6)-(7). To do so we set

B =
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
, V = ∇ψ −B∇η.

Then B and V belong to the space C0(I,H
1
2 (Rd)). It follows from [1] that (for fixed t)

one can define unique variational solutions to the problems

∆x,yΦ = 0 in Ω, Φ|Σ = Ψ, ∂νΦ = 0 on Γ.

∆x,yQ = 0 in Ω, Q|Σ = gη +
1

2
(B2 + |V |2), ∂νQ = 0 on Γ.

Then we shall define P ∈ D′(Ω) by

P := Q− gy −
1

2
|∇x,yΦ|

2

and we shall show firstly that P has a trace on Σ which is equal to 0 and secondly that
Q = −∂tΦ which will show, according to (5) that we have indeed solved Bernouilli’s (and
therefore Euler’s) equation.

These assertions are not straightforward because we are working with solutions of low
regularity and we consider general bottoms (namely no regularity assumption is assumed
on the bottom). Indeed, the analysis would have been much easier for r > 2 + d/2 and a
flat bottom.

Acknowledgements. T.A. was supported by the French Agence Nationale de la Recherche,
projects ANR-08-JCJC-0132-01 and ANR-08-JCJC-0124-01.

2 Low regularity Cauchy theory

Since we are interested in low regularity solutions, we begin by recalling the well-posedness
results proved in [2]. These results clarify the Cauchy theory of the water waves equations
as well in terms of regularity indexes for the initial conditions as for the smoothness of
the bottom of the domain (namely no regularity assumption is assumed on the bottom).

Recall that the Zakharov/Craig-Sulem system reads





∂tη −G(η)ψ = 0,

∂tψ + gη +
1

2
|∇ψ|2 −

1

2

(
∇η · ∇ψ +G(η)ψ

)2

1 + |∇η|2
= 0.

(8)

It is useful to introduce the vertical and horizontal components of the velocity,

B := (vy)|y=η = (∂yΦ)|y=η, V := (vx)|y=η = (∇xΦ)|y=η.

3



These can be defined in terms of η and ψ by means of the formulas

B =
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
, V = ∇ψ −B∇η. (9)

Also, recall that the Taylor coefficient a = −∂yP |Σ can be defined in terms of η, V,B, ψ
only (see §4.3.1 in [5]).

In [2] we proved the following results about low regularity solutions. We refer to the
introduction of [2, 4] for references and a short historical survey of the background of this
problem.

Theorem 2.1 ( [2]). Let d ≥ 1, s > 1 + d/2 and consider an initial data (η0, ψ0) such
that

(i) η0 ∈ Hs+ 1
2 (Rd), ψ0 ∈ Hs+ 1

2 (Rd), V0 ∈ Hs(Rd), B0 ∈ Hs(Rd),
(ii) the condition (H0) in (1) holds initially for t = 0,
(iii) there exists a positive constant c such that, for all x in Rd, a0(x) ≥ c.
Then there exists T > 0 such that the Cauchy problem for (8) with initial data (η0, ψ0)

has a unique solution

(η, ψ) ∈ C0
(
[0, T ], Hs+1

2 (Rd)×Hs+ 1
2 (Rd)

)
,

such that

1. (V,B) ∈ C0
(
[0, T ], Hs(Rd)×Hs(Rd)

)
,

2. the condition (Ht) in (1) holds for t ∈ [0, T ] with h replaced by h/2,

3. a(t, x) ≥ c/2, for all (t, x) in [0, T ]×Rd.

Theorem 2.2 ( [2]). Assume Γ = ∅. Let d = 2, s > 1 + d
2 − 1

12 and consider an initial
data (η0, ψ0) such that

η0 ∈ Hs+ 1
2 (Rd), ψ0 ∈ Hs+ 1

2 (Rd), V0 ∈ Hs(Rd), B0 ∈ Hs(Rd).

Then there exists T > 0 such that the Cauchy problem for (8) with initial data (η0, ψ0)
has a solution (η, ψ) such that

(η, ψ, V,B) ∈ C0
(
[0, T ];Hs+1

2 (Rd)×Hs+ 1
2 (Rd)×Hs(Rd)×Hs(Rd)

)
.

Remark 2.3. (i) For the sake of simplicity we stated Theorem 2.2 in dimension d = 2
(recall that d is the dimension of the interface). One can prove such a result in any
dimension d ≥ 2, the number 1/12 being replaced by an index depending on d.

(ii) Notice that in infinite depth (Γ = ∅) the Taylor condition (which is assumption
(iii) in Theorem 2.1) is always satisfied as proved by Wu ([6]).

Now having solved the system (8) in (η, ψ) we have to show that we have indeed solved
the initial system in (η, v). This is the purpose of the following section.

There is one point that should be emphasized concerning the regularity. Below we
consider solutions (η, ψ) of (8) such that

(η, ψ) ∈ C0
(
[0, T ];Hs+ 1

2 (Rd)×Hs+ 1
2 (Rd)),

with the only assumption that s > 1
2 + d

2 (and the assumption that there exists h > 0
such that the condition (Ht) in (1) holds for t ∈ [0, T ]). Consequently, the result proved
in this note apply to the settings considered in the above theorems.
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3 From Zakharov to Euler

3.1 The variational theory

In this paragraph the time is fixed so we will skip it and work in a fixed domain Ω whose
top boundary Σ is Lipschitz i.e η ∈ W 1,∞(Rd).

