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On the Cauchy problem for gravity water waves

T. Alazard, N. Burq, C. Zuily

ABSTRACT. We are interested in the system of gravity water waves equations
without surface tension. Our purpose is to study the optimal regularity thresholds
for the initial conditions. In terms of Sobolev embeddings, the initial surfaces we
consider turn out to be only of C®%/?*¢_class for some € > 0 and consequently have
unbounded curvature, while the initial velocities are only Lipschitz. We reduce
the system using a paradifferential approach.

1. Introduction

We are interested in this work in the study of the Cauchy problem for the water
waves system in arbitrary dimension, without surface tension.

An important question in the theory is the possible emergence of singularities
(see [15, 16, 24, 56, 19]) and as emphasized by Craig and Wayne [29], it is impor-
tant to decide whether some physical or geometric quantities control the equation. In
terms of the velocity field, a natural criterion (in view of Cauchy-Lipschitz theorem)
is given by the Lipschitz regularity threshold. Indeed, this is necessary for the “fluid
particles” motion (i.e. the integral curves of the velocity field) to be well-defined.

In terms of the free boundary, there is no such natural criterium. In fact, the sys-
tematic use of the Lagrangian formulation in most previous works [8, 52, 53], and
the intensive use of Riemannian geometry tools (parallel transport, vector fields,...)
by Shatah-Zeng [47, 48, 49], Christodoulou-Lindblad [20] or Lindblad [39] seem
to at least require bounded curvature assumptions (see also [23] where a logarithmic
divergence is allowed). In this direction, the beautiful work by Christodoulou—
Lindblad [20], gives a priori bounds as long as the second fundamental form of the
free surface is bounded, and the first-order derivatives of the velocity are bounded.
This could lead to the natural conjecture that the regularity threshold for the water
waves system is indeed given by Christodoulou-Lindblad’s result and that the do-
main has to be assumed to be essentially C?. Our main contribution in this work is
that this is not the case and that the relevant threshold is actually only the Lipschitz
regularity of the velocity field. Indeed (see Theorem 1.2), our local existence result
involves assumptions which, in view of Sobolev embeddings, require only (in terms
of Holder regularity) the initial free domain to be C*/2%¢ for some € > 0.

As an illustration of the relevance of the analysis of low regularity solutions in a
domain with a rough boundary, let us mention that in a forthcoming paper, we shall
give an application of our analysis to the local Cauchy theory of three-dimensional

T.A. was supported by the French Agence Nationale de la Recherche, projects ANR-08-JCJC-
0132-01 and ANR-08-JCJC-0124-01.
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gravity water waves in a canal. This question goes back to the work by Boussinesq
at the beginning of the 20'" century (see [14]).

Our analysis require the introduction of new techniques and new tools. In [1, 2] we
started a para-differential study of the water waves system in the presence of surface
tension and were able to prove that the equations can be reduced to a simple form

(1.1) Ou+Ty - Vu+iTyu = f,

where Ty is a para-product and T, is a para-differential operator of order 3/2. Here
the main step in the proof is to perform the same task without surface tension,
with T, of order 1/2. It has to be noticed however that performing our reduction is
considerably more difficult here than in our previous papers ([1, 2]). Indeed, in the
case with non vanishing surface tension, the natural regularity threshold forces the
velocity field to be Lipschitz while the domain is actually much smoother (C°/2).
In the present work, the velocity field is also Lipschitz, but the domain is merely
C3/2. To overcome these difficulties, we had to give a micro-local description (and
contraction estimates) of the Dirichlet-Neumann operator which is non trivial in
the whole range of C* domains, s > 1 (see the work by Dahlberg-Kenig [30] and
Craig-Schanz-Sulem [27] for results on the Dirichlet-Neumann operator in Lipschitz
domains). We think that this analysis is of independent interest.

Finally, let us mention that, as we proceed by energy estimates, our results are proved
in L2-based Sobolev spaces and our initial data (1, V') which describe respectively the
initial domain as the graph of the function n and the trace of the initial velocity on
the free surface, are assumed to be in Hs 3 (RY) x H¥(R%),s > 1+ 4. The gravity
water waves system enjoys a scaling invariance for which the critical threshold is
Se = % + % (in other terms our well-posedness result is 1/2 above the scaling critical
index).

1.1. Assumptions on the domain. Hereafter, d > 1, ¢t denotes the time
variable and z € R% and y € R denote the horizontal and vertical spatial variables.
We work in a time-dependent fluid domain €2 located underneath a free surface X
and moving in a fixed container denoted by O. This fluid domain

Q={(t,z,y) €0, T x R xR : (z,y) € Qt) },
is such that, for each time ¢, one has

Qt) ={(z,y) € 0 s y <n(t,x)},
where 7 is an unknown function and O is a given open domain which contains a
fixed strip around the free surface
Y ={(t,z,y) €[0,T] xREXR : y=n(t,z)}.
This implies that there exists A > 0 such that, for all ¢ € [0, T,

(12)  Qu(t) = {(:ﬂ,y) ERIXR : q(t,x) —h<y< n(t,x)} c Q).
We also assume that the domain O (and hence the domain €(t)) is connected.

REMARK 1.1. (i) Two classical examples are given by O = R? x R (infinite depth
case) or O = R? x [~1,400) (flat bottom). Notice that, in the following, no
regularity assumption is made on the bottom I' := 9O.

(ii) Notice that I' does not depend on time. However, our method applies in the
case where the bottom is time dependent (with the additional assumption in
this case that the bottom is Lipschitz).
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1.2. The equations. Below we use the following notations
V = (0r )1<ic<ds Vay=(V,0y), A= Zlgigd 8:31,, Agy=A+ 85

We consider an incompressible inviscid liquid, having unit density. The equations by
which the motion is to be determined are well known. Firstly, the Eulerian velocity
field v: Q@ — R solves the incompressible Euler equation

(1.3) Oow+v-Vyv+Vy, P=—ge, divyyv=0 in{,

where —ge, is the acceleration of gravity (¢ > 0) and where the pressure term P
can be recovered from the velocity by solving an elliptic equation. The problem is
then given by three boundary conditions. They are

v-n=0 on I
(1.4) on=+1+|VnPfv-v onX,
P=0 on X,

where n and v are the exterior unit normals to the bottom I' and the free surface X(¢).
The first condition in (1.4) expresses the fact that the particles in contact with the
rigid bottom remain in contact with it. Notice that to fully make sense, this condition
requires some smoothness on I', but in general, it has a weak variational meaning
(see Section 3). The second condition in (1.4) states that the free surface moves
with the fluid and the last condition is a balance of forces across the free surface.
Notice that the pressure at the upper surface of the fluid may be indeed supposed
to be zero, provided we afterwards add the atmospheric pressure to the pressure so
determined. The fluid motion is supposed to be irrotational. The velocity field is
therefore given by v = V, ¢ for some potential ¢: 1 — R satisfying

Ay y¢ =0 in Ond=0 onl.

Using the Bernoulli integral of the dynamical equations to express the pressure, the
condition P = 0 on the free surface implies that

O =0y¢p—Vn-Vo on X,

1
(15) Op+ 5| Vaydl +9y=0 on 3,
Onp =0 on I

where recall that V = V,. Many results have been obtained on the Cauchy theory
for System (1.5), starting from the pioneering works of Nalimov [44], Shinbrot [50],
Yoshihara [57], Craig [25]. In the framework of Sobolev spaces and without small-
ness assumptions on the data, the well-posedness of the Cauchy problem was first
proved by Wu for the case without surface tension (see [52, 53]) and by Beyer-
Giinther in [12] in the case with surface tension. Several extensions of their results
have been obtained by different methods (see [22, 31, 32, 33, 35, 41, 54, 55, 59|
for recent results and the surveys [11, 29, 36] for more references). Here we shall
use the Eulerian formulation. Following Zakharov [58] and Craig-Sulem [28], we
reduce the analysis to a system on the free surface X(t) = {y = n(t,z)}. If ¢ is
defined by

¢(t7 .%') = ¢(t7 xz, 77(’57 1‘)),

then ¢ is the unique variational solution of

Aw,y¢ =0in Q7 (b‘y:n - w, an¢ =0 on I.
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Define the Dirichlet-Neumann operator by

(G(U)T/))(taﬁﬂ) =V 1+ |V’I7|2 an¢|y=n(t,:v)
For the case with a rough bottom, we recall the precise construction later on
(see §3.1). Now (n,) solves (see [28] or [36, chapter 1] for instance)
Oy — G(n)yp =0,
(16) 1 (V- V9 + Gpy)’
2 1+4|Vnl?

1
0tw+gn+§\vw!2— =0.

1.3. The Taylor condition. Introduce the so-called Taylor coefficient
(1.7) a(t,z) = =0y P)(t, z,n(t, x)).

The stability of the waves is dictated by the Taylor sign condition, which is the
assumption that there exists a positive constant ¢ such that

(1.8) a(t,z) > c> 0.

This assumption is now classical and we refer to [11, 20, 21, 37, 52, 53| for
various comments. Here we only recall some basic facts. First of all, as proved by
Wu ([52, 53]), this assumption is automatically satisfied in the infinite depth case
(that is when I' = () or for flat bottoms (when I' = {y = —k}). Notice that the
proof remains valid for any C''*-domain, 0 < o < 1 (by using the fact that the Hopf
Lemma is true for such domains, see [45] and the references therein). There are two
other cases where this assumption is known to be satisfied. For instance under a
smallness assumption. Indeed, if 8¢ = O(g?) and V, ,¢ = O(e) then directly from
the definition of the pressure we have P + gy = O(e?). Secondly, it was proved by
Lannes ([37]) that the Taylor’s assumption is satisfied under a smallness assumption
on the curvature of the bottom (provided that the bottom is at least C?). However,
for general bottom we will assume that (1.8) is satisfied at time ¢ = 0.

1.4. Main result. We work below with the vertical and horizontal traces of
the velocity on the free boundary, namely

B = (0y®)ly=n, V= (Vad)ly=y-
These can be defined only in terms of n and 1 by means of the formulas
V- VUt Gl
L+ V> 7
Also, recall that the Taylor coefficient a defined in (1.7) can be defined in terms
of n,V, B, only (see Section 1.5 below).

(1.9) B V = V¢ — BV,

THEOREM 1.2. Let d > 1, s > 1+ d/2 and consider (no, o) such that

(1) o € H*V2(RY), i € H2(RY), Vo€ HYRY), By e H'(R),
(2) there exists h > 0 such that condition (1.2) holds initially for t =0,
(3) there exists a positive constant ¢ such that, for all x € RY, ag(x) > c.

Then there exists T > 0 such that the Cauchy problem for (1.6) with initial data
(10, %0) has a unique solution (n,v) € C°([0, T7; HSJF%(Rd) X HSJF%(Rd)), such that
(1) we have (V,B) € C°([0,T]; H*(RY) x H*(R?)),
(2) the condition (1.2) holds for 0 <t <T, with h replaced by h/2,
(3) for all 0 <t < T and for all z € R?, a(t,z) > ¢/2.
4



REMARK 1.3. The main novelty is that, in view of Sobolev embeddings, the ini-
tial surfaces we consider turn out to be only of C3/2*¢-class for some ¢ > 0 and
consequently have unbounded curvature.

REMARK 1.4. Assumption 1 in the above theorem is automatically satisfied if

m € HV3(RY), o€ Hi(RY), Vpe H'(RY), Bye H2(RY).

The only point where the estimates depend on ¢ (and not only on 7, V, B) come
from the fact that we consider a general domain without assumption on the bottom.
Otherwise, we shall prove a priori estimates for the fluid velocity and not for the
fluid potential (notice that the fluid potential is defined up to a constant). More
precisely, the H®-norm of 1 is used only in the proof of an estimate (cf. (4.10))
which holds trivially, say, in infinite depth (since the quantity v which is estimated
in (4.10) is 0 in infinite depth). We also refer the reader to Theorem 4.35 of Lannes
[36] for a well-posedness result requiring only that 1 belongs to an homogeneous
Sobolev space.

1.5. The pressure. The purpose of this paragraph is to clarify, for low regu-
larity solutions of the water waves system in rough domains, the definition of the
pressure which is required if one wants to come back from solutions to the Zakharov
system to solutions to the free boundary Euler equation. This definition will also
provide the basic a prior: estimates which will be later the starting point when estab-
lishing higher order elliptic regularity estimates required when studying the Taylor
coefficient a = —0y P |x;. On a physics point of view, the pressure is the Lagrange
multiplier which is required by the incompressibility of the fluid (preservation of the
null divergence condition). As a consequence, taking the divergence in (1.3), it is
natural to define the pressure as a solution of

(1.10) Ay yP = —divy (v Vg yv), P ly—p=0.

Notice however that the solution of such a problem may not be unique as can be seen
in the simple case when Q = (—00,0) x R?. Indeed, if P is a solution, then P + cy
is another. Notice also that if P satisfies (1.10), then

1
Agy (P + gy + §|v|2> =0.

DEFINITION 1.5. Let (n,4) € (Wh® n HY2(R9Y)) x HY2(RY). Assume that the
variational solution (as defined in §3.1) of the equation

(1.11) Dpyd =0, ¢ ly—=1,
satisfies

Vaydl* (2 m(x)) € H'2(RY).
Let R be the variational solution of

. 1
A:1:,yR =01nQ, R |y=77: gn + §|V:v,y¢|2 |y=n :

We define the pressure P in the domain € by

1
P(Cﬂ,y) = R(Cﬂ,y) — 9y — §|v$,y¢(xay)|2'

REMARK 1.6. The main advantage of defining the pressure as the solution of a
variational problem is that it will satisfy automatically an a priori estimate (the
estimate given by the variational theory).
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It remains to link the solutions to the Zakharov system to solutions of the free
boundary Euler system (1.3) with boundary conditions (1.4). To do so, we proved
in [3] that if (n, ) is a solution of the Zakharov system, if we consider the variational
solution to (1.11), then the velocity field v = V¢ satisfies (1.3), which is of course
equivalent to

1
(1.12) P =—0i¢— gy = 5|Vaydl”

THEOREM 1.7 (from [3]). Assume that (n,v) € C([O,T];Hs*'%(Rd) X Hs+%(Rd)),
with s > 1/2 + d/2, is a solution of the Zakharov/Craig-Sulem system (1.6). Then
the assumptions required to define the pressure are satisfied, and (1.12) is satisfied,
and the distribution Oy is well defined for fived t and belongs to the space HY()(t))
(see Definition 3.3).

1.6. Plan of the paper. At first glance, Theorem 1.2 looks very similar to our
previous result in presence of surface tension [1, Theorem 1.1]. Indeed, the regularity
threshold exhibited by the velocity field (namely V, B € H*(R%),s > 1 +d/2) is the
same in both results and (as explained above) appears to be the natural one. How-
ever, an important difference between both cases is that the algebraic nature of (1.6)
(and its counter-part in presence of surface tension) requires that the free domain
is 3/2 smoother than the velocity field in presence of surface tension and only 1/2
smoother without surface tension. This algebraic rigidity of the system implies that
in order to lower the regularity threshold to the natural one (Lipschitz velocities),
we are forced to work with C%/2 domains (compared to the much smoother C°/2
regularity in [1]). This in turn poses new challenging questions in the study of the
Dirichlet—Neumann operator. Indeed, at this level of regularity the regularity of the
remainder term in the paradifferential description of the Dirichlet-Neumann opera-
tor G(n)y is not given by the regularity of the function 1 itself, but rather by the
regularity of the domain. This is this phenomenon which forces us to work with the
new unknowns V., B rather than with 1.

In Section 2, we wrote a review of paradifferential calculus and proved various tech-
nical results useful in the article. In Section 3 we study the Dirichlet-Neumann
operator. In Section 4, we symmetrize the system and prove a priori estimates. In
Section 5 we prove the contraction estimates required to show uniqueness and stabil-
ity of solutions. In particular we prove a contraction estimate for the difference of two
Dirichlet-Neumann operators, involving only (in terms of Sobolev embedding) the

Cz-norm of the difference of the functions defining the domains (see Theorem 5.2),
while in Section 6 we prove the existence of solutions by a regularization process.

Acknowledgements. We would like to thank the referees for their comments which
led to a better version of this paper.

2. Paradifferential calculus

Let us review notations and results about Bony’s paradifferential calculus. We refer
to [13, 34, 42, 43| for the general theory. Here we follow the presentation by
Métivier in [42].

2.1. Paradifferential operators. For k € N, we denote by W*>(R?) the
usual Sobolev spaces. For p = k+ 0, k € N,o € (0,1) denote by W»>(R) the
space of functions whose derivatives up to order k are bounded and uniformly Holder
continuous with exponent o.
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DEFINITION 2.1. Given p € [0,1] and m € R, F?(Rd) denotes the space of locally

bounded functions a(x, &) on R x (R%\0), which are C° with respect to & for &€ #0
and such that, for all o € N and all € # 0, the function z — ag‘a(x,g) belongs

to WP>(R%) and there exists a constant C,, such that,
1 Qo m—|x

Given a symbol a, we define the paradifferential operator T, by

—

(2.1) Tou() = (2m)~ / X(€ =0, m)@(E — n, myb(n)a(n) dn,

where @(0,¢) = [ e @%(x,&)dx is the Fourier transform of a with respect to the
first variable; x and ¢ are two fixed C'*° functions such that:

1 1
(2.2) Y(m) =0 for gl <+, W) =1 for |n| =7,
and x(#,n) satisfies, for 0 < €7 < €3 small enough,
x@n) =1 if 0| <einl, x(@n)=0 if [0]>ezn|,

and such that
v(0,n) :

F5 05X (0,m)| < Ca (1 + [y 12117,

Since we shall need to work with paraproducts, we chose a cut-off function x such
that when a = a(z), T, is given by the usual expression in terms of the Littlewood-
Paley operators. Namely, the function xy can be constructed as follows. Let k €
C&°(RY) be such that

k(#) =1 for |0] <1.1, k(#) =0 for |6] > 1.9.
Then we define x(6,7) = 3720 kr_3(0)¢r(n), where
k() = k(27%0) for k € Z, 0o = Ko, and @ = kp — kp_1 Tfor k> 1.

Given a temperate distribution u and an integer k£ in N we also introduce Spu and
Agu by Sku = ki (Dy)u and Agu = Spu — Sk_qu for k > 1 and Agu = Spu.

2.2. Symbolic calculus. We shall use quantitative results from [42] about
operator norms estimates in symbolic calculus. Introduce the following semi-norms.

DEFINITION 2.2. Form e R, p € [0,1] and a € F:,”(Rd), we set
(23  MPa)= s sw [0+ "0gal,6)| .
8 lal<2(d+2)+p |¢[>1/2 ¢ Wees (Re)

DEFINITION 2.3 (Zygmund spaces). Consider a Littlewood-Paley decomposition: u =
2210 Aqu (with the notations introduced above). If s is any real number, we define

the Zygmund class C5(R?) as the space of tempered distributions u such that

[ull s == sup 2% [[Aqu|| o < +o0.
q

REMARK 2.4. Recall that C%(R?) is the Holder space WS> (R?) if s € (0, +-00) \ N.

DEFINITION 2.5. Let m € R. An operator T is said to be of order m if, for all n € R,
it is bounded from H* to HF™™.

The main features of symbolic calculus for paradifferential operators are given by
the following theorem.
7



THEOREM 2.6. Let m € R and p € [0,1].

(i) If a € TP(RY), then T, is of order m. Moreover, for all p € R there exists a
constant K such that

(2.4) I Tall pru s pru—m < K Mg (a).

(17) If a € PZL(Rd), be F;”,(Rd) then T,Ty, — Ty, is of order m +m’ — p. Moreover,
for all w € R there exists a constant K such that

(2.5) NTaTy = Tabll g < KM (a) MG (b) + K Mg" (@) M" (b).

(7i1) Let a € F;”(Rd). Denote by (T,)* the adjoint operator of T, and by a the
complex conjugate of a. Then (T,)* —Tg is of order m — p. Moreover, for all ju there
exists a constant K such that

(2.6) I(Te)* = Tall s pru—m+o < KM (a).

We shall need in this article to consider paradifferential operators with negative
regularity. As a consequence, we need to extend our previous definition.

DEFINITION 2.7. For m € R and p € (—00,0), F?(Rd) denotes the space of distri-
butions a(z,€) on R x (R?\ 0), which are C° with respect to & and such that, for
all o« € N and all € # 0, the function x d¢a(z,§) belongs to CL(R?) and there
exists a constant C,, such that,

1 —la
(27) vIEl > 5, (|08l O)llgp < Call+ el
For a e I, we define
m _ 3 3 la|l—m qor (.
@8 M@= s s [0 ogaGo)

|la[<2(d+2)+|p| [§]=1/2

2.3. Paraproducts and product rules. If a = a(x) is a function of x only, the
paradifferential operator T, is called a paraproduct. A key feature of paraproducts
is that one can replace nonlinear expressions by paradifferential expressions up to
smoothing operators. Also, one can define paraproducts T, for rough functions a
which do not belong to L>®(R?) but merely to C;™(R%) with m > 0.

DEFINITION 2.8. Given two functions a,b defined on R® we define the remainder

R(a,u) = au — Tyu — Tya.

We record here various estimates about paraproducts (see chapter 2 in [10] or [18]).

THEOREM 2.9. i) Let o, € R. If a+ 3 > 0 then

(2.9) 1RG0 s gy < K oo ey

(2.10) ”R(aaU)HHa+6(Rd) <K Ha”cg(Rd) HUHHB(Rd) :
it) Let m > 0 and s € R. Then

(2.11) [ Taull gro-m < K |lal| gm [l s -

i11) Let s, s1,82 be such that s) < so and sy < s1 + s2 — %, then
(2.12) [Taull oo < K llall oy ull ges -

By combining the two previous points with the embedding H#(R%) c C¥ —d/2 (RY)
(for any € R) we immediately obtain the following results.
8



PropoSITION 2.10. Let r,u € R be such that v+ p > 0. If v € R satisfies

d
vy<r and 'y<7°+u—§,

then there exists a constant K such that, for all a € H"(R%) and all u € H*(RY),
law = Toull g < K [lall g [l g -

COROLLARY 2.11. i) Ifu; € H%(R?) (j = 1,2) with s, + s2 > 0 then

(2.13) lurue|| o < K [Jwal] gy (2]l sz

if so <85, 7 =1,2, and 5o < 51+ 52 — d/2.
it) (Tame estimate in Sobolev spaces) If s > 0 then

(2.14) luruz|l s < K (Juall s luzllpoe + lluall g lluzll )
i11) Let p,m € R be such that p,m >0 and m ¢ N. Then
(2.15) luruall g < K (luallpoo luzll e + luzllgom luallgon)-

iv) Let s > d/2 and consider F € C*(CY) such that F(0) = 0. Then there exists
a non-decreasing function F: Ry — Ry such that, for any U € H5(RH)N,

(2.16) IE@) s < FIU o) 1T g -

PROOF. The first two estimates are well-known, see Hérmander [34] or Chemin
[18]. To prove iii) we write ujug = Ty, uo + Ty,ur + R(ug, ug) and use that

[Ty w2l g < N ll oo [l o (see (2.4)),
[T vl S Nuzlloom luall em (see (2.11)),
[1B(ur, u2) | e S luzllgom [wallgusm  (see (2.10)).

Finally, iv) is due to Meyer [43, Théoreme 2.5 and remarque]. O

Finally, let us finish this section with a generalization of (2.11)

ProrosiTION 2.12. Let p < 0, m € R and a € I.’ZL. Then the operator T, is of
order m — p:

(217) HTGHHS%HS_(m_p) S CM;)TL(a)a HT(I‘

PROOF. Let us prove the first estimate. The proof of the second is similar.
Notice that if m = 0 and a(z,§) = a(x), then (2.17) is simply (2.11). Furthermore,
if a(x,&) = b(z)p(€), then T, = Top(D). As a consequence, using the first step and

the fact that p(§) = ]{\mp(%) we obtain

1 Tall s pro=cm=ry < C[0]

In the general case, we can expand, for fixed z, a(z,&) in terms of spherical har-
monics. Let (hy,)yen+ be an orthonormal basis of L2(S%1) consisting of eigenfunc-
tions of the (self-adjoint) LaplaceBeltrami operator, A, = Aga—1 on L2(S%71), i.e.
Awﬁy = )\,2/%,,. By the Weyl formula, we know that A, ~ cvi. Setting

ho(€) = €7 T (), w:% €40,

cellp [sa-1 [|ze=-

we can write

a(z,§) = Z ay(x)h,(§) where a,(z) = /Sd—1 a(z,w)hy (W) dw.

veN*
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Then Ty, = Y~ cn+ Layh, - Now since we have

)‘lzxkau(x) = Aﬁ}a(x,w)hy(w) dw,
gd—1

taking k = d we obtain for all v > 1,

lasller <57 [ 18balz,@)[fy (@) do < O @)l i,

< C2V72M;;“(a).
Moreover by the Sobolev embedding we have, with € > 0 small

a-1 i
(2.18) < O3\ T < Owrmta < Ot

Pl oo 501y
Therefore by the second step we can conclude that

_3
Tl s re—m-n < C5 > v 2 M} (a).
veN*

This completes the proof. O

We shall also need the following technical result.
PROPOSITION 2.13. Set (D) = (I — A)Y/2.
i) Let s > % + %l and o € R be such that o < 5. Then there exists K > 0 such that
for all Ve WH*(RY) N H3(RY) and u € H‘F%(Rd) one has
D)7 V2 ey < E{IIVIlwsoo@ey + 1V @) Hull ooy -

it) Let s > 1+ % and o € R be such that o < s. Then there exists K > 0 such that
for all V€ H*(RY) and u € H~Y(R?) one has

(D)7 V]ullpzmey < KV [| s (mey 10l o1 (me) -

PRrROOF. To prove i) we write
(D)7, V]ullpe < A+ B, A=|[[(D2)”, Tylullr2, B = [[[{D2)”,V =Tv]ul| 2.
By (2.5) we have A < K||V||yy1,00 ||| gro—1. On the other hand one can write
B < |[(Dz)? (V = Ty)ullr2 + (V' = Tv){Dz)” ul| > = B1 + Ba.
We use Proposition 2.10 two times. To estirrllate By we take y =0, r =s,u =0 — %

To estimate By we take v = 0,7 = s, = —5 and we obtain,

B < K|[Vlasllull oy
To prove ii), to estimate By (resp. By) we use again Proposition 2.10 with v = 0,7 =
s,u=0—1 (resp. y=0,7r=s,u=—1). O

We shall need well-known estimates on the solutions of transport equations.

PROPOSITION 2.14. Let I =1[0,T], s > 1+ % and consider the Cauchy problem
{8tu+V-Vu:f, tel,

2.19
( ) u|t:0 = Up.

We have the following estimates

t
(2.20) [w) || oo (may < [[uol] Lo (meay +/0 £ (o, )| oo (maydor
10



There exists a non decreasing function F : R™ — R such that

t
(2:21) fu®)llz2may < F(IVIrmwreemaey) (luoll L2 +/0 LF(E ) 2wy dt')-

and for any o € [0, s] there exists a non decreasing function F : RT™ — R™ such that
¢
(2.22)  [Ju()ll o ey < F IV 22 1005 ma)) ([0l o (mey +/0 1F @) o may dt’).-

2.4. Commutation with a vector field. We prove in this paragraph a com-
mutator estimate between a paradifferential operator 7}, and the convective deriv-
ative 0 + V - V. Inspired by Chemin [17] and Alinhac [6], we prove an estimate
which depends on estimates on d;p + V' - Vp and not on V p.

When a and u are symbols and functions depending on ¢t € I, we still denote
by T,u the spatial paradifferential operator (or paraproduct) such that for all ¢ € I,
(Tau)(t) = Topyu(t). Given a symbol a = a(t;z,&) depending on time, we use the
notation

M(a) = sup  sup sup [[(1+ [ 0ga(t: 6|

LE[0,T] [a]<2(d+2)+ o] [¢]>1/2 L(R)

Given a scalar symbol p = p(t, z, &) of order m, it follows directly from the symbolic
calculus rules for paradifferential operators (see (2.4) and (2.5)) that,

[T, 0+ Tv - V]ul| o < KAME (01p) + MG (V) IV Iy, ] e

A technical key point in our analysis is that one can replace this estimate by a
tame estimate which does not involve the first order derivatives of p, but instead

LeEMMA 2.15. Let V € C°([0,T); C}+¢(RY)) for some ¢ > 0 and consider a sym-
bol p = p(t,x,§) which is homogeneous in & of order m. Then there exists K > 0
(independent of p, V') such that for any t € [0,T] and any u € C°([0,T]; H™(RY)),

(223)  [|[Tp, 0 + Tv - V]u(t)|| 12 gay
K{ME @) [Vl gase + ME@p+V - Ip) } ()] -

PROOF. Set I = [0,T] and denote by R the set of continuous operators R(t)
from H™(RY) to L?(R%) with norm satisfying

IR 2 (prm may, L2 meyy < K {Mgl(p) VOl gi+e + Mg (Oep + V- Vp)} :
We begin by noticing that it is sufficient to prove that
(2.24) (0 +V V)T, =T,(0,+ Ty -V)+R, ReR.
Indeed, by Theorem 5.2.9 in [42], we have (for fixed )
IV =Tv) - VTpull > S [V Iwree 1 Tpull 2 S TV e MG (2) ull grm
by using the operator norm estimate (2.4). This implies that (V — T v) -VT, € R.

We split the proof of (2.24) into three steps. By decomposing p into a sum of
spherical harmonics, we shall reduce the analysis to establishing (2.24) for the special
case when T}, is a paraproduct. In the first step we prove (2.24) for m =0 and p =
p(t, z). In the second step we prove (2.24) for p = a(t,z)h(§) where h is homogeneous
in £ of order m. Then we consider the general case.