We recall here the variational theory, developed in [1], allowing us to solve the following
problem in the case of arbitrary bottom,

∆Φ = 0 in Ω, Φ|Σ = ψ,
∂Φ

∂ν
|Γ = 0. (10)

Notice that Ω is not necessarily bounded below. We proceed as follows.
Denote by D the space of functions u ∈ C∞(Ω) such that ∇x,yu ∈ L2(Ω) and let D0

be the subspace of functions u ∈ D such that u vanishes near the top boundary Σ.

Lemma 3.1 (see Prop 2.2 in [1]). There exist a positive weight g ∈ L∞
loc(Ω) equal to 1

near the top boundary Σ of Ω and C > 0 such that for all u ∈ D0

∫∫

Ω

g(x, y)|u(x, y)|2dxdy ≤ C

∫∫

Ω

|∇x,yu(x, y)|
2dxdy. (11)

Using this lemma one can prove the following result.

Proposition 3.2 (see page 422 in [1]). Denote by H1,0(Ω) the space of functions u on Ω
such that there exists a sequence (un) ⊂ D0 such that

∇x,yun → ∇x,yu in L2(Ω), un → u in L2(Ω, gdxdy),

endowed with the scalar product

(u, v)H1,0(Ω) = (∇xu,∇xv)L2(Ω) + (∂yu, ∂yv)L2(Ω).

Then H1,0(Ω) is a Hilbert space and (11) holds for u ∈ H1,0(Ω).

Let ψ ∈ H
1
2 (Rd). One can construct (see below after (21)) ψ ∈ H1(Ω) such that

suppψ ⊂ {(x, y) : η(t, x)− h ≤ y ≤ η(x)}, ψ|Σ = ψ.

Using Proposition 3.2 we deduce that there exists a unique u ∈ H1,0(Ω) such that, for all
θ ∈ H1,0(Ω),

∫∫

Ω

∇x,yu(x, y) · ∇x,yθ(x, y)dxdy = −

∫∫

Ω

∇x,yψ(x, y) · ∇x,yθ(x, y)dxdy.

Then to solve the problem (10) we set Φ = u+ ψ.

Remark 3.3. As for the usual Neumann problem the meaning of the third condition in
(10) is included in the definition of the space H1,0(Ω). It can be written as in (10) if the
bottom Γ is sufficiently smooth.

3.2 The main result

Let us assume that the Zakharov system (8) has been solved on I = (0, T ), which means
that we have found, for s > 1

2 + d
2 , a solution

(η, ψ) ∈ C0(I,Hs+ 1
2 (Rd)×Hs+ 1

2 (Rd)),

of the system
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∂tη = G(η)ψ,

∂ψ = −gη −
1

2
|∇ψ|2 +

1

2

(∇ψ · ∇η +G(η)ψ)2

1 + |∇η|2
.

(12)

Let B, V be defined by (9). Then (B, V ) ∈ C0(I,Hs− 1
2 (Rd)×Hs− 1

2 (Rd)).
The above variational theory shows that one can solve (for fixed t) the problem

∆x,yQ = 0 in Ω, Q|Σ = gη +
1

2
(B2 + |V |2) ∈ H

1
2 (Rd). (13)

Here is the main result of this article.

Theorem 3.4. Let Φ and Q be the variational solutions of the problems (10) and (13).
Set P = Q− gy − 1

2 |∇x,yΦ|2. Then v := ∇x,yΦ satisfies the Euler system

∂tv + (v · ∇x,y)v +∇x,yP = −gey in Ω,

together with the conditions




div x,yv = 0, curl x,yv = 0 in Ω,

∂tη = (1 + |∇η|2)
1
2 (v · n) on Σ,

P = 0 on Σ.

(14)

The rest of the paper is devoted to the proof of this result. We proceed in several
steps.

3.3 Straightenning the free boundary

First of all if condition (Ht) is satisfied on I, for T small enough, one can find η∗ ∈ L∞(Rd)
independent of t such that





(i) ∇xη∗ ∈ H∞(Rd), ‖∇xη∗‖L∞(Rd) ≤ C‖η‖
L∞(I,Hs+1

2 (Rd))
,

(ii) η(t, x) − h ≤ η∗(x) ≤ η(t, x)−
h

2
, ∀(t, x) ∈ I ×Rd,

(iii) Γ ⊂ {(x, y) ∈ O : y < η∗(x)}.

(15)

Indeed using the first equation in (12) we have

‖η(t, ·)− η0‖L∞(Rd) ≤

∫ t

0

‖G(η)ψ(σ, ·)‖
H

s− 1
2 (Rd)

dσ

≤ TC
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
.