11



Step 1: Paraproduct, m =0, p = p(t,z). In this case MJ(p) = ||p|| . We have
{ O Tyu = Ty,pu + T,0;u,

(2.25)
V -VIiu=V -Ty,u+ VT, -Vu=: A+ B.

Decompose V = Sj_3(V) + S773(V), with
(V)= D0 AV, STV = Y A
k<j—3 k>j—2

With the choice of cut-off function x made in §2.1, given two functions v and a we

have Tyu =3, Sj—3(a)Aju and hence

A= Ay + A,
(2.26) {A1 _ZS] 3(V)S;_3(Vp)Aju ZSJ S3(V)S;_3(Vp)Aju

Let us consider the term As. Since

1592V e < 30 ARVl £ D0 2750 V]| ae < 279049 |V 1o
k>j—2 k>j—2
and ||Sj73(Vp)HLoo <2 lp|| f, We obtain

~

(2:27) 1Al 2 S 279 [Vl gare Pl oo N1l 2 S ME®) 1V [l gree llual 2 -
J
We now estimate A1 = Ay + Ao, with
A11 = Z Sj_g{Sj_g(V) . Vp}Aju,

Z{ SS9 3 S 3]Vp}A u.

Write S;_3(V) =V — SI73(V), to obtain
A1 = Z Sj_g (V : Vp)Aju — Z Sj_g{Sj_g(V) : Vp}Aju = Tv.vpu +I1+11

(2.28)

J J
where
I==) (V-8 s{*V)p})Aju, IT=>> 8; s{S 3V -V)p}Au.
J J
Then
e S 27|73 (V)| o 1A ull
1Pl oo lJull 2 S Pl oo Nlull 2 -
J
Moreover,
1T 2 S D STV oo 1Dl oo 180l 2 S IV cate 1Pl oo lull 2 -
J
Therefore
(2.29) A = Tv.vpu + Ru, Re€R.

In order to estimate A12 we note that one can write

[ST73(V), 8; 3] Vp = [ST73(V), S; s V]p + S5 (ST *(VV)p).
12



Since S;_30) = 2911(2773D) where 1, € C$°(R?) we have
I[S72(V), Sj-3V]pllre < C277(|V || cave[pl oo
Moreover we have

1S;-3(S" > (VV)p) 2o < C27|[V || e Ipl| oo -

It follows that Ajo = Ru with R € R. Consequently, we deduce from (2.28) and
(2.29) that Ay = Ty.vpu + Ru for some R in R. It thus follows from (2.26) and
(2.27) that A = Tv.vpu + Ru with R € R.

We estimate now the term B introduced in (2.25). We split this term as follows:
B=V-(T,Vu)=V->_ 8 3(p)VAju
J
= ZS] 5(V)Sj—3(p)A; Vu + > §973(V)S;_3(p)A;Vu =: By + By,
J
We have

1Ballz < D 572 (V)] oo 1S5-3(0)] oo 145 V]| 2
i

S D27V gree 2 bl pee Nlull e -
J

and hence By = Ru with R € R. To deal with the term By, let us introduce
(2.30) C = TpTV -Vu = Z Sj_g(p)Aj Z Skfg(V) . VAku

j k
Since the spectrum of Si_3(V)-VAgu is contained in {(3/8)2% < |¢] < (2+1/8)2%},
the term A;(Sk_3(V) - VAgu) vanishes unless |k —j| < 3. On the other hand,
for |k —j| <3, Sk_3(V) = S;—3(V) = £32_ 5 Agy;V, and hence we can write C
under the form

C=C14+0Cy,=C1+ Z Sj73(p)Aj{S];3(V) . Z VAku}
J lk—j|<3

where C is given by

ZSJ 3(P)A; Z Z {B4j(V)VAj(u) = Apyj—i(V)VA;_i(u) },

i=14=—1
so that

0 ,
1CIze S D WPl 27705 [V | e 27 ]2
J
which implies that ¢4 = Ru with R € R. To estimate C5, as before we write
Cy = Cy1 4 Coo where

021 —ZS] 3 AJ,SJ 3(V)] Z VAku,

C22 = ZSJ;;; P Sj73(V) . A]’ Z VAku,
J

where (using frequency localization in dyadic annuli and Plancherel formula)

2 2 5-2j 2 j 2 2 2 2
ICallZ2 D Mol 7o 272 V10 27 D 1 ARulZ2 S IpI7eo [V IG0+e NullZe -
' lk—jl<3
13



On the other hand, since A; Z\kfj|§3 A = Aj, we have
022 = Z S];g(V)ijg(p)VAju = Bl.
J

We thus end up with
(2.31) B=T,7Tv-Vu+ Ru, RecR.

It follows from (2.25) and (2.31) that

(2.32) (O +V -V)Tou=Ty(0 +Tv - V)u+ Tpptrv.vpu + Ru, ReR.

The symbolic calculus shows that Ty,,4v.v, € R, which proves (2.24) and concludes
the proof of the first step.

Step 2 : Higher order paraproducts. We now assume that p(t,z,&) = a(t, z)h(&)
where h(¢) = |¢™ h(%) with o € C>(S%"!). Then, directly from the defini-
tion (2.1), we have T}, = T,¢)(Dy)h(D,) where ¢ satisfies (2.2). We have

[1,,00 + Ty - V| = [To,0; + Tv - V](Dy)h(Dy) + T, [¢(Dy)W(Dy), Ty | - V.
We claim that the norm from H™ to L? of the operator in the left hand side is
bounded by
(2.33) Cllallz= IVligi+ + 10w+ V- Vallzeo) [|Al gravega-1y.

To obtain this claim, notice that the norm of the first term in the right-hand side is
estimated by means of the previous step by

Clllallzee [[Viigr+e + 10 +V - Val| oo ) [|A]] oo (ga-1).-
To estimate the second term in the right-hand side we use a sharp version of the
symbolic calculus estimate (2.5), see [42, Theorem 6.1.4], which implies that the
norm of the second term is bounded by C||al|z [|[VV]| ;. H}VLHHd-fQ(Scl—l) . The sharp
version of symbolic result alluded to above asserts that (2.5) holds with the semi-
norm M" (cf. (2.3)) replaced by other semi-norms where the supremum on the

multi-index « is taken for || smaller than d/2 plus an explicit number. In particular
we have the following lemma which suffices to complete the proof of the claim (2.33).

LEMMA 2.16. Set b(§) = |£|m¢(§)ﬁ(%) There exists C' > 0 independent of V and
h such that

IB(D), Ty lull 2 gay < CIVV || oo ey 1l prave sy ] grm—1 mery
for every u € H™ H(RY),

Step 8 : Paradifferential operators. Consider an orthonormal basis (EV)VeN*
of L2(S% 1) consisting of eigenfunctions of the (self-adjoint) Laplace-Beltrami op-
crator, Ay = Aga—1 on L2(S% 1), i.e. Ayh, = A2h,,. By the Weyl formula, we know
that A, ~ cvd. Setting hy, (€) = |¢]™ hy(w), w = €/ [€], € # 0, we can write

p(t,z, &) = Z ay,(t,x)h, (&) where a,(t,x) :/ p(t, z,w)h, (w) dw.

LEN* Sd—1
Since
MEa,(t, ) = AEp(t, 2, w)hy (W) dw,
gd—1
NE@, +V - Vay(t,x) = AE 0y + V- V)p(t, 2, w)hy (w) dew
gd—1

14



taking k = d 4+ 2 we deduce
sup [lay (8, )| oo < CAH T2 MG (p)
tel

sup |0 + V- V)ay (t, )| oo < CASZEDME(Op + V- V).
tel

(2.34)

Moreover, there exists a positive constant K such that, for all v > 1,
(2.35) 1 || ravagga-1y < CATF2
Now we can write

10+ T -V, Tl ull 2 < D (10 + Ty -V, Tayn, 2 -
veN*

So using (2.33) for every v > 1 and the estimates (2.34)—(2.35), we obtain (2.24),

since the sum ,
Z )\g+2>\;2(d+2) - Z ,1-3
v

14
is finite. This completes the proof of the lemma. ]

We have also a Sobolev analogue of Lemma 2.15 which can be proved similarly.

LEMMA 2.17. Let s > 1 +d/2 and V € C°([0,T]; HS(RY)). There exists a positive
constant K such that for any symbol p = p(t,z,§) which is homogeneous in & of
order m € R and all u € C°([0, T]; HT™(RY)),

[T, 0 + Ty - V]u(t)|| o o
< KAMG () IV ()]l g+ + MG" (Oep + V- VD) } [[w(®) || stm (e -

2.5. Parabolic evolution equation. Consider the evolution equation
0w + |Dy|w =0,
where z € R and = € R%. By using the Fourier transform, one easily checks that
1 1
2 =
(2.36) sup |[w(z)] g + (/ w7y d2)? < K [[w(0)] g -
z€[0,1] 0

The purpose of this section is to prove similar results when the constant coefficient
operator |D,| is replaced by an elliptic paradifferential operator.

Given I C R, %y € I and a function ¢ = ¢(z, z) defined on R¢x I, we denote by ¢(z)
the function = + ¢(z,20). For I C R and a normed space E, ¢ € C(I; E) means
that z — ¢(z) is a continuous function from I to E. Similarly, for 1 < p < 400,
¢ € LE(I; E) means that z — [|o(2)|  belongs to the Lebesgue space LP([).

In this section, when a and u are symbols and functions depending on z, we still
denote by T,u the function defined by (Tyu)(z) = T,(;)u(z) where z € I is seen as a

parameter. We denote by F:)”(Rd x I) the space of symbols a = a(z; z, ) such that
2z~ a(z;-) is bounded from I into I'}'(R?) (see Definition 2.2), with the semi-norm

2.37 My (a) = sup sup sup ||(1+ €)Y "m2a(z; -, € .
( ) o (@) z€l |a|<2(d+2)+p |€]>1/2 H( <D el )HW”’“’(Rd)

Given p € R we define the spaces

XM(I) = CY(I; H(RY) N L1 B2 (RY)),

YH(I) = LY HY(RY) + L2(I; HY 2 (RY)).
15
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PROPOSITION 2.18. Letr € R, p € (0,1), J = [20,21] CR and let p € F})(Rd x J)
satisfying

Rep(z;2,8) = cl],
for some positive constant c. Then for any f € Y"(J) and wog € H"(R?), there
exists w € X" (J) solution of the parabolic evolution equation

(239) azw + pr = fa w‘z:zo = Wo,
satisfying
ol sy < K {lwollge + 1 hyr) }

for some positive constant K depending only on r,p,c and ./\/l},(p). Furthermore,
this solution is unique in X*(J) for any s € R.

PROOF. Let r € R. Denote by (-, ) g the scalar product in H"(R%) and chose F}
and Fy such that f = Fy + Fy with

||F1HL§(J;HT) + HF2|| < HfHY'r(J) + 4, 6> 0.

vearhy
Let us consider for € > 0 the equation
(2.40) O,we + e(—A 4+ Id)w. + Thwe = f,  we|z=zy = wo.

Then standard methods in parabolic equations show that for any z; > zp, this
equation have a unique solution in

C%([z0, 21]; H"(RT)) N L?((20, 21); H(RY))

(here we only used that T}, is a Sobolev first order operator). To let € go to zero we
need to establish uniform estimates with respect to e.

Taking the scalar product in H", directly from (2.40), we obtain

5 75 1= (Il + (= A + Td)we (2), we () i + Re(Ty(eywe (2), we () e

<N e llwe () e + 12 (2 w02 ey -

It follows from Garding’s inequality (see [42, Section 6.3.2]) that there exist two
constants C1,Cs > 0 depending only on ./\/lll)(p) such that for any v € H",

Re(Ty(zyu(z), u(z))mr > O u(2)lI7, .y — Co HU(Z)HZHI—TM
for each fixed z € J. Therefore, we obtain
3%, lwe(2) 77 + (= A + Td)we (2), we (2)) i + O lwe (27,14
< EL g lwe () e + 12D ey Twe(2] iy + Co ||ws(2)\|§{r+1_;e :

Integrating in z we obtain that, for all z € [z, 1],

1 z
A2) = 5 {lwe (@) = o)l |+ / e ()32
20

z
—i—Cl/ ng(z' H”L% dz
20
is bounded by
B = 1 gty 1 o ttry + 1Bl gy Bl st
+CszeH

JHT+ By

16



By standard arguments, it follows that

(241)  Jlwel ooy + Ch e IILQ(J gy S < JJwol3-

+ C (1B () + 1B + e |

2))
Finally, to eliminate the last term in the right hand side of (2.41), one notices that

the left hand side controls by interpolation ¢ ||w , for some p > 2,
Yy b | SHLP(JH,AJF 132 p

hence by Hélder in the z variable, there exists k > 0 (depending only on p) such
that if |29 — 21| < &, we have

2
C Jwel]

LQ(J;HT+15

L2(J;H™™ %) L2(J; T

1
£y = §(Hw6HL°° (J;H™) +Ch HwauLg(J Hr+2))

We consequently obtain

[ e R [ < 2 Jwoll7r + O 1 (gopmy + 1F2

L2(JHT+2) - L2 JHT*?))
We can now iterate the estimate between zg + x and zg 4+ 2k, ... to get rid of the
assumption |z; — zg| < k (and of course the constants will depend on z).

By using the equation, we obtain now that (w.) is bounded in X" (J)NCY(J; H"2).
It follows from the Banach—Alaoglu theorem that, up to a subsequence, (w.) con-
verges in the sense of distributions to w € L>(J, H") N L?(.J, H“L%), which satisfies
the equation 0,w+T,w = f. Then, using the equation, we obtain 0,w € Y"(J) which
implies that w € C%([20, 21]; H"(R?)) thanks to the Lemma 2.19 below. Moreover,
by the Ascoli theorem, up to a subsequence, (w.) converges in C°([z0, 21]; H,, ') for
some 1 > 0. Since wgl »—0 = wo we obtain that w|,—o = wp, which completes the
existence part . The proof of uniqueness follows the same steps and we omit it. [

We recall now the following classical lemma (see [40] th.3.1).

LEMMA 2.19. Let I = (—1,0) and s € R. Let u € Lg(I,HS+%(Rd)) such that
O,u € L2(I, HS_%(Rd)). Then u € C°([—1,0], H*(R?)) and there exists an absolute
constant C > 0 such that

sup [u(z, )l s rayy < C(llull ,

9.
S e A

(1H* 3 ( 2(1,H5*%<Rd>>)'

3. The Dirichlet-Neumann operator

We shall prove some elliptic regularity results using a paradifferential approach.

3.1. Definition and continuity. We begin by recalling from [1] the definition
of the Dirichlet-Neumann operator under general assumptions on the bottom. One
of the novelties with respect to our previous work is that we clarify the regularity
assumptions: assuming only that n € WH*°(R%) and ¢ € H 3 (R%), we show how to
define G(n)y and prove that the map

Y € H3(RY) s G(n)y € H™3(RY)
is continuous. Our second contribution is to prove that the map n — G(n) is
Lipschitz (in a proper topology).
The goal is to study the boundary value problem

(3-1) Az,y¢ =0in Q7 (NE - f7 8n¢‘f‘ = 0.
17



See §1.1 for the definitions of €2, %, I'. Since we make no assumption on I', the
definition of ¢ requires some care. We recall here the definition of ¢ as given in [1].

NoTATION 3.1. Denote by Z the space of functions v € C°°(Q) such that V, ,u €
L?(). We then define %, as the subspace of functions u € 2 such that u is equal
to 0 in a neighborhood of the top boundary 3.

PROPOSITION 3.2 ([1, Proposition 2.2]). There exists a positive weight g € L2 (£2),

loc

equal to 1 near the top boundary of 2 and a constant C' > 0 such that for all u € P,
(3:2) [ st lute ) dedy <€ [ [9eyuti )l dody

DEFINITION 3.3. Denote by H'O(Q) the space of functions u on 2 such that there
exists a sequence (uy) € Yy such that,

Voytn — Vayu in L*(Q, dzdy), Uy — u in L2, g(z, y)dzdy).
We endow the space H0(Q) with the norm |u| = ||Vm7yu||L2(Q).

Let us recall that the space H?(Q) is a Hilbert space (see [1]).

We are able now to define the Dirichlet-Neumann operator. Let f € H %(Rd). We
first define an H'! lifting of f in €. To do so let xg € C*°(R) be such that yo(z) = 1
if 2> —1 and xo(z) = 0 if z < —1. We set

¢1($,Z) = XO(Z)6Z<Dz>f(x)’ T € Rdaz <0.

By the usual property of the Poisson kernel we have

Va1l 21,0 xme) < C Hf”H%(Rd) '

Then we set

Y(z,y) =1 (36, y—Tn(:C))’ (z,y) € Q.

This is well defined since  C {(z,y) : y < n(x)}. Moreover since the bottom I' is
contained in {(z,y) : y < n(x) — h}, we see that 1 vanishes identically near T'.

Now we have obviously 9|z = f and since Vn € L>®(R%), an easy computation
shows that 1 € H'(Q) and

(3-3) 1l oy < KA+ lInllwr)1F1] ;3 gay-

Then the map
V= — / Vi - Vg yvdedy
0 ¥

is a bounded linear form on H?(Q). It follows from the Riesz theorem that there
exists a unique u € H%%(Q) such that

(3.4) Vo € HYO(Q), /szv,yu “Vayvdrdy = — /Q Vayth - Vi yvdody.

Then w is the variational solution to the problem
—Agyu=A0zy1p in D'(Q), u =0, Opu =0,
the latter condition being justified as soon as the bottom I' is regular enough.

LEMMA 3.4. The function ¢ = u+ 9 constructed by this procedure is independent

on the choice of the lifting function v as long as it remains bounded in H HQ) and
vanishes near the bottom.
18



PrOOF. Consider two functions constructed by this procedure, ¢pr = up+vy, k =
1,2. Then, by standard density arguments, since 1), — 15 vanishes at the top bound-
ary ¥ and in a neighborhood of the bottom I', there exists a sequence of func-
tions 1, € C§°(£2) supported in a fixed Lipschitz domain Q C Q tending to 1 —ba
in H01(§~2) and hence also in H'9(2). As a consequence, ¢; — 1y € HY(Q2) and
the function ¢ = ¢1 — ¢ is the unique (trivial) solution in H°(Q) of the equation
A y¢ = 0 given by the Riesz Theorem. O

DEFINITION 3.5. We shall say that the function ¢ = u+ 1 constructed by the above
procedure is the variational solution of (3.1). It satisfies

(3.5) / Vaydl? dody < K |2,

for some constant K depending only on the Lipschitz norm of 1.

H3 (R4’

Formally the Dirichlet-Neumann operator is defined by
(3.6) G = V1+[ViP2 |, = 10,0 =Vn-Ve] | _ .
3.1.1. Straightening the free boundary. In what follows we shall set

0 ={(z,y) 1 x € R (x) —h <y < (=)},
(3.7) Qo ={(z,y) € O:y <n(z)—h},
Q=07 UQ,

where O has been defined in section 1.1, and
Q1 ={(z,2) ;xR zeI}, I=(-1,0),
(3.8) Qs = {(z,2) R x (=00, —1] : (w,2 + L +1(x) — h) € Qa},
Q=0 UQ.
Guided by Lannes ([37]), we consider the map (z, z) — p(z, z) from © to R defined
as follows

(3.9) p(z,2) = (14 2)e?*Pelp(z) — —z{e” (14+2)8(Da),, —h} if(z,2) € Qi
. plx,2) =z+1+n()—h if (z,2) € Qy
where § > 0 will be chosen later on.

LEMMA 3.6. Assume n € WH®(R?).

(1) There exists C > 0 such that for every (z,z) € Q we have
Vap(z, 2)| < Cllnlly.ccma)-
2) There exists K > 0 such that, if 0 Loo(Rd) < L we have
Nwteo(RA) > 3K

h h
(3.10) min (1, 5) < O,p(x,2) < mazx (1, 37), V(z, z) € Q.
(3) The map (x,z) — (x, p(x,2)) is a Lipschitz diffeomorphism from Q1 to Q.

PROOF. (1) For any A < 0 the symbol a(¢) = eM& satisfies the estimate
10ga()] < Cal§)™ el where C, is independent on \. Therefore its Fourier trans-
(R?) function whose norm is uniformly bounded. This implies that
) =

M| f|l oo (rey with M independent of A. This proves our claim.
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form in an LY (R

la(D) fll oo mey <



(2) We have in
d.p = h+ (e Py — ) + (1 + 2)8e°* P21 (D, )y — (e7 01+ Palyy _py)

A1
(3.11) + 20 00+2)(Da) (D V.

Since eMMPzly — 5 = §) fol eSMD2) (D Vn dt we can write

Heéz(Dx —0(142)(Dz

"0 =l oo may + 611 P (Dol oo may + e "0 = 1ll Lo (ray

|

+ 5H€75(1+Z)<Dz><Dm>77HL<><>(Rd) < Ko[Inllwieomay <
which proves (2).
(3) Since p(x,0) = n(x), p(x,—1) = n(x) — h our claim follows from (1). O

For later use we state the following result whose proof is straightforward (recall that
the spaces X*(I) are defined in (2.38)).

LEMMA 3.7. Let I = (—1,0). Assume s > % + %l. There exists C' > 0 such that for
every 1 € HSJF%(Rd) we have

(312) [0.p— ]

IVapll

C
< CValal w3y S 75 e sy

Coming back to the case where n is a Lipschitz function, Lemma 3.6 shows that

1 o1
X5T2(1 HT2(R4)’

the map (z, z) — (z, p(x, 2)) is a Lipschitz-diffeomorphism from € to . We denote
by x the inverse map of p:

(z,2) € ﬁa (z,p(z,2)) = (z,y) & (z,2) = (z,k(2,y)), (z,y) €
Let ¢(z,z) = ¢(z, p(z, 2)). Then we have

(3y¢)(x,p(x,z)) = (Al(ﬁ)('%z)v (v$¢)(xap(xvz)) = (A2¢)(xvz)7

1 Vap
A =—08, Ay=V,— ..
1= 550 A2=Va— 5000

(3.13)

If ¢ is a solution of A, y¢ = 0 in Q then qu satisfies
(A2 +ADp=0 inQ.
This yields

(3.14) (ad? 4+ Ay + b- V40, — cd.)dp = 0,
where
1+ \pr\Q pr 1 2
3.15 =— b:=-2 , Cc:= ad;p+ Azp+b-V,0,p).
(3.15) (9.p)? d-p 3zp( g g 2

It will be convenient to have a constant coefficient in front of 92¢. Dividing (3.14)
by a we obtain

(3.16) (0 + aly + B - V0, —~0.)p = 0,
where
0.p)? 0.pV 1
(3.17) o= 0" g g OpVap = — (02 p+al,p+B-V,0.p).

1+ Voo 1+ Va2 T 0

In the coordinates (z, z), according to (3.6) we have

(3.18) Gy =Ul.mo, U =M~ Vup- Ao
20



The following remark will be useful in the sequel. We have
(3.19) 0.U = =V, - ((0:p)A29).
Indeed we can write
0:U = 0:M10 = V0.p - Mo — Vap - 0:126
= (0:p)A3) — V20.p - Aadp + (9-p) (A2 — Vi) A2t
= (0:p)(AT + A3)¢ — V- ((92p)A29).
Since (A2 4+ A2)¢ = 0 we obtain (3.19).
3.1.2. Continuity of the Dirichlet-Neumann operator.
THEOREM 3.8. Let n € WL(R%). Then for all f € H2(RY),

=1+ ’vn‘zan(b’y n(x 3 -Vn- v¢”y n(x

s well defined in H 2 (Rd). Furthermore there exists F : RT — R+ non decreasing
independent of n, f such that

G -3 gy < Flwr e )l

PrOOF. With the preceding notations we have G(n)f = (Ala— Vep- A2$) | =0-

Let us set (7 AuZ Vap - A2$ Then the theorem will follow from Lemma 2.19

with s = —5 and the following inequality where I = (—1,0)

1T 221,22 ey + 10Ul 21,111ty < Flllmllwro map) 11114 (RS’
The estimate on U is a consequence of (3.5), (3.13) and the estimate (1) in Lemma 3.6
on V,p. To estimate 0,U we use (3.19) and the estimate on d,p in Lemma 3.6. [
Notice that, as a by product of the previous proof, in the system of coordinates (z, z),
the variational solution of (3.1), ¢, satisfies
(3.20) ¢ € CU([=1,01: H2(R*) N CL([~1,01; H 3 (R)).
We also state a second basic strong continuity of the Dirichlet-Neumann operator.

THEOREM 3.9. There exists a non decreasing function F: Ry — Ry such that, for
all n; € Wh*(RY), j = 1,2 and dll f € H2(RY),

1(@m) = G|,y < Flomm)llwsoeswro) = mallwr 11y

PrROOF. We use the notations introduced in §3.1.1. Namely, for j = 1,2, x €
R4,z € I := (—1,0) we introduce p;(z, z) and v;(z, z) defined by (3.9),

pi(x,z) = (1+ z)(e‘sz(Dx)nj)(x — z{e (1+2)8¢ D”‘ h}
pj(.%',Z):Z+1+77j—h, lf(l',Z)GQQ,
where §|[7;[|y1.00(ray is small enough for j =1,2.

Notice that we have the following estimates (see Lemma 3.6)
h ~
(Z) azpj > min(la 5)’ (x’ Z) € Q’

(321) (ZZ) va,zp]HLoo(ﬁ) < C(l + HnjHWUX’(Rd))

(111)  |([Va,z(p1 = p2)llLoo (1,000 ma)) < Cllm — n2llwioo(ray-
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Recall also that we have set

i 1 i Va:pi
22 Ni— Lo A—v,—
(3.22) ! 5zpia 2=V 0.pi

It follows from (3.21) that for k = 1,2 we have with Wh* = W12 (R?),
(i) Ap— A} =p30., with suppfy C R x 1,
(i) M Brllpoe (rxmay < F U1, n2)llwrce xwree)lm — n2llw.eo

0.

(3.23)

Then we set ggj(a:,z) = ¢j(z,pj(w,2)) (Where Ay yp; = 0 in Qj, ¢j|s;, = f) and we
recall (see (3.18)) that

(3.24) Gn)f = Ujlomo, U; = Noj — Vapj - Mooy,

LEMMA 3.10. Set [ = (—1,0), v = 51 — 52, and N = (A{,Ag). There exists a non
decreasing function F : RT — R™T such that

(3.25) ”AjUHL2(I;L2(Rd)) < F(I s m2)llwrree oo lm — 772HW17°°HfHH%-

Let us show how this Lemma implies Theorem 3.9. According to (3.24) we have
Uy —Us=(1)+(2)+3)+ (4) + (5) where
(3.26) (1) = Alo, (2) = (AL =ADda,  (3) = —Valps — p2)ASd
(4) = =(Vapa)Abv,  (5) = —(Vap2) (A — A3)do.

The L2(I, L?>(R%)) norms of (1) and (4) are estimated using (3.25) and (3.21). Also,
the L2(I, L?(R%)) norms of (2) and (5) are estimated by the right hand side of (3.25)
using (3.23) and (3.5). Eventually the L?(I, L?(R%)) norm of (3) is also estimated
by the right hand side of (3.25) using (3.21) (éi7) and (3.5). It follows that

(3.27) 1UL = Uall2r,n2y) < F ([0 m2)[lwree xwree) lm = mallwre [ £ 3 -
Now according to (3.19) we have
(3.28) 0.(U1 — Un) = =V - (0:(p1 — p2)Abo1 + (0:p2) (A} — A3)¢1 + (D2p2) Adv).
Therefore using the same estimates as above we see easily that
(3.29)  10-(Ur = U2)ll 21, -1y < F( (1, m2) lwr.cescwroo) [l = m2llwree £, 1
Then Theorem 3.9 follows from (3.27), (3.29) and Lemma 2.19. O

Proor orF LEMMA 3.10. We use the variational characterization of the solu-
tions u;. First of all we notice that ¢; — @2 = u; — ug =: v. Now setting X = (z, z)
and recalling that A* = (A}, AY), we have
(3.30) /~ AT - A0 J;dX = — /~ Af AN J;dX

Q Q -

for all § € H0(Q), where J; = |0, p;|.

Taking the difference between the two equations (3.30), using (3.21) and setting
0 = v = u; — uo one can find a positive constant C' such that

6
/~ AP dX < O A,
Q k=1
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where

Al / | A2 UQ||A1’U| J1 dX A2 / | A2 U||A2’172| JldX
Ag:/JAQ’dQHA%HJl — JldX, A4_/y —A? fHAlvyjl dX,
/ (A} — A?)o|[A2f] Jy dX, Ag = /~ IA2f||A%0||J) — Jo| dX.

Q

Using (3.23), (3.5), (3.21) we can write
| A1] < 1Bl oo (1) 1] oo (1 xrety 1952 | 2 (1mey [A 0] 23

(3.31) 1
< F(llCmsm)llwree xwreo) [ = m2llwree [ F1] 3 1A 0[] 25

Since Ajl- —A? = 8[3;1 A} the term A, can be bounded by the right hand side of (3.31).

Now we have |[J1 — Ja|| oo (1xre) < Cllm — m2l[w1.00(mey and

10201l 2y < FUI G, m2) lwreo o) A ]| 2 gy

So using (3.5) we see that the term As can be also estimated by the right hand side
of (3.31). To estimate the terms Ay to Ag we use the same arguments and also (3.3).
This completes the proof. O

Let us finish this definition section by recalling also the following result which is a
consequence of [1, Lemma 2.9].