Therefore taking T small enough we make ‖η(t, ·)− η0‖L∞(Rd) as small as we want. Then

we take η∗(x) = − 2h
3 + e−δ|Dx|η0 and writing

η∗(x) = −
2h

3
+ η(t, x) − (η(t, x) − η0(x)) + (e−δ|Dx|η0 − η0(x)),

we obtain (15).
In what follows we shall set





Ω1(t) = {(x, y) : x ∈ Rd, η∗(x) < y < η(t, x)},

Ω1 = {(t, x, y) : t ∈ I, (x, y) ∈ Ω1(t)}, Ω2 = {(x, y) ∈ O : y ≤ η∗(x)},

Ω̃1 = {(x, z) : x ∈ Rd, z ∈ (−1, 0)},

Ω̃2 = {(x, z) ∈ Rd × (−∞,−1] : (x, z + 1 + η∗(x)) ∈ Ω2}

Ω̃ = Ω̃1 ∪ Ω̃2

(16)
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Following Lannes ([4]), for t ∈ I consider the map (x, z) 7→ (x, ρ(t, x, z)) from Ω̃ to
Rd+1 defined by

{
ρ(t, x, z) = (1 + z)eδz〈Dx〉η(t, x) − zη∗(x) if (x, z) ∈ Ω̃1

ρ(t, x, z) = z + 1 + η∗(x) if (x, z) ∈ Ω̃2.
(17)

where δ is chosen such that

δ‖η‖
L∞(I,Hs+1

2 (Rd))
:= δ0 << 1.

Notice that since s > 1
2 + d

2 , taking δ small enough and using (15) (i), (ii), we obtain
the estimates

(i) ∂zρ(t, x, z) ≥ min
(h
3
, 1
)

∀(t, x, z) ∈ I × Ω̃,

(ii) ‖∇x,zρ‖L∞(I×Ω̃) ≤ C(1 + ‖η‖
L∞(I,Hs+1

2 (Rd))
).

(18)

It follows from (18) (i) that the map (t, x, z) 7→ (t, x, ρ(t, x, z)) is a diffeomorphism from
I × Ω̃ to Ω which is of class W 1,∞.

We denote by κ the inverse map of ρ:

(t, x, z) ∈ I × Ω̃, (t, x, ρ(t, x, z)) = (t, x, y)

⇐⇒ (t, x, z) = (t, x, κ(t, x, y)), (t, x, y) ∈ Ω.
(19)

3.4 The Dirichlet-Neumann operator

Let Φ be the variational solution described above (with fixed t) of the problem




∆x,yΦ = 0 in Ω(t),

Φ|Σ(t) = ψ(t, ·),

∂νΦ|Γ = 0.

(20)

Let us recall that
Φ = u+ ψ (21)

where u ∈ H1,0(Ω(t)) and ψ is an extension of ψ to Ω(t).

Here is a construction of ψ. Let χ ∈ C∞(R), χ(a) = 0 if a ≤ −1, χ(a) = 1 if a ≥ − 1
2 .

Let ψ̃(t, x, z) = χ(z)ez〈Dx〉ψ(t, x) for z ≤ 0. It is classical that ψ̃ ∈ L∞(I,H1(Ω̃)) if

ψ ∈ L∞(I,H
1
2 (Rd)) and

‖ψ̃‖L∞(I,H1(Ω̃)) ≤ C‖ψ‖
L∞(I,H

1
2 (Rd))

.

Then we set
ψ(t, x, y) = ψ̃

(
t, x, κ(t, x, y)

)
. (22)

Since η ∈ C0(I,W 1,∞(Rd)) we have ψ(t, ·) ∈ H1(Ω(t)), ψ|Σ(t) = ψ and

‖ψ(t, ·)‖H1(Ω(t)) ≤ C
(
‖η‖L∞(I,W 1,∞(Rd))

)
‖ψ‖

L∞(I,H
1
2 (Rd))

.

Then we define the Dirichlet-Neumann operator by

G(η)ψ(t, x) =
√
1 + |∇η|2∂nΦ|Σ

= (∂yΦ)(x, η(t, x)) −∇xη(t, x) · (∇xΦ)(t, x, η(t, x)).
(23)

It has been shown in [2] (see §3) that G(η)ψ is well defined in C0(I,H− 1
2 (Rd)) if η ∈

C0(I,W 1,∞(Rd)) and ψ ∈ C0(I,H
1
2 (Rd)).
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Remark 3.5. Recall that we have set

Ω(t) = {(x, y) ∈ O : y < η(t, x)}, Ω = {(t, x, y) : t ∈ I, (x, y) ∈ Ω(t)}. (24)

For a function f ∈ L1
loc(Ω) if ∂tf denotes its derivative in the sense of distributions we

have

〈∂tf, ϕ〉 = lim
ε→0

〈f(·+ ε, ·, ·)− f(·, ·, ·)

ε
, ϕ

〉
, ∀ϕ ∈ C∞

0 (Ω). (25)

This point should be clarified due to the particular form of the set Ω since we have to show
that if (t, x, y) ∈ suppϕ = K then (t + ε, x, y) ∈ Ω for ε sufficiently small independently
of the point (t, x, y). This is true. Indeed if (t, x, y) ∈ K there exists a fixed δ > 0
(depending only on K, η) such that y ≤ η(t, x) − δ. Since by (12)

|η(t+ ε, x)− η(t, x)| ≤ ε‖G(η)ψ‖L∞(I×Rd) ≤ εC

where C = C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+ 1
2 (Rd))

)
, we have if ε < δ

C
,

y − η(t+ ε, x) = y − η(t, x) + η(t, x) − η(t+ ε, x) ≤ −δ + εC < 0.

Notice that since η ∈ C0(I,Hs+ 1
2 (Rd)), ∂tη = G(η)ψ ∈ C0(I,Hs− 1

2 (Rd)) and
s > 1

2 + d
2 we have ρ ∈ W 1,∞(I × Ω̃).

The main step in the proof of Theorem 3.4 is the following.

Proposition 3.6. Let Φ be defined by (20) and Q ∈ H1,0(Ω(t)) by (13). Then for all
t ∈ I

(i) ∂tΦ(t, ·) ∈ H1,0(Ω(t)),

(ii) ∂tΦ = −Q in D′(Ω).

This result will be proved in §3.6.

3.5 Preliminaries

If f is a function defined on Ω we shall denote by f̃ its image by the diffeomorphism
(t, x, z) 7→ (t, x, ρ(t, x, z)). Thus we have

f̃(t, x, z) = f(t, x, ρ(t, x, z)) ⇔ f(t, x, y) = f̃
(
t, x, κ(t, x, y)

)
. (26)

Formally we have the following equalities for (t, x, y) = (t, x, ρ(t, x, z)) ∈ Ω and ∇ = ∇x





∂yf(t, x, y) =
1

∂zρ
∂z f̃(t, x, z) ⇔ ∂z f̃(t, x, z) = ∂zρ(t, x, κ(t, x, y))∂yf(t, x, y),

∇f(t, x, y) =
(
∇f̃ −

∇ρ

∂zρ
∂z f̃

)
(t, x, z) ⇔ ∇f̃(t, x, z) =

(
∇f +∇ρ ∂yf

)
(t, x, y),

∂tf(t, x, y) =
(
∂tf̃ + ∂tκ(t, x, y)∂z f̃

)
(t, x, κ(t, x, y)).

(27)

We shall set in what follows

Λ1 =
1

∂zρ
∂z, Λ2 = ∇x −

∇xρ

∂zρ
∂z (28)

Eventually recall that if u is the function defined by (21) we have

∫∫

Ω(t)

∇x,yu(t, x, y) · ∇x,yθ(x, y)dxdy = −

∫∫

Ω(t)

∇x,yψ(t, x, y) · ∇x,yθ(x, y)dxdy (29)
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for all θ ∈ H1,0(Ω(t)) which implies that for t ∈ I,

‖∇x,yu(t, ·)‖L2(Ω(t)) ≤ C(‖η‖L∞(I,W 1,∞(Rd))‖ψ‖L∞(I,H
1
2 (Rd))

. (30)

Let u be defined by (21). Since (η, ψ) ∈ C0(I,Hs+ 1
2 (Rd) × Hs+ 1

2 (Rd)) the elliptic
regularity theorem proved in [2], (see Theorem 3.16), shows that,

∂zũ,∇xũ ∈ C0
z ([−1, 0], Hs− 1

2 (Rd)) ⊂ C0([−1, 0]×Rd),

since s− 1
2 >

d
2 .

It follows from (27) that ∂yu and ∇xu have a trace on Σ and

∂yu|Σ =
1

∂zρ(t, x, 0)
∂z ũ(t, x, 0), ∇xu|Σ =

(
∇xũ−

∇xη

∂zρ(t, x, 0)
∂zũ

)
(t, x, 0).

Since ũ(t, x, 0) = 0 it follows that

∇xu|Σ + (∇xη)∂yu|Σ = 0

from which we deduce, since Φ = u+ ψ,

∇xΦ|Σ + (∇xη)∂yΦ|Σ = ∇xψ. (31)

On the other hand one has

G(η)ψ =
(
∂yΦ−∇xη · ∇xΦ

)
|Σ. (32)

It follows from (31) and (32) that we have

∇xΦ|Σ = V, ∂yΦ|Σ = B. (33)

According to (13), P = Q− gy − 1
2 |∇x,yΦ|

2 has a trace on Σ and P |Σ = 0.

3.6 The regularity results

The main steps in the proof of Proposition 3.6 are the following.

Lemma 3.7. Let ũ be defined by (26) and κ by (19). Then for all t0 ∈ I the function
(x, y) 7→ U(t0, x, y) := ∂tũ(t0, x, κ(t0, x, y)) belongs to H1,0(Ω(t0)). Moreover there exists
a function F : R+ → R+ such that

sup
t∈I

∫∫

Ω(t)

|∇x,yU(t, x, y)|2dxdy ≤ F(‖(η, ψ)‖
L∞(I,Hs+1

2 (Rd)×H
s+1

2 (Rd))
).

Lemma 3.8. In the sense of distributions on Ω we have the chain rule

∂tu(t, x, y) = ∂tũ(t, x, κ(t, x, y)) + ∂tκ(t, x, y)∂zũ(t, x, κ(t, x, y)).