LEMMA 3.11. Assume that —3 < a < b < —% then the strip S, = {(z,y) € R¥*1! .
ah <y —n(z) < bh} is included in Q and for any k > 1, there exists C > 0 such
that

1911245, < Il 14
3.2. Paralinearization of the Dirichlet-Neumann operator. In the case

of smooth domains, it is known that, modulo a smoothing operator, G(n) is a pseudo-
differential operator with principal symbol given by

(3.32) A, €) = /(1 + V(@) 2) |6 — (V(a) - )2

Notice that A is well-defined for any C! function 7. The main result of this sec-
tion allow to compare G(7) to the paradifferential operator T\ when 7 has limited
regularity. Namely we want to estimate the operator

R(n) = G(n) — Tx.

Such an analysis was at the heart of our previous work [4] [1, Proposition 3.14]

for “smooth domains” (n € H S+%,s > 2+ %l) Here we are able to lower the
regularity thresholds down to s > % + g. The following results, which we think
are of independent interest, complement previous estimates about the Dirichlet-
Neumann operator by Craig-Schanz-Sulem [27], Beyer—Giinther [12], Wu [52, 53],
Lannes [37].

THEOREM 3.12. Letd > 1, s > %—i—% and % <o < s+ % Then there exists

a non-decreasing function F: Ry — Ry such that, for all n € HS+%(Rd) and
all f € H°(RY), we have G(n)f € H*~Y(R?), together with the estimate

(33 1GOD -1 gty < F Il g ) 1o -
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We also prove error estimates.

PRrROPOSITION 3.13. Letd21ands>%+%. Forany%ﬁagsand any
0 < <1 - 1 d
e < = E<8S— = — —
-2’ 2 2’

there exists a non-decreasing function F: Ry — Ry such that R(n)f := G(n)f—T\f
satisfies

”R(W)fHHU—Hs(Rd) < -F(“UHHH%(R(,Z)) HfHHU(Rd) :

To prove Theorem 3.12 and Proposition 3.13, we shall use the diffeomorphism p
defined by (3.9). Then recall from (3.16) that the function ¢(z,z) = ¢(z, p(x, 2))
satisfies

(3:34) (0 + g + 8- Vod: =10:)0 =0, o = Blymye) =
where the coefficients are given by (3.17), and
1+ |Vp)?, ~ ~

G f = (Md — V- Aad)omo = ( 0.6 —Vp-Vo)| -

0.p

We conclude this paragraph by stating elliptic estimates for the solutions of (3.34).
For later purpose, we will consider the non-homogeneous case. This yields no new
difficulty and will be useful later to estimate the pressure (see Section 4.2). We thus
consider the problem

(3.35) O*v 4+ alv + - Vo,u —y0v = Fy, vl.—0 = f,

where f = f(z) and Fy = Fy(x, z) are given functions. Recall that for u € R, the
spaces X*(I),YH(I) are defined by (see (2.38)):

XH(I) = CUI; H*(RY) 0 L2(1; H* 3 (RY),
YH(I) = LL(I; H*(RY) + L(I; H*~3 (RY)).

Recall that H(R?) is an algebra for o > d/2 and so is C°(I; H? (R?)). Also, using
the tame estimate (2.14), we obtain the following

(3.36)

LEMMA 3.14. Assume that o > % . Then the space X°(I) is an algebra. Moreover
if F: CN — C is a C*®-bounded function such that F(0) = 0 one can find non
decreasing functions F,F, from R to R" such that

IEW)lxe ) < FUl e (rxra) 10 xo (1) < Fr(1U N xe (1y)-

With these notations, we want to estimate the X7-norm of V,.v in terms of
the H°tl-norm of the data and the Y?-norm of the source term. An important
point is that we need to consider the case of rough coefficients. In this section we
only assume that n € HS+%(Rd) for some s > 1/2 + d/2. An interesting point is
that we shall prove elliptic estimates as well as elliptic regularity (in other words,
we do not prove only a priori estimates). Our only assumption is that v is given by
a variational problem, so that

(3.37) V0| < +o0.

X2 ([-1,0)

REMARK 3.15. In the case where v(z,2) = ¢(z,2) = ¢(z, p(x, z)) with ¢ the varia-
tional solution of

Axqub = O’ ¢|y=n - f; an¢ — 0 on F,
then (3.20) together with (3.5) shows that v satisfies the assumption (3.37).
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PROPOSITION 3.16. Letd > 1 and

- 1 n d 1 < 1
s> 5+ 3, 5 SOSs— 5.
Consider f € H°H(RY), Fy € Y°([-1,0]) and v satisfying the assumption (3.37)

solution to (3.35). Then for any zo € (—1,0), Vg v € X7([20,0]), and

1920l e oy < Ul youy) {1 sross + 1 Folly sy + 1Vl oy g )

for some non-decreasing function F: Ry — Ry depending only on o.

To prove Proposition 3.16 we shall proceed by induction on the regularity o.

DEFINITION 3.17. Given o such that —1/2 < o < s—1/2, we say that the property H,
is satisfied if for any interval I € (—1,0],
(3.38)

19220l xe 1y < FUnlgos3) {1 s + 1B llyooagp + 1¥eevll 3y}

for some non-decreasing function F: Ry — Ry depending only on I and o.

With this definition, note that Assumption (3.37) means that property H_, /2 s sat-
isfied. Consequently, Proposition 3.16 is an immediate consequence of the following
proposition which will be proved in Sections 3.3 (see §3.3.1).

ProrosSITION 3.18. Let s > % + %l. For any € such that

1 1 d

. < — - - - —

(3.39) 0<e 5 e<s—5-3,
if Ho is satisfied for some —1/2 < o0 <s—1/2 — ¢, then Hy4e is satisfied.

3.3. Nonlinear estimates. Let us fix ¢ satisfying (3.39), o such that
1 1
——<o0o<s—=-—¢
2 2

and assume that H, is satisfied. We begin by estimating the coefficients «, 3,y
in (3.17) in terms of HnHH“‘*%'

LEMMA 3.19. Let J = [—1,0] and s > 5 + Ql. We have

(3.0 o= 12l e o+ 180 o+ Il gy < F gy

PROOF. According to (3.12), we can write

2
(0:p)° =12+ G with [[Gll oy 0 < Fll s )

Noticing that W =1- 155‘ 7 we obtain
Vpl|? Vpl|?
a—h2:—h2 | p| 2—|—G— | p| -
1+[Vpl 1+[Vpl
and we use Lemma 3.14 with 0 = s — % together with (3.12). The estimates for S
and ~ are proved along the same lines. O

LEMMA 3.20. There exists a constant K such that for all I C [—1,0],

(3.41) [ llyorery < K[ 10=| xo 1)

X3 (1)
where Fy = y0,v.
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PROOF. We shall prove that, on the one hand, if —1/2 <o <s—1— ¢ then
(3.42) 1700l Lrymovey S 1V L2 -1y HBZUHLQ(I;HH%)a
and on the other hand, ifs—l—egags—%—ethen
(3.43) HWazUHLg(I;HP%ﬁ) S ||’7||L2(I;HS*1) ||azUHLoo(I;H0) .
Since s > e+ 3 +d/2,if —1/2 <o <s—1—¢ then

)

1 1 1 d
s—1—|—a+§>0, a+€§a+§, oc+e<s—1, 0+€<s—1+a+§—§

and hence the product rule in Sobolev spaces (2.13) implies that
17(2)020(2)l go+e < V() o1 100(2)] vy -

Integrating in z and using the Cauchy-Schwarz inequality, we obtain (3.42). On the

other hand, if —e <o <s— % — ¢ then one easily checks that

1 1 1 d
s—140>0, 0—§+€§a, 0—§+€§s—1, 0—§+5<s—1+0—§,

and hence the product rule (2.13) implies that

V(2)0:0 () o-11e S V() o1 1820(2) || o -
Taking the L2norm in 2, we obtain (3.43). O
Our next step is to replace the multiplication by « (resp. 3) by the paramultiplication
by Ti, (resp. Tp).

LEMMA 3.21. There exists a constant K such that for all I C [—1,0], v satisfies the
paradifferential equation

(3.44) 02 + ToAv + Tp - Vo,u = Fy + Fy + F,
for some remainder

(3.45) F=(Ty —a)Av+ (Tg — ) - VO,v
satisfying

(3.46)

1Ballyrsen < K {1+ fla =02 oy o + 180y g } IVl

PRrROOF. According to Proposition 2.10, we have
law = Taull g+ S llall g llull go s

provided that 7, i,y € R satisfy

d
(3.47) r+upu>0 y<r and7<r+,u—§.

Since s > e+1/2+d/2, if —1/2 < 0 <s— 1 — ¢ then

1 1
s+0—§>0, oc+¢e<s, J+€<S+U—§—

and hence (3.47) applies with

d
2

y=o0+¢, r=8, pUu=0—-_.



This implies that if —1/2 <o <s— % — ¢ then

h
a— LN/ —

1(Ts = BYVO:ll iy g provey S MBl o1y VO]
which yields
1Fallyoseqty < WBsllpagraresey S {1+l = 22l )+ 181 ey gy 1Vl o

This concludes the proof. ]

|(Ta = @) A0l s gaey S (1+

(3.48)

;H"_%)’

Our next task is to perform a decoupling into a forward and a backward parabolic
1

evolution equations. Recall that by assumption n € H*"2(R?) with s > e+1/2+d/2.

In particular, n € C}*+¢(R4).

LEMMA 3.22. There exist two symbols a, A in TL(R? x [~1,0]) and a remainder F
such that,

(349) (@ — Ta)(az — TA)?} = Iy + F1 + F> + Fj,
with

(3:50) ME(@) + MEA) < F (Il ),

and

||F3HL2(I;H07%+E) S ‘7:(||77HH5+%) HVIHZUHLQ(I;HG*F%) ’
for some non-decreasing function F: Ry — Ry
PrOOF. We seek a, A satisfying
a(z2,OA(z2,6) = —a(z,2) [§°, a(z2,€) + A(z2,€) = —iB(x,2) - €.
We thus set
1, . 2 1, 2
(351) a=5(~if6—\Aalef ~ (8-6)2), A= (-ifer\/aalel - (8-6)?).
Directly from the definition of «, 8 (3.17), note that

>0 \J1ale? - (8-6? = cll.

According to (3.40) the symbols a, A belong to I'}(R? x [~1,0]) and they satisfy the
bound (3.50). Therefore, we have

(3.52) (9 — Tu)(0> — Ta)v = 02v — TV O,v + Ty Av + F3, F3 = Ryv + Ryv,

where

Ro(z) = a(z)TA(z) — TaA, Rl(z) = _TazA(z)'
According to Theorem 2.6, applied with p = ¢, Ry(z) is of order 2 — ¢, uniformly in
€ [-1,0]. On the other hand, since

O.p € LX((~1,0) H*" %), 8%pe L®((~1,0); H*2),
according to (2.13) we have
0:0,0: € L*((~1,0); H*"2) € L®((~1,0):C5 7).

Therefore 9,A € TL_;(R? x [~1,0]). As a consequence, using Proposition 2.12, we
get that Ry(z) is also of order 2 —e. We end up with

sup IR0 () gty e+ [1RL () | gz e < F (Il ey )-
ze|—1,
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Now we notice that, given any symbol p and any function wu, by definition of parad-
ifferential operators we have T,u = T,(1 — ¥(D,))u for any Fourier multiplier (1 —
U(D,)) such that (&) = 0 for |£| > 1/2. This means that we can replace HU(Z)HHU+%

by ||Vv(z)]..,.1. We thus obtain the desired result from Lemma 3.21. O
HoT2

3.3.1. Proof of Proposition 3.18. We shall apply Proposition 2.18 twice. At first
we apply it to the forward parabolic evolution equation d,u — T,u = F (by def-
inition Re(—a) > c¢|{|). This requires an initial data on z = —1 that might be
chosen to be 0 by using a cut-off function, up to shrinking the interval I. Next we
apply it to the backward parabolic evolution equation d,u — Tqu = F (by defini-
tion Re A > ¢[¢|). This requires an initial data on z = 0 (which is given by our
assumption on f) and this requires also an estimate for the remainder term F which
is given by means of the first step.

Suppose that H, is satisfied and let Iy = [{o,0] with (p € (—1,0). Then
1Va20l oy < FUnN o )N o + 1 Eollyo 1,0 + Va2l

We shall prove that, for any 0 > (; > (o,

e RIETIR
IV 20l xoeqier 0y < FUM e )N pros1se + 1F0llyove 1)

+ ||V:v 2l

(3.53)
X~3(- 1,0])}'

Introduce a cutoff function x such that x |c<,=0, X |[¢>¢,=1 . Set w := x(2)(0. —
Ty)v. Tt follows from (3.49) for v that d,w — T,w = F’, where

F' = x(2)(Fo + Fy + Fy + F3) + X'(2)(9. — Ta)v.

We have already estimated F}, Fb, F3 and Fj is given. We now turn to an estimate
for (0, — Ta)v. According to (2.4) and (3.50), we have

ITal o gty < F s ) IV oy < F ) IV
which implies that (since L2(Ip; Ht2) C Yo+1(Iy))

[Tavlly o1y < Fnll or 1) VO oo 15150y < FUMN os 1) 1V 20l 50 1) -
Consequently
(3.54) X' (2)(0: = Ta)v|lyosr iy < FUNN 1) 1 Va0l o gy -
Using the previous estimates for F, Fy, F3, it follows from (3.54) that
(3.55) [ lyosery < FUDI o) 1V 20 o (g + 1 Follyosery) -

Since w(x, z9) = 0 and since a € '} satisfies Re(—a(z,£)) > ¢ ¢, by using Proposi-
tion 2.18 applied with J = Iy, p =€ and r = o + €, we have

0l xoezoy < F N d) [ sy
and hence, using (3.55),

(3.56) [l xosezpy < FUl s ) IV 20l 010 + 1 F0llyosery) -

Now notice that on I; := [(1,0] we have x = 1 so that
O, v —Tyv=w forzel.
Therefore the function v defined by v(x, z) = v(x, —z) satisfies

0,0+ T70=—~w forze L =10,—C],
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with obvious notations for @ and A. By using Proposition 2.18 with J = 171, noticing
that v|,—0 = v|,—0 = f, we obtain that

9l ey < Ul e s) I srosree + 1@ yorse zr)-

Using the obvious estimate
Hw||ya+1+s(fl) = ||wHY0+1+E(11) < HwHLg(II;HWr%ﬂ) < ||w||X‘7+E(Il)’
it follows from (3.56) that
[Vl xosrey < FUM or ) Wl ggosise + 1V 20l xo g0y + 10l yoreq))-

We easily estimate 0,v directly from 0,v = Tqv + w (by using (3.56) and the fact
that T4 is an operator of order 1). This completes the proof of (3.53).

This proves that if H, is satisfied then H,. is satisfied and hence concludes the
proof of Proposition 3.18 (and hence the proof of Proposition 3.16).