These lemmas are proved in the next paragraph.

of Proposition 3.6. According to (21) and Lemma 3.8 we have

∂tΦ(t, x, y) = ∂tũ(t, x, κ(t, x, y)) + w(t, x, y) (34)

where
w(t, x, y) = ∂tκ(t, x, y)∂zũ(t, x, κ(t, x, y)) + ∂tψ(t, x, y).
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According to Lemma 3.7 the first term in the right hand side of (34) belongs to
H1,0(Ω(t)). Denoting by w̃ the image of w, if we show that





(i) w̃ ∈ H1(Rd ×R),

(ii) supp w̃ ⊂ {(x, z) ∈ Rd × (−1, 0)}

(iii) w|Σ = −gη −
1

2
(B2 + |V |2)

(35)

then ∂tΦ will be the variational solution of the problem

∆x,y(∂tΦ) = 0, ∂tΦ|Σ = −gη −
1

2
(B2 + |V |2).

By uniqueness, we deduce from (13) that ∂tΦ = −Q, which completes the proof of Propo-
sition 3.6. Therefore we are left with the proof of (35).

Recall that ψ̃(t, x, z) = χ(z)ez〈Dx〉ψ(t, x). Moreover by Lemma 3.8 we have

∂̃tψ =
(
∂tψ̃ −

∂tρ(t, x, z)

∂zρ(t, x, z)
∂zψ̃

)
(t, x, z).

Since ψ ∈ Hs+ 1
2 (Rd), ∂tψ ∈ Hs− 1

2 (Rd), ∂tη ∈ Hs− 1
2 (Rd), the classical properties of the

Poisson kernel show that ∂tψ̃ and ∂zψ̃ and ∂tρ
∂zρ

belong to Hs(Rd × (−1, 0)) therefore to

H1(Rd×(−1, 0)) since s > 1
2+

d
2 . It follows that the points (i) and (ii) in (35) are satisfied

by ∂̃tψ. Now according to (17) ∂̃tκ is supported in Rd × (−1, 0) and it follows from the

elliptic regularity that ∂̃tκ∂z ũ belongs to H1(Rd × (−1, 0)). Let us check now point (iii).
Since ∂tη = G(η)ψ we have

∂tψ(t, x, y)|Σ = ∂̃tψ|z=0 = ∂tψ −G(η)ψ · ∂yψ(t, x, y)|Σ. (36)

On the other hand we have

∂tκ(t, x, y)∂z ũ(t, x, κ(t, x, y))|Σ = ∂tκ(t, x, y)∂zρ(t, x, κ(t, x, y))∂yu(t, x, y)|Σ

= −∂tρ(t, x, κ(t, x, y))∂yu(t, x, y)|Σ

= −∂tρ(t, x, κ(t, x, y))
(
∂yΦ(t, x, y)− ∂yψ(t, x, y)

)
|Σ

= −G(η)ψ · (B − ∂yψ(t, x, y)|Σ.

So using (36) we find
w |Σ = ∂tψ −BG(η)ψ.

It follows from the second equation of (12) and from (9) that

w |Σ = −gη −
1

2
(B2 + |V |2).

This proves the claim (iii) in (35) and ends the proof of Proposition 3.6.

3.7 Proof of the Lemmas

3.7.1 Proof of Lemma 3.7

Recall (see (17) and (28)) that we have set




ρ(t, x, z) = (1 + z)eδz〈Dx〉η(t, x) − zη∗(x) if (x, z) ∈ Ω̃1,

ρ(t, x, z) = z + 1 + η∗(x) if (x, z) ∈ Ω̃2,

Λ1(t) =
1

∂zρ(t, ·)
∂z, Λ2(t) = ∇x −

∇xρ(t, ·)

∂zρ(t, ·)
∂z
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and that κt has been defined in (19).
If we set κ̂t(x, y) = (x, κ(t, x, y)) then κ̂t is a bijective map from the space H1,0(Ω̃)

(defined as in Proposition 3.2) to the space H1,0(Ω(t)). Indeed near the top boundary
(z ∈ (−2, 0)) this follows from the classical invariance of the usual space H1

0 by a W 1,∞-
diffeomorphism, while, near the bottom, our diffeomorphim is of classH∞ hence preserves
the space H1,0.

Now we fix t0 ∈ I, we take ε ∈ R \ {0} small enough and we set for t ∈ I





F (t) =

∫∫

Ω(t)

∇x,yu(t, x, y) · ∇x,yθ(x, y)dxdy

H(t) = −

∫∫

Ω(t)

∇x,yψ(t, x, y) · ∇x,yθ(x, y)dxdy

(37)

where θ ∈ H1,0(Ω(t)) is chosen as follows.
In F (t0 + ε) we take

θ1(x, y) =
u(t0 + ε, x, y)− ũ(t0, x, κ(t0 + ε, x, y))

ε
∈ H1,0(Ω(t0 + ε)).

In F (t0) we take

θ2(x, y) =
ũ(t0 + ε, x, κ(t0, x, y))− u(t0, x, y)

ε
∈ H1,0(Ω(t0)).