3.3.2. Proof of Theorem 3.12. Let v be the solution of (3.16) with data v|,—o =
f. By definition of the Dirichlet—-Neumann operator we have

1+ |Vp[?
57 Gn)f = — L
(3.57) () f 9.9

Now, by applying Proposition 3.16 with Fy = 0 and Remark 3.15, we find that if v
solves (3.16), then for any I € (—1,0],

0,v — Vp- Vo | e

(3.58) Va0l xorpy < F Ul por 1) 11 zze -
According to (3.12) and (2.14), we obtain that
1 +|Vp|?
— 00— Vp-Vu < Flnll yor ) 11 1 zze -
H dzp C9([20,0];H 1) H "

As a result, taking the trace on z = 0 immediately implies the desired result (3.33).
3.3.3. Proof of Proposition 3.13. Let 1/2 < o¢ < s. It follows from (3.56) applied
with 0 = 0y — 1 and Fy = 0 that
1X(2)(0:v = Tav) | xo0-14= () < FInll 1o 1) I Va2l oo =119 -

for some cut-off function y such that x(0) = 1. By using Proposition 3.16, we thus
obtain

(3.59) 10:0 = Tav|z=oll goo-1+e < F(Inll o) 1 oo -

The previous estimate allows us to express the “normal” derivative d,v in terms of
the tangential derivatives. Which is the main step to paralinearize the Dirichlet-
Neumann operator.

Now, as mentioned above, by definition of v,

1+ |Vp|?
Gn)f = #BZU —Vp-Vu | o
Set 2
1+ |V
Cl = #, <'2 e vp.
According to (3.12),
1
3.60 _Z | - o
360 o7 1oy gty S P

29



Let
R = Clazv - CZ Vo — (TClazv - TCQVU)'
1 d

Since&“g%and5<s————

5 — 5, we verify that Proposition 2.10 applies with

Yy=o00—1+¢e, 1r=5-— w=o0—1,

55
which, according to (3.60) and (3.58), implies
1R | o gigroo-rvey < F (Ul yerg) 1 oo -

Furthermore, according to (3.59) and (3.60), we obtain

TClaZU T, Vo | TClTAU Ti¢y-ev | z:O) =R’
with

HR”HHU()—HE < .F(HUHH%%) 11l o0 -

Finally, thanks to (2.5), (3.60) and (3.50), we have

1 Te, ) Tac) = Ter ()46 | yop, roo-3 S N6 lyyree M2(A) < F(l[0] iy,

and hence
G f =Teav —Tiev | _o+ Rn)f
where
IR fll oo-1+e < F(Inll or ) 1l oo -
Let
14 |Vp|? . 2
A= A 9]y = TP - (Tn) - €)”
Then

G(n)f =T\ + R(n)f,
which concludes the proof of Proposition 3.13.

4. A priori estimates in Sobolev spaces

In this section, we shall prove a priori estimates on smooth solutions on a fixed time
interval [0, T]. Recall that the system reads

(4.1) Vn- VY + Gn)e)?
oY +gn+ 5 IWJI ——( - 1f|w|g )

As already mentioned, we work with the unknowns B = B(n,¢) and V = V(n, )
defined by

=0.

_ V-V + Gy
L4 V> 7

It follows from Theorem 3.12 that, for all s > 1+d/2 and all (n,v) € Hs+l B
and V are well defined and belong to H°~2. Moreover, we shall prove that if they
belong initially to H® then this regularlty is propagated by the equation. We shall
prove estimates in terms of

M(T) == sup |[|(4(7), B(7),V(7),n(7))]
(43) T7€[0,T]
My = GO BOLY O 0O oy ot -

The main result of this section is the following proposition.
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PROPOSITION 4.1. Let d > 1 and consider s > 1+ %l. Consider a fluid domain such
that, there exists h > 0 such that for all t € [0,T],

(4.4) {(x,y) cRIXR : n(t,x)—h<y<77(t,x)} c Q).

Assume that for any t € [0,T7],

a(t,x) > co,
for some given positive constant co. Then, there exists a non-decreasing func-
tion F: RT — R" such that, for all T € (0,1] and all smooth solution (n,v) of
(4.1) defined on the time interval [0,T], there holds

(4.5) My(T) < F(F(Ms) + TF(Ms(T))).

REMARK 4.2. The assumption (4.4) holds provided that it holds initially at time 0
and ||n — 7 |=0 ||HS+% < ¢, for some small enough positive constant e.

4.1. A new formulation. Since we consider low regularity solutions, various
cancellations have to be used. We found that these cancellations are most easily seen
by working with the incompressible Euler equation directly, and hence we do not
use the Zakharov formulation. This means that we begin with a new formulation of
the water waves system which involves the following unknowns

(4.6) (=Vn, B=0ydly=y, V =Vidly=y, a=—0yPly=,

where recall that ¢ is the velocity potential and the pressure P = P(t,z,y) is given
by

1
(4.7) ~P =06+ 5 Vayol" +gy.
ProroSITION 4.3. Let s > % + %l. We have
(4.8) (Oh+V-V)B=a—y,
(4.9) O+ V- -V)V+al =0,
(4.10) (O +V - V)¢ =GV +CG(n)B +7,
where the remainder term v = ~v(n,v, V') satisfies the following estimate :
(4.11) Wy < UGy )

REMARK 4.4. In the case I' = (), one can see that at least formally v = 0.

PROOF. Directly from the equality dyn = G(n)y and the definition of B and V
(see (4.2)), we have

(4.12) on+V-Vn=1B.

Then, for any function f = f(¢,z,y), by using the chain rule, we check that, with
V= van

((915 + V. V)(f|y:7](t7$)) — (at +V- V)f(t’ xz, 77(75, x))
= [0uf + V-V +0,f(0m+V-Vn)]|
= [(at + vm,y¢ : vm,y)f] | y=n(t,z)’
where we used (4.12) as well as the identity B = dy¢ | y=n(tn)” Applying 9, to (4.7),

this identity yields (4.8). On the other hand, applying J,, to (4.7), the previous
identity gives

y=n(t,x)

O+ V- V)V + (VP)|yey = 0.
31



Since P|,—, = 0, we have
0 =V(Ply=y) = (VP)ly=y + (0y P)ly=nVn,
which yields (4.9).
To derive equation (4.10) on ¢ := Vn we start from
on=B-V-Vn.
Differentiating with respect to z; (for i = 1,...,d) we find that 9;n = 0,,n satisfies

d
(4.13) @+ V -V)0in=0;B - _0;V;d;n.
j=1
Directly from the definitions of B and V' (B = 0y¢|y—y, V = V|y—y), and using the
chain rule, we compute that

d d
0B — > 0:iV;0im = [0:0,06 + 0md29] | P > 0im[0:0;6 + 0md;0,¢] | -
j=1

j=1

d d
= 0,000 = > 0md,0;0] | ,_ + 0[50 = > Omd;dye] |, _, .
j=1 j=1
Therefore

(4.14) (D +V V)0 = [0,0:60 — V- Vrg] | _ +0m[0(8y0) — V- V0,0 |

y=n’
Let 6; be the variational solution of the problem
Ax,yei =0in Q, 9i|y:77 == ‘/Z anﬂl =0onlT.
Then 99
GV =1+ !V??\Za—nl\y:n = (0y0; — V1 - V0;)|y=y-
Then we write
(4.15) (0y—=Vn-V)0;dly—y = G(n)Vi+R;, where R; = (0y—V1-V)(0;¢0—0;)|y=n-
Notice that
Am,yai¢ =01in Q, ai(my:n =V
However, in general 9,,0;¢ # 0 on I'. Our goal is to show that 0;¢ — 6; has a better

regularity. Due to the presence of the bottom we have to localize the problem near X.

Let xo € C®°(R), ;1 € H*(R?) be such that xo(z) = 1if z > 0,x0(2) =0if » < -1
and

n(w) -5 < m@) < (@) - 3.
Set

Ui(z,y) = Xo(%l(x))(amﬁ —0:)(x,y).

We see easily that R; = (0y — Vn - V)U;|y—y,. Moreover U; satisfies the equation

(1.16) Bagl = [Bagxo D) 010 - 0) =

and, with a slight change of notation, we have

h h
={(2,y) 2 eRIn(2) — 5 <y <mla) - ¢}
Moreover by ellipticity (see Lemma 3.11) we have for all @ € N9+1,

(4.18) D2, Fill oo (s sy ) < Call(V: Bl 1, 3
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Now we set y = p(z,2) = (14 2)ed*Pelp(z) — z{e‘s(l“)(D”)n(m) —h} and gi(z,2) =
gi(x, p(x, z)). Since we have taken S|l eth small, it is easy to see that on the image

of S1 1 one has —h < z < —+%. Now, according to section 3.1.1, U; is a solution of
2'5
the problem
9:p)° =
0> A -Vo, —~0, (ZiF

Due to the exponential smoothing and to (4.18), on the support of F; the right hand
side of the above equation belongs in fact to C?((—h,0); H*(R?)). In particular we
can apply Proposition 3.16 with f = 0. It follows that

Va2 Uil F(lnll s ) IE Ny o -1.0y) + Va2 Til

}HS"(R‘I)) X3 (( 170))) '

Notice that accordlng to the constructions of variational solutions the norm of U; in

X_%((—I,O)) is bounded by
Flall ) (1013 + Vil 3):

Since T2
14+ 1|Vn ~
R':[ia—V-VU} ,
=3 6Dy V" Uil |,
we deduce that
VRl < F Ol (10l 3+ Vil y) < F (Il ey Bl V),

since s > % + %. We use exactly the same argument to show that
(4.19) (Oy = V- V)9ydly—n = G(n)B + Ry,
where Ry satisfies the same estimate as I2;. This completes the proof. ]

Following the same lines, we have the following relation between V and B.
PROPOSITION 4.5. Let s > 5 + 4. Then we have G(n)B = —divV + ~ where
Yy < F U, V. B 1)-

1 1
sz HT2xH2ZxH?2

PROOF. Recall that, by definition, B = 9,¢|,—, and V = V¢|,—,. Let 6 be the
variational solution to the problem

Apy0=0, 0ly—, =B, 0,0r=0.
Then G(n)B = (8,6 — V- V6) | =y NOW let 6 = Oy¢. We claim that

(0,0 —Vn-VO) | _ =—divV.
Indeed, on the one hand we have
(0,0 — V- V) = 826 — Vi - V0,
and on the other hand
divv =35 0,V = ( S 2o+ v ay¢> ‘

1<i<d 1<i<d =

Then our claim follows from the fact that A, ,¢ = 0. Now we have
Apy(@—60)=0, (8—0)y=,=0
so, as in the proof of Proposition 4.3, we deduce from Proposition 3.16 that

|@, -0 =),y <Fln.v.B)]
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which is the desired result. O

4.2. Estimates for the Taylor coefficient. In this paragraph, we prove sev-
eral estimates for the Taylor coefficient.

PrOPOSITION 4.6. Letd > 1 and s > 1 + %. There exists a non-decreasing func-
tion F: Rt — RY such that, for all t € [0,T],

(4.20) la(t) = gll ooy < F(In. 0, V. B)(®)]

H’" 2 HS+%xHS+%xH5xHS)'

For 0 <e<s—1—d/2, there exists a non-decreasing function F such that,

(21)  [@a+V VOOl < FI0 VB s et rensns)-

Recall that @ = —0, P|,—, where

P=P(tzy) = (5t¢+ Veo|” + 5 (y‘b) +9y).

The basic idea is that one should be able to easily estlmate P since it satisfies an
elliptic equation. Indeed, since A, 4¢ = 0, we have

Aw,yP == |vi,y¢‘2 :

Moreover, by assumption we have P = 0 on the free surface {y = n(t,z)}. Yet, this
requires some preparation because, as we shall see, the regularity of P is not given
by the right-hand side in the elliptic equation above. Instead the regularity of P is
limited by the regularity of the domain (i.e. the regularity of the function 7).

Hereafter, since the time variable is fixed, we shall skip it. We use the change of
variables (z, z) — (x, p(x, z)) introduced in §3.1.1. Introduce ¢ and @ given by

SD(CC’Z) = ¢(x’p(x’z))’ p(:ﬂ,z) = P(m,p(m,z)) —{—gp(ﬂ:,z),

and notice that )

a—g= —a—paz@ ’z:o .

z
The first elementary step is to compute the equation satisfied by the new unknown v

in {z < 0} as well as the boundary conditions on {z = 0}. Set (see (3.13))

1 Vp
A=(ALAy), A =—0, A=V-—-Po.
( 1, 2)7 1 azpaZ7 2 \Y 8;;[)32

We find that
(A7 4+A3)p=0in —1<2z<0,
(A2 + ADp=— |A2<p| —1<2<0,
(A2 +AHp=0in 2<0,

together with the boundary conditions
p=91, Mp=g—a onz=0,
Aop =V, Ajp=B, on z=0.

According to (3.5) and Remark 3.15, we have the a priori estimate
Vel gy < F s )3

while according to Proposition 3.16
(4.22)

Va0l 1 < F(IRIa o+ MV2E 1y 1)) < FUE s,
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where R(z,z) = R(x, p(z,2)) and R is defined in Definition 1.5.
Expanding A? + A%, we thus find that o solves

D20+ alp+ B -V, p — 0.9 = Fy(z,z) for z <0,

(4.23)
=91 on z =0,

where «, 3,7 are as above (see (3.15)) and where
(4.24) Fy = —a|A2]”.
Our first task is to estimate the source term Fy.

LEMMA 4.7. Let d > 1 and s > 1+ d/2. Then there exists zy < 0 such that

F(lltn, v, v, B)||

||FOHL1([Z(),O};HS_%) S H5+%><HS+%><HS><H5)'

PROOF. Since [A1, As] = 0 we have

(AT + AN =0, (A7 +A3)A1p =0.

Since Agpl.—o = V and Ajp|.—0 = B, it follows from Proposition 3.16 (and Theo-
rem 3.8 which guarantees that V, .o € X~ (zo, 0)) that
Hvx zA]QDHXS 1([20,0]) (||(77, P, V, B)HHH—% XHS-Q—% ><H5><H5) .

By using the estimate (3.12)

R

} HCO([ 0] Hs—j) ||77‘|Hs+2

and the product rule in Sobolev spaces, we obtain

(425) ”A]AkgO”L2([Z(),O],Hb_%) S ‘F(H(Th ¢7 V7 B)|’Hb+% XHS+% XHSXHS).

Since H5 2 is an algebra, according to Lemma 3.19, we obtain

(4.26) || Fol <1—|—Ha—h2H00 [zoo}Hs—*>” M g ooy

< F(lltn, v, V, B)|

L1 ([20,0]; H“_f)
H5+%><HS+%><HS><HS)'

This completes the proof. O

It follows from Lemma 4.7 and Proposition 3.16 applied with 0 = s —1/2 that there
exists zp such that

(427) ”vl' Zp”Xs—j( S f(”(?’],’l/J)HHS+% 7HFOHL1([20,O];H57%))7

where we used the estimate (4.22). According to (4.26), this implies that

(428) Hvx Zp”Xs—— D S f(“(n’w’MB)“HS+%XHS+%XHSXHS)7

which in turn implies that ||a — g||

1, ) ey and (V. B)|l s

1 is bounded by a constant depending only on

S—
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4.3. Paralinearization of the system. Introduce
(4.29) U=V +1T:B.

To clarify notations, let us mention that the ith component (i = 1,...,d) of this
vector valued unknown satisfies U; = V; + Tp,, B. The new unknown U is related to
what is called the good unknown of Alinhac in [4, 1, 5, 7].

To estimate (U, () in Sobolev spaces, we want to estimate ((D,)°U, (Dx>s_% )
in L°°([0,T); L? x L?) where (D,) := (I — A)Y2. However, for technical reasons,
instead of working with ((D,)% U, <D$>s_% (), it is more convenient to work with
U, == (D,)*V + Tp(D,)* B,
(s = (Dq)" (.

ProPOSITION 4.8. Under the assumptions of Proposition 4.1, there exists a non
decreasing function F such that

(4.31) O+ Ty - V)Us + T, = f1,
(4.32) (O + Ty - V)G = TAUs + fa,
where recall that X\ is the symbol
Mtz €) = /(L + [Vt 2) P € — (V) -2,
and where, for each time t € [0, T,
33) AW L),y < F(0ON, ey IV B)O ).

(4.30)

PRrROOF. The proof is based on the paralinearization of the Dirichlet-Neumann
operator (see Proposition 3.13), the Bony’s paralinearization formula for a product,
some simple computations and the commutator estimate proved in Section 2.4.

STEP 1: Paralinearization of the equation
Oy +V-V)V+al =0.
We begin by proving
LEMMA 4.9. We have
(3t + TV . V)V + TaC + Tc(at + TV . V)B = h1 wz’th
1Al g < F (01l sy s 1V, Bl )
PrOOF. Using (2.10) and (2.4) we have V - VV = Ty - VV + A; where A; =
> To,vVj + R(0;V,V;) satisfies
1Al s S NVV oo IV s -
Similarly, (a — g)¢ = Ty—y¢ + T¢(a — g) + R(¢,a — g) where
(4.35) IR(C a =9l s S NSl o172 lla = gll o2,
and where ||a — g|| js—1/2 is estimated by means of (4.20).
Since T¢g = 0, by replacing a by g + (0;B +V - VB) we obtain
TCa = Tg(atB + V . VB)
= Tc(atB +Ty-VB)+ Tc(v —1Ty)-VB.
As in the analysis of A1 above, we have

|(V =Ty) - VBllgs SIIVB|l oo IV s -
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Now we use ||T¢|| ;s S ¢l e S Nnll gstrs2 (since s +1/2 > 1+ d/2) to obtain

—SHs ~

[Te(V =Tv) - VBl e S Il or 1 VBl oo V]I s -

By Sobolev injection, this proves (4.34). O

STEP 2. We now commute (4.34) with (D)5 = (I — A)¥?. The paradifferential
rule (2.5) implies that

ITa; (D) Wgs—1r2 12 S llallwirece S 1+ lla = gllgs-r/z
I7¢, (D) M 172, 2 S Wllwrarzioe S MICH o172 5
IV -V (D) Nprs 2 S IV llwree S IV s -
Consequently, it easily follows from (4.21) and (4.34) that
(O +Tv -V)(Dy)*V +To(Dy)* C+ Te(0r + Ty - V)(Dy)* B = ho
for some remainder hy satisfying ||hal| ;2 < .7-"(H77HHS+%, (V. B)|| 1)
On the other hand, Lemma 2.15 implies that
I[T¢. 0 + Tv - VI{Da)* B(t) 12 < F(In()ll g > 1V, B) (Ol 72
Here we have used the fact that the L> norm of 0;( + V - V( is, since s > % + %l,
estimated by means of the identity (4.13):
10:C +V -Vl oo SNV Bl oo + [[Cll o [IVV ][ oo
SIVBIpee +lnll oy IV oo -

HT2
By combining the previous results we obtain
(O + Ty - V)((D2)*V + Te(Dy)° B) + To(Dy)* ¢ = f1
where f; satisfies the desired estimate (4.33).
STEP 3. Paralinearization of the equation
Oy +V-V)(=GnV +(G(n)B + 7.
Writing (V —Tv) - V({ =Ty¢ -V + Z?:l R(0;¢,V;) and using (2.10) and (2.11), we
obtain
(4.36) IV =Tv) V(| .3 S HVCHC;% Vlgs < ||77HC*% IV | gz -
The key step is to paralinearize G(n)V + (G (n)B. This is where we use the analysis
performed in the previous Section. By definition of R(n) = G(n) — T\ we have
GV + (G(n)B =ToU + F(n,V, B),
where
(4.37) Fy = [T, Th]B + R(n)V + (R(n) B + (¢ — T¢)T)\B.
The commutator [T¢, Ty|B is estimated by means of (2.5) which implies that

1176, BB oy S {MEQM () + M OMION) 1B
Since M?/Q(C) + Mll/z()\) < IC(||77HHS+%) we conclude that

1T, TIBI oy < Ky 1Blle)-
Moving to the estimate of the second and third terms in the right-hand side of (4.37),
we use Proposition 3.13 to obtain that the H* 2-norm of R(n)V and R(n)B satisfy
IRV O,y +IROEO)BO ooy < FIONers > 1V, BYO) 0)-
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Since H"3 is an algebra, the term (R(n)B satisfies the same estimate as R(n)B
does. It remains only to estimate (( —7¢)ThB. To do so we write

(¢ = T¢)INB = T, ¢ + R((, TaB).
Thus (2.10) (applied with & = 0 and 3 = s — 1/2) implies that
(¢ = T)TABI| -3 S ITABllco l€
Using (2.4) this yields
(€~ TOTBI,. g .y
We thus end up with HFQHHSJ < }'(HnHHH%, [(V, B)|| gs)-

5 —

1.
H°™2

< MgV [1Blicy I€]

By combining the previous results, we obtain
(4.38) (3t + Ty - V)C =Th\U + hg,

where Hh?’HHS‘% < .7-"(”77HHS+%, |(V,B)|| j4+)- As in the second step, by commuting

the equation (4.38) with (D,)® we obtain the desired result (4.32), which concludes
the proof. O

4.4. Symmetrization of the equations. We shall use Proposition 4.8. To
prove an L? estimate for System (4.31)-(4.32), we begin by performing a sym-
metrization of the non-diagonal part. Here we use in an essential way the fact that
the Taylor coefficient a is a positive function. Again, let us mention that this as-
sumption is automatically satisfied for infinitely deep fluid domain: this result was
first proved by Wu (see [52, 53]) and one can check that the proof remains valid for
any C'%domain, with 0 < a < 1.

ProOPOSITION 4.10. Introduce the symbols

Y=Va\, q= 2

A’
and set 05 = T,(Cs. Then
(439) oUs + Ty 'VUS—{—TA{HS = I,
(4.40) 0i0s + Ty - VO, — T\ Us = F3,

for some source terms Fy, Fy satisfying
(L), P2 () 22 < F(InO ey > 1V, B) ()]l gs) -

PROOF. Directly from (4.31)—(4.32), we obtain (4.39)—(4.40) with
Fl = fl + (Tfqu - Ta)CS?
Fy =Ty fo+ (T, Ty — T,))Us — [Ty, 8; + Ty - V] (.

The commutator between Tj, and d; + Ty - V is estimated by means of Lemma 2.15:

(441) [Ty 0 +Tv - V]G 2oy
1
2

1 —
= {MO Q(q) ”V”(Jiﬁ + MO (atq v Vq)} x ”CSHH_%(RUI) .

T, f> is estimated by means of (2.4). The key point is to estimate (7,7, —T,)(s and

(T,T» — T,)Us. Since vq = a, the operator T,T, — T, if of order —1/2 since 7 is

a symbol of order 1/2, ¢ is of order —1/2, and since these symbols are CY? in .
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Similarly, since g\ = v, the operator T, T\ — T is of order 0. More precisely, by
using the estimate (2.5) for symbolic calculus, we obtain

ITTy = Tall g0 S MU () My 2 (q) + My (1) M5 % (),

1Ty = Tyl oy e S My (@M + My P (@) ML, (N).

The above semi-norms are easily estimated by means of the C'/2 norms of ¢ = Vp
and a (given by the Sobolev injection and Proposition 4.6). O

We are now in position to prove an L? estimate for (Us, 6;).

LEMMA 4.11. There exists a non-decreasing function F such that
(4.42) 1Usll oo (fo.7;22) + 105l Lo o,71:22) < F(Ms0) + TF(Ms(T)).

REMARK 4.12. The fact that this implies corresponding estimates for the Sobolev
norms of 7,9, V, B is explained below in §4.5.

PRrROOF. Multiply (4.39) by Us and (4.40) by s and integrate in space to obtain

© N2 + 10012} + () + (1) = (1),
where

(1) := (Tv () - VUs(8), Us($) + (T ) - VOs(1), 05(2)),
(I1) := (T t>9 ( ) Us(8)) = {Tyy Us(1), 05(1)),
(I1T) := (F1(t), Us(t)) + (Fa(t), 05(1))-

Then the key points are that (see point (4i7) in Theorem 2.6)
H(TV(t) : V) +TV VHLQ L2~ HV( )HWI"X’ )

and

1Ty = o) Nl 12y e S MiJ5 (1)),

We then easily obtain (4.42). O

4.5. Back to estimates for the original unknowns. Up to now, we only
estimated (Us, 0s) in L>([0, T]; L? x L?). In this section, we shall show how we can
recover estimates for the original unknowns (n, ¢, V, B) in L>([0,T7; H 3 x H5%2 %
H® x H?). Recall that the functions Ug and 65 are obtained from (7, V, B) through:

Us := (D,)°V + T¢(D,)* B,

95 = \/a/_)\<D‘T>S V?]

The analysis is in four steps:

(i) We first prove some estimates for (B, V,n) and the Taylor coefficient a in some
lower order norms.

(ii) Then, by using the previous estimate of 65, we show how to recover an estimate
of the L*°([0,T7, HS+%)—norm of n.

(iii) Once 7 is estimated in L°°([O,T],HS+%), by using the estimate for Ug, we
estimate (B,V) in L*°([0,7]; H%). Here we make an essential use of our
first result on the paralinearization of the Dirichlet-Neumann operator (see
Proposition 3.13). Namely, we use the fact that one can paralinearize the
Dirichlet-Neumann operator for any domain whose boundary is in H* for
some p > 1+ d/2.
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(iv) The desired estimate for v follows directly from the previous estimates for
n,V, B, the identity Vi = V 4+ BVn and the fact that one easily obtain
an L®([0, T); L?)-estimate for ).

We begin with the following lemma.

LEMMA 4.13. There exists a non-decreasing function F such that,

(4.43) 171l Lo (o, 73515 + 1(B, V) < F(Mso) + TF(M(T)).
and, for any 0 <e <s—1-—d/2,

(1.44) lall o o.r305) < F(Ms) + VIF(M(T)).

Lo ((0,THS %) =

PRrROOF. The proof is based on classical Sobolev or Holder estimates for the
solution w of a transport equation of the form dyw + V - Vw = F (these estimates
are recalled in Proposition 2.14).

We begin by proving (4.43). It follows from (4.8), (4.9) and (4.12) that
om+V-Vn=F(n), oV+V.-VV=FV), &B+V -VB=F(B)
with F(n) = B, F(V) = —a¢ and F(B) = a — g. Now by using the estimate (4.20)

for the H 3-norm of a — g together with the product rule in Sobolev spaces, we
have

IEm Ol + IFOV)O oy HIEB)ON oy < FMON ery IV B gs)

for some non decreasing function F. Using the obvious estimate |[Al|1 o7y <
T ||l oo jo,77) We deduce that

IEDI o + IFV oty + B gy ety S TFOT))

The desired estimate for n (resp. for (V, B)) then follows from the estimate (2.22)

in Proposition 2.14 applied with o = s (resp. 0 = s — %)

It remains to prove (4.44). We shall estimate the L{°(L3°)-norm of a := (D, )%a. To
do so, using the estimate (2.20), as above one reduces the proof to proving that the
L} (L%®)-norm of (0 +V - V)a is bounded by TF(My(T)). Again, it is sufficient to
prove that the L{°(L3°)-norm of (9; +V - V)a is bounded by F(Ms(T')). To prove
this estimate, write

(O +V -V)a=(Dy)* (0 +V-V)a+ [V, <D$>€] - Va.

The first term is estimated by means of (4.21). The desired estimate for the second
term follows from the bound

I{D2)" Viall oo ray < KNIV [ sy ol Lo ey
which follows from paraproduct estimates in Zygmund spaces (see [10]). O
LEMMA 4.14. There exists a non-decreasing function F such that

(4.45) 171 oy 4y S F(F(Mao) + TF(M(T))).

PRrROOF. Chose € and an integer N such that

d 1
O<€<S—1—§7 (N+1)€>§

Set R =1 —1T,,1; to obtain
Cs = Tl/qTqu + RCs,
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where recall that (s = (D, )® (. Consequently,
(s=T+R+ -+ RN, Ty¢ + RN

By definition of ¢ = y/a/\, Theorem 2.6 implies that, for all u € R, there exists a
non-decreasing function F depending only on e and inf(; ;yc(0 71xre a(t, ¥) > 0 such
that,

IR g s pricre < F(la@®)ll e s ()l ree),
and

HTl/q(t)HHu+1/2_>Hu < ]:(Hn(t)nwl,oo)-
Therefore

190l .y = NGl -y < F(llal

5 —

e Inllgrre) LN TGl gz + N Gsll -} -
Now it follows from Lemma 4.13 and the Sobolev embedding that
HGHLOO([O,T};Cg) + Hn”Loo([o,T];cﬁf) + HCsHLOO([o,T];H—l) < F(Msyo) +TF(Ms(T)).
On the other hand, it follows from Lemma 4.11 that
ITyCsll oo (0,17 22) < F (Ms0) + TF(Ms(T))-
This implies the desired result. O

It remains only to estimate (V, B).

LEMMA 4.15. There exists a non-decreasing function F such that
(4.46) IV, B oo o771y < F(F (M) + TF(Ms(T))).
PRrROOF. The proof is based on the relation between V and B given by Proposi-

tion 4.5.

STEP 1. Recall that U = V + T;B. We begin by proving that there exists a non-
decreasing function F such that

(4.47) 10l o o 2yt < F(F(Ms) + TF(M(T))).

To see this, write
(D)*U =Ug + [(Dx>S,TC]B

and use Theorem 2.6 to obtain
| [(Dz)®, T¢] B[ 2 S HCHC*% Bl

Since, by assumption, s > 1 + d/2 we have ||(]|
C.

1.
H°2

3 €0y <[l g and hence

10Ul s S WUl 2 + il I

The three terms in the right-hand side of the above inequalities have been already
estimated (see Lemma 4.11 for Us, Lemma 4.13 for B and Lemma 4.14 for n). This
proves (4.47).

STEP 2. Taking the divergence in U = V +T; B, we get according to Proposition 4.5,
Lemma 4.13 and Lemma 4.14:

divU =divV +divIl;B =divV + Ty, ¢B + 1 - VB
= —G)B + Ticetaive B+
= —T\B+ R(n)B + Tic.erdive B+
=TyB+ R(n)B + Taiv¢ B+~
a1

1B

H5TS



where, by notation,
q:=—-X+1¢-¢,
and
7oy < F I,V Bl
According to Proposition 3.13 (with y = s — %) and Lemma 4.13, we deduce
(4.48) T,B =divU — Tgiy¢B — R(n)B — 7.