Then in the variables (x, z) we have

θ̃1(x, z) = θ1(x, ρ(t0 + ε, x, z)) =
ũ(t0 + ε, x, z)− ũ(t0, x, z)

ε

θ̃2(x, z) = θ2(x, ρ(t0, x, z)) =
ũ(t0 + ε, x, z)− ũ(t0, x, z)

ε
,

(38)

so we see that θ̃1(x, z) = θ̃2(x, z) =: θ̃(x, z).
It follows from (29) that for all t ∈ I we have F (t) = H(t). Therefore

Jε(t0) =:
F (t0 + ε)− F (t0)

ε
= Jε(t0) =:

H(t0 + ε)−H(t0)

ε
.

Then after changing variables as in (17) we obtain

Jε(t0) =
1

ε

2∑

j=1

∫∫

Ω̃

[
Λj(t0 + ε)ũ(t0 + ε, x, z)Λj(t0 + ε)θ̃(x, z)∂zρ(t0 + ε, x, z)

−Λj(t0)ũ(t0, x, z)Λj(t0)θ̃(x, z)∂zρ(t0, x, z)
]
dxdz =:

2∑

j=1

Kj,ε(t0).

(39)

With the notation used in (3.7.1) we can write,

Λj(t0 + ε)− Λj(t0) = βj,ε(t0, x, z)∂z, j = 1, 2. (40)

Notice that since the function ρ does not depend on t for z ≤ −1 we have βj,ε = 0 in this
set.

Then we have the following Lemma.

Lemma 3.9. There exists a non decreasing function F : R+ → R+ such that

sup
t0∈I

∫∫

Ω̃

|βj,ε(t0, x, z)|
2dxdz ≤ ε2F

(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
.
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Proof. In the set {(x, z) : x ∈ Rd, z ∈ (−1, 0)} the most delicate term to deal with is

(1) =:
∇xρ

∂zρ
(t0 + ε, x, z)−

∇xρ

∂zρ
(t0, x, z) = ε

∫ 1

0

∂t

(∇xρ

∂zρ

)
(t0 + ελ, x, z)dλ.

We have

∂t

(∇xρ

∂zρ

)
=

∇x∂tρ

∂zρ
−

(∂z∂tρ)∇xρ

(∂zρ)2
.

First of all we have ∂zρ ≥ h
3 . Now since s− 1

2 >
d
2 ≥ 1

2 , we can write

‖∇x∂tρ(t, ·)‖L2(Ω̃1)
≤ 2‖eδz|Dx|G(η)ψ(t, ·)‖L2((−1,0),H1(Rd))

≤ C‖G(η)ψ(t, ·)‖
H

1
2 (Rd)

≤ C‖G(η)ψ(t, ·)‖
H

s− 1
2 (Rd)

≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
.

(41)

On the other hand we have

‖∇xρ(t, ·)‖L∞(Ω̃1)
≤ C‖eδz|Dx|∇xη(x, ·)‖

L∞((−1,0),Hs− 1
2 (Rd)

+ ‖∇xη∗‖L∞(Rd)

≤ C′‖η(t, ·)‖
H

s+1
2 (Rd)

+ ‖∇xη∗‖L∞(Rd) ≤ C”‖η(t, ·)‖
H

s+1
2 (Rd)

by (15). Eventually since

∂z∂tρ = eδz|Dx|G(η)ψ + (1 + z)δeδz|Dx||Dx|G(η)ψ,

we have as in (41)

‖∂z∂tρ(t, ·)‖L2(Ω̃) ≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
. (42)

Then the Lemma follows.

Thus we can write for j = 1, 2,

Kj,ε(t0) =

4∑

k=1

∫∫

Ω̃1

Ak
j,ε(t0, x, z)dxdz,

A1
j,ε(t0, ·) = Λj(t0)

[ ũ(t0 + ε, ·)− ũ(t0, ·)

ε

]
Λj(t0)θ̃(·)∂zρ(t0, ·),

A2
j,ε(t0, ·) =

[Λj(t0 + ε)− Λj(t0)

ε

]
ũ(t0, ·)Λj(t0)θ̃(·)∂zρ(t0, ·),

A3
j,ε(t0, ·) = Λj(t0 + ε)ũ(t0 + ε, ·)

[Λj(t0 + ε)− Λj(t0)

ε

]
θ̃(·)∂zρ(t0, ·),

A4
j,ε(t0, ·) = Λj(t0 + ε)ũ(t0 + ε, ·)Λj(t0 + ε)θ̃(·)

[∂zρ(t0 + ε, ·)− ∂zρ(t0, ·)

ε

]
.

(43)

In what follows to simplify the notations we shall set X = (x, z) ∈ Ω̃ and we recall that
Λj(t0 + ε)− Λj(t0) = 0 when z ≤ −1.

First of all, using the lower bound ∂zρ(t0, X) ≥ h
3 , we obtain

∫∫

Ω̃

A1
j,ε(t0, X)dX ≥

h

3

∥∥∥∥Λj(t0)
[ ũ(t0 + ε, ·)− ũ(t0, ·)

ε

]∥∥∥∥
2

L2(Ω̃)

. (44)

Now it follows from (40) that

∣∣∣∣
∫∫

Ω̃

A2
j,ε(t0, X)dX

∣∣∣∣ ≤ sup
t∈I

‖
βj,ε
ε

‖L2(Ω̃) sup
t∈I

‖∂zũ(t, ·)‖L∞

z (−1,0,L∞(Rd))‖Λj(t0)θ̃‖L2(Ω̃).
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Since s− 1
2 >

d
2 the elliptic regularity theorem shows that

sup
t∈I

‖∂zũ(t, ·)‖L∞

z (−1,0,L∞(Rd)) ≤ sup
t∈I

‖∂zũ(t, ·)‖
L∞

z (−1,0,Hs− 1
2 (Rd))

≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

) (45)

Using Lemma 3.9 we deduce that
∣∣∣∣
∫∫

Ω̃

A2
j,ε(t0, X)dX

∣∣∣∣ ≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
‖Λj(t0)θ̃‖L2(Ω̃). (46)

Now write
∫∫

Ω̃

A3
j,ε(t0, X)dX =

=

∫∫

Ω̃

Λj(t0 + ε)ũ(t0 + ε,X)βε(t0 + ε,X)∂zθ̃(t0, X)∂zρ(t0, X)dX.

By elliptic regularity, Λj(t)ũ is bounded in L∞
t,x,z by a fonction depending only on

‖(η, ψ)‖
L∞(I,Hs+1

2 (Rd)×H
s+1

2 (Rd))
.

Therefore we can write
∣∣∣∣
∫∫

Ω̃

A3
j,ε(t0, X)dX

∣∣∣∣ ≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
‖∂z θ̃‖L2(Ω̃). (47)

Since
∂zρ(t0 + ε, x, z)− ∂zρ(t0, x, z)

ε
=

∫ 1

0

∂t∂zρ(t0 + λε, x, z)dλ

(which vanishes when z ≤ −1), we find using (45) and (42)
∣∣∣∣
∫∫

Ω̃

A4
j,ε(t0, X)dX

∣∣∣∣ ≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
‖∂z θ̃‖L2(Ω̃). (48)

Now we consider

Jε =
H(t0 + ε)−H(t0)

ε
. (49)

We make the change of variable (x, z) → (x, ρ(t0, x, z)) in the integral and we decompose
the new integral as in (39), (43). This gives, with X = (x, z),

Jε =

2∑

j=1

Kj,ε(t0), Kj,ε(t0) =

4∑

k=1

∫∫

Ω̃

Ak
j,ε(t0, X)dX,

where Ak
j,ε has the same form as −Ak

j,ε in (43) except the fact that ũ is replaced by ψ̃.

Recall that ψ̃(t, x, z) = χ(z)ez|Dx|ψ(t, x). Now we have

‖Λj∂tψ̃‖L∞(I,L2(Ω̃)) ≤ F
(
‖η‖

L∞(I,Hs+1
2 (Rd))

)
‖∂tψ̃‖L∞(I,L2

z((−1,0),H1(Rd)))

≤ F
(
‖η‖

L∞(I,Hs+1
2 (Rd))

)
‖∂tψ‖

L∞(I,H
1
2 (Rd))

≤ F
(
‖η‖

L∞(I,Hs+1
2 (Rd))

)
‖∂tψ‖

L∞(I,Hs− 1
2 (Rd))

since s− 1
2 ≥ 1

2 . Using the equation (12) on ψ, and the fact that Hs− 1
2 (Rd) is an algebra

we obtain

‖Λj∂tψ̃‖L∞(I,L2(Ω̃)) ≤ F
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd))×H

s+1
2 (Rd))

).
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It follows that we have
∣∣∣∣
∫∫

Ω̃

A1
j,ε(t0, X)dX

∣∣∣∣ ≤ F
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
‖Λj(t0)θ̃‖L2(Ω̃). (50)

Now since

‖Λj(t0)ψ̃(t, ·)‖L2
z((−1,0),L∞(Rd)) ≤ F(‖η‖

L∞(I,Hs+1
2 (Rd))

)‖ψ̃(t0, ·)‖
L2

z((−1,0),H
d
2
+ε(Rd))

≤ F(‖η‖
L∞(I,Hs+1

2 (Rd))
)‖ψ‖

L∞(I,Hs+1
2 (Rd))

we can use the same estimates as in (46), (47), (48) to bound the terms Ak
j,ε for k = 2, 3, 4.

We obtain finally

∣∣∣∣
H(t0 + ε)−H(t0)

ε

∣∣∣∣ ≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

) 2∑

j=1

‖Λj(t0)θ̃‖L2(Ω̃). (51)

Summing up using (43), (44), (46),(47),(48), (51) we find that, setting

Ũε(t0, ·) =
ũ(t0 + ε, ·)− ũ(t0, ·)

ε
,

there exists a non decreasing function F : R+ → R+ such that for all ε > 0

2∑

j=1

sup
t0∈I

‖Λj(t0)Ũε(t0, ·)‖L2(Ω̃) ≤ F
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
.

Since ũ(t, ·) ∈ H1,0(Ω̃), the Poincaré inequality ensures that

∥∥∥Ũε(t0, ·)
∥∥∥
L2(Ω̃)

≤ C
(
‖(η, ψ)‖

L∞(I,Hs+1
2 (Rd)×H

s+1
2 (Rd))

)
. (52)

It follows that we can extract a subsequence (Ũεk) which converges in the weak-
star topology of (L∞ ∩ C0)(I,H1,0(Ω̃)). But this sequences converge in D′(I × Ω̃) to
∂tũ. Therefore ∂tũ ∈ C0(I,H1,0(Ω̃)) and this implies that ∂tũ(t0, ·, κ(t0, ·, ·)) belongs to
H1,0(Ω(t0) which completes the proof of Lemma 3.7.

3.7.2 Proof of Lemma 3.8

Let ϕ ∈ C∞
0 (Ω) and set

vε(t, x, y) =
1

ε
[ũ(t+ ε, x, κ(t+ ε, x, y))− ũ(t+ ε, x, κ(t, x, y))],

wε(t, x, y) =
1

ε
[ũ(t+ ε, x, κ(t, x, y))− ũ(t, x, κ(t, x, y))],

Jε =

∫∫

Ω

vε(t, x, y)ϕ(t, x, y)dtdxdy, Kε =

∫∫

Ω

wε(t, x, y)ϕ(t, x, y)dtdxdy,

Iε = Jε +Kε.

(53)

Let us consider first Kε. In the integral in y we make the change of variable κ(t, x, y) =
z ⇔ y = ρ(t, x, z). Then setting ϕ̃(t, x, z) = ϕ(t, x, ρ(t, x, z)) and X = (x, z) ∈ Ω̃ we
obtain

Kε =

∫∫

I

∫

Ω̃

ũ(t+ ε,X)− ũ(t,X)

ε
ϕ̃(t,X)∂zρ(t,X)dtdX.
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Since ρ ∈ C1(I × Ω̃) we have ϕ̃ · ∂zρ ∈ C0
0 (I × Ω̃). Now we know that the sequence

Ũε =
ũ(·+ε,·)−ũ(·,·)

ε
converges in D′(I× Ω̃) to ∂tũ. We use this fact, we approximate ϕ̃ ·∂zρ

by a sequence in C∞
0 (I × Ω̃) and we use (52) to deduce that

lim
ε→0

Kε =

∫

I

∫∫

Ω̃

∂tũ(t,X)ϕ̃(t,X)∂zρ(t,X)dtdX.

Coming back to the (t, x, y) variables we obtain

lim
ε→0

Kε =

∫∫

Ω

∂tũ(t, x, κ(t, x, y))ϕ(t, x, y)dtdxdy. (54)

Let us look now to Jε. We cut it into two integrals; in the first we set κ(t+ ε, x, y) = z in
the second we set κ(t, x, y) = z. With X = (x, z) ∈ Ω̃ we obtain

Jε =
1

ε

∫

I

∫∫

Ω̃1

ũ(t+ ε,X)
(∫ 1

0

d

dσ

{
ϕ(t, x, ρ(t + εσ,X))∂zρ(t+ εσ,X)

}
dσ

)
dtdX.

Differentiating with respect to σ we see easily that

Jε =

∫

I

∫∫

Ω̃

ũ(t+ ε,X)
∂

∂z

(∫ 1

0

∂tρ(t+ εσ,X)ϕ(t, x, ρ(t + εσ,X))dσ
)
dtdX.

Since ũ is continuous in t with values in L2(Ω̃), ∂tρ is continous in (t, x, z) and ϕ ∈ C∞
0

we can pass to the limit and we obtain

lim
ε→0

Jε =

∫

I

∫∫

Ω̃1

ũ(t,X)
∂

∂z

(
∂tρ(t,X)ϕ(t, x, ρ(t,X))

)
dtdX.

Now we can integrate by parts. Since, thanks to ϕ, we have compact support in z we
obtain

lim
ε→0

Jε = −

∫

I

∫∫

Ω̃

∂zũ(t,X)∂tρ(t,X)ϕ(t, x, ρ(t,X))dtdX.

Now since
∂tρ(t,X) = −∂tκ(t, x, y)∂zρ(t, x, z)

setting in the integral in z, ρ(t,X) = y we obtain

lim
ε→0

Jε =

∫∫

Ω

∂zũ(t, x, κ(t, x, y))∂tκ(t, x, y)ϕ(t, x, y)dtdxdy. (55)

Then Lemma 3.8 follows from (53), (54) and (55).

References

[1] Thomas Alazard, Nicolas Burq and Claude Zuily. On the water-wave equations with
surface tension. Duke Math. J., 158(3):413–499, 2011.

[2] Thomas Alazard, Nicolas Burq and Claude Zuily. On the Cauchy problem for water
gravity waves.

[3] Walter Craig and Catherine Sulem. Numerical simulation of gravity waves. J. Com-
put. Phys. 108(1):7383, 1993.

[4] David Lannes. Well-posedness of the water-waves equations. J. Amer. Math. Soc.,
18(3):605–654 (electronic), 2005.

[5] David Lannes. Water waves: mathematical analysis and asymptotics. to appear.

15



[6] Sijue Wu. Well-posedness in Sobolev spaces of the full water wave problem in 2-D.
Invent. Math., 130(1):39–72, 1997.

[7] Vladimir E. Zakharov. Stability of periodic waves of finite amplitude on the surface
of a deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190–194,
1968.

16