H5+%xH%xH%)'

Now write
B=TT,B+(I-T.T,)B
q q

to obtain from (4.48)
B=T,divU-T.v+ R_.B
q q

where

(4.49) R :=T) <—Tdiv< — R(n)> + <I _ T%Tq>.

=

Notice now that, according to Lemma 4.14, we control div{ = Anin H*™ 3 c Cy
(since s > 1 + %l) so Tyiv¢ is an operator of order 5. Finally, g = —A+i( - € € F1/2

with M11/2( ) < C(HnHHH%). Moreover, ¢! is of order —1 and we have

Mo (a7 < Clnll e y).

Consequently, according to (2.4) and (2.5), the operator R_, given by (4.49) is of
order —1. applying T(atice)-1 to (4.48), we get

B=W+R_DB
where W :=T1 divU — Tyy satisfies
q

[W{lgs < F(F(Msp) +TF(Ms(T))).

Since R_. is an operator of order —% and since we have estimated the H52-norm
of B (see Lemma 4.13), we conclude that

1Bllgs < F(F(Mso) + TF(M(T))),

and coming back to the relation U = V + T; B we get that V satisfies the same
estimate. U

LEMMA 4.16. There exists a non-decreasing function F such that

HwHLO@(OT H5+2) <]:(-7:( sO)+T]:( s(T )))

PROOF. Since Vi) = V4BV and since the L>°([0,T]; H*~ ) -norm of (Vn, V, B)
has been previously estimated, it remains only to estimate [|¢[| ;00 (10.77.12)-

Since
_ V-V + Gy
L4 [vp2

the equation for 1 can be written under the form

1 1
O +gn+ 5 (VY[ = S (1+ V) B> = 0.
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Therefore, since V = V¢ — BV,
O +V - Vi) = 0 + |VY|* — BV - V¢

1 1
= —gn+ 5 |Ve[* + 51+ |Val*) B2 = BVn - VY

(4.50) 1 1 1
= —gn+ 5|V = BVl — S B?|Val” + S (1 + [Vn[*) B2

1 1
= ~Vv? 4+ =B
gn + 5 + 5

The desired L? estimate then follows from classical results (see Proposition 2.14). [

5. Contraction

In this section we prove a contraction estimate for the difference of two solutions
which implies the uniqueness of solutions and a Lipschitz property in a lower norm
(5!, compared to the #* norm where the a priori estimates are established). This
phenomenon is standard for quasi-linear PDE’s. This choice of norm to establish the
contraction property is the result of a compromise as on the one hand, the highest
the norm is chosen the easiest the non linear analysis will be (as the norm controls
more quantities), while some loss of derivatives are necessary (in particular as far as
the Dirichlet-Neumann operator is concerned), see Remark 5.3.

THEOREM 5.1. Let (n,v;), j = 1,2, be two solutions of (1.6) such that
(njs 5, Vs, Bj) € CO[0, Tols H*2 x H™"2 x H* x HY),

for some fized Ty > 0, d > 1 and s > 1+ d/2. We also assume that the condition
(1.2) holds for 0 <t < Ty and that there exists a positive constant ¢ such that for
all 0 <t < Ty and for all * € RY, we have a;(t,z) > ¢ for j = 1,2, t € [0,T]. Set

MJ = tes[lé%] ‘|(nja¢ja ‘/j, B])(t)||Hs+% XHer% < HSx Hs "’

ni=m-—mn2, Y=vY1—1, V:=Vi-Vo, B=DB— DBs.

Then we have

(51) H(777 ¢7 V7 B)HLOO((O,T);HS_% XHS—% XHS_IXHS_I)

S K(MI?M2)||("7’¢5‘/’B) |t:0 ||H57%><H57%><H571><H571'

Let us recall that

(0r +V;-V)Bj =a; — g,
(5.2) (O +V;-V)Vj+a;¢; =0,

(O +V; - V)G = Gy)V; + GG ) Bj + 5, ¢ = Vi,
where «; is the remainder term given by (4.10). Let

N(T) := sup [(n,4,V,B)({D)]

s—% 5— 3 -1 -1
t€[0,T) H " 2xH> 2xHS~1xHS

Our goal is to prove an estimate of the form

for some non-decreasing function K depending only on s and d. Then, by choosing T’
small enough, this implies N(T") < 2K(M;, M2)N(0) for T smaller than the mini-
mum of Ty and 1/2/C(M;, M), and iterating the estimate between [T7,2T1],..., [T —

Ty, Ty] implies Theorem 5.1.
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5.1. Contraction for the Dirichlet-Neumann. The first step in the proof
of Theorem 5.1 is to prove a Lipschitz property for the Dirichlet-Neumann operator.
This was already achieved in a very weak norm in Theorem 3.9, and here we use
elliptic theory to improve the result.

THEOREM 5.2. Assume that s > 1+ g. There exists a non-decreasing function F
such that, for all ni,mo € H2 and all f € H®, we have

G54) G ~ G s < F(Iommley) I —nell oy [l

5
REMARK 5.3. We were unable to prove a similar estimate in a higher norm. On
the other hand, this estimate is in some sense stronger than Theorem 3.9. Indeed,
in view of Sobolev injections, the r.h.s. here does not control the Lipschitz norm of
(m — m2) which appears in Theorem 3.9.

PROOF. The proof follows closely that of Theorem 3.9 and we keep the notations
pj (see (3.9)), ¢j(x,2) = ¢j(x,pj(x,2)), v = ¢1 — ¢2 introduced there. Recall also
that we have set (see (3.22))

1 ] pri

8.

Notice that, using the smoothing property of the Poisson kernel, we have
5.5 (i) AL —A?=p,0., with supp By C R? x J,where J = [—1,0],

5.5 .

(ZZ) H/BICHLQ(J,Hsfl(Rd)) < f(H(Th? 772)’Hs+%- ><HS+% )Hnl - 772HH5—% (Rd)

Recall that
(5.6) Gnj)f = Ujlz=0, Uj = Mdj — Vapj - A)o;.
Let us set U = Uy — Us. According to Lemma 2.19, Theorem 5.2 will follow from
the following estimate
(5.7)

HUHL2(J,HS*1) + HazUHH(J,HS*Q) < -7:(”(7717772)”H5+%XH5+%) (FalFE

m — 772”}15—% .

According to (3.26) and (3.28), (5.7) will be a consequence of the following one

(5.8)
5

S 1Bl < F(lomm)l ey et 1l
k=1

By =Ajv, By =(Va.p2)A3v, Bs= (Al Ao, Bi=Va.(p1 — p2)Abor,
Bs = (Va2p2) (A} — AD)ér.
Since 5]» is a variational solution, Proposition 3.16 with ¢ = s — 1 show that
19 2By + IG5l ze ey < FAingll o)l

Since s > 1+ 4, it follows the from (3.23) that
5

(5.9) Y Bz ms-1) < FUlOmm)ll ey eed) i = n2ll oy 1 s
1=3

mo—mell .y where

Since
1Bl -1y + 1Ball2egms—y < FUI0sm2)l yery | o )M Vazvll2 i)

using the estimate (5.9), we see that (5.8) will be a consequence of the following
lemma. Therefore Theorem 5.2 will be proved if we prove the following result.
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LEMMA 5.4. We have

Va0l 21y < FUm2)ll ory | gera)im = mall ooy I 11

Proor. Notice that v = 51 — %z is a solution of the problem
(5.10) v+ aiAv+ B -Vou —y0.0=F, v|.0=0
where _ B ~
F = (az —a1)A¢a + (B2 — B1) - V02 — (72 — 71)0:¢2
and o are given by (3.17). We would like to apply Proposition 3.16 with o = s — %
To this end, according to (2.38), we shall estimate the L?(J, H5~2(R%)) norm of F
and the X_%(J) norm of V, ,v.

Estimate on F: Since s > 1 + %l (thus 2s — 3 > 0) we may apply (2.13) with s; =
s—2,89 =s5—1,5 =5—2. We get

[ —aadal| , < Kl = allpae A
61 - 625030, 0 < KNS = Bellzy VO3]
H(% — 72)0- b L2 e 2 < K v =2l g2 ms2) z¢2H (JH-1)

Then, using the product rule in Sobolev space (2.13), and (3.12), we obtain

(5.11)  lar = a2l g2y ge—1y + 181 = Ball 2y ms—1y + 11 = Y2l 2y -2y
< F(mm)l vy eey) I — el oy -

Moreover from Proposition 3.16 with ¢ = s — 1 we have

|70 ... CUml o) 1F 1

Hs 1)
It follows that

(512 1 Flems2 < Fmm)ly) I —nell oy 1l

Estimate of ||V, ZUHX_E 5’ J = (-1,0).

We claim that

(513)  [Vastl oy ) < FUm ey ery) I = 7y 1

Since 5]» = Uj —i—i we have v = U1 — us. We begin by proving the following estimate.
There exists a non decreasing function F: Ry — R such that
(5.14) Ve vllr2 ey < FU0wm2)ll eey  gory) I = m2l oy 11l -

For this purpose we use the variational characterization of the solutions u;. Setting
X = (z,z) we have

(5.15) /~A’m~-Ai9 JidX = —/~Aif-Ai0Ji dXx
Q Q

for all § € HO(), where J; = |0.p;].

Making the difference between the two equations (5.15), using (3.21) and taking
0 = v = u1 — uo one can find a positive constant C' such that

/~ A2 dX < C(A; + -+ Ag)
Q
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where

(4, = /y — A?) | |Aw] Jy dX, Ay = /y — A?)v||A%Uy| JydX,

Ag:/~]A2’zZ2HA2@HJ1—JQ]dX, A4_/y — A%)f||AYal] gy dX,

As= [0 - AT R dX,  Aa= [ NN - i,
Q

It follows from the elliptic regularity theorem that
Ar < Al 25y 181 L2 @ 1902 oo (5, (R
gwww@ummﬁmﬂm%%wﬂmmmmm—mmﬁw
Noticing that A' — A% = 5(0.p1)A} where 3 satisfies the estimate in (3.23) we obtain
Ay < HazmHLoo(ﬁ)”BHH(())HAZTQHLoo(ﬁ)HA17JHL2(§)
Using (3.21), (3.23) and the elliptic regularity we obtain
Az < A% oy F 0Ny reey) I =1l oy 1 e
Now we estimate As as follows. We have
Az < ||A2a2||Loo(())||A2UHL2(())||J1 - J2||L2(g~))-
Then we observe that
171 = J2ll 2y < Cllm — e
IA%0]| ) < ClIAT

HE(RY)
Ullza@)
and we use the elliptic regularity. To estimate A4 and A5 we recall that f = #Da) 1,
Then we have
||53zf||L2(Jde) < HﬁHL?(lde)HazﬂLoo(Jde)-
Since H@szLooude) < “8Zﬂ‘L°°(J,HS*1(Rd)) < HfHHS(Rd)a using (3.23) we obtain
Ay + A5 < J[AM]| o g f(ll(m,nz)HHH%) I = mall oz 111z -

The term Ag is estimated like A3. Since 5<S—35 thls proves (5.14) .

To complete the proof of (5.13) we have to estimate HV%ZUHLOOU r The esti-
mate of HV’CUHLM(JH*%) follows from (5.14)and from Lemma 2.19. To estimate
H@szLw(JHf%) we have to use (5.14) and the equation satisfied by v. If we prove
that

(5.16) 0l ea-ny < F(Immll ey ey) =2l oy 1l

the result will follow again from Lemma 2.19. Recall that v satifies the equation
(5.10).

It follows that we have
HagUHL%I,H*l) < Mla1Av| 251y + 181 - VOl L2051

(5.17)
+ 17100l L2 rm—1) + 1 F 2,51
Since —1 < s — 2 (5.12) yields

VN2 -y < NF Doz < FUOmml ey esa) I = mall oy 1l
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On the other hand, since s — % —1>0and -1 <s— % —1- %l (2.13) show that we
have

HalAvHH(J,H*l) < ||a1HLOO(J7Hs—%)HV:BUHL?(J,L?)

sz < Il g et 100l 22

Hs—%)HaZUHLQ(J,LQ)

Using Lemma 3.19 and (5.14) we obtain eventually (5.16).

Now Lemma 5.4 follows from (5.12), (5.13) and Proposition 3.16 with o = s—3. [

Lemma 5.4 together with (5.8) prove (5.7) which in turn proves Proposition 5.2. [

5.2. Paralinearization of the equations. We begin by noticing that, as in
the proof of Lemma 4.16, it is enough to estimate 7, B, V. Indeed, the estimate

of the L>([0,T7; oy 2)—norm of 1 is in two elementary steps. Firstly, since V; =
Vi — B;jVn;, one can estimate the L>°([0, T7; H53/2)-norm of V4 from the identity

Vip =V + BV + BaVn.
On the other hand, the estimate of the L>°([0,T]; L2)-norm of v follows from the
equation (4.50).
An elementary calculation shows that the functions
(=G—-C, V=W-V, B=DB—5B

satisfy the system of equations

B+Vi-VB+V VB =a,
(5.18) OV +V1-VV +V - VVs +as( +al =0,

HC+ Vo - VC+V -V =Gm)V +GG(m)B +(G(n2)B2 + R+ 7,
where
(5.19) R=[G(m) — G(m)] V2 + G [G(m) — G(n2)] Ba,
and v = y1 — 72, 75 are given by (4.10).
LEMMA 5.5. The differences ¢, B,V satisfy a system of the form

(5.20) Oy +Vi-V)(V +GB) +ax( = fi,
. (O + Vo - V)= G(m)V = G(m)B = fa,

for some remainders such that

1(f1, f2)l < K(My, M2)N(T).

3
Loo([0,T); Hs= ' x H*~2) —

PROOF. We begin by rewriting System (5.18) under the form

B+ Vi-VB=a+ Ry,

WV + V1 -VV + as( + aly = Ro,

OHC+ Vo - VC=Gm)V +GG(m)B+ R+~ + Rs,
where R is given by (5.19), v = 71 — 72 and

Ry =-V-VBy, Ry=-V-VV,, R3=-V-V( +(G(n2)Bs.

From Theorem 5.2 one has
< K(My, Ma)N(T).

HRHLOO(O,T;HS_%) =
a7



Similarly, proceeding as in the end of the proof of Proposition 4.3, we have

19 -, < KM, M)N (D).

On the other hand, since s — 1 > d/2, H*! is an algebra and
V- VBa| o1 < K[Vl o1 VB2l o1 < K[V || o || Ball s

and similarly
IV - VVallgsr < K[V gt [Vall gs -

On the other hand, according to Theorem 3.12 we have

|G (n2) B2l gs—1 < C(lm2ll grs+1/2) | Ball grs »
and hence

ICG(n2) Ball -3 < ClIn2ll grs+1/2) | Ball s [I€

H 2 it I

To estimate V' - V(; we use the product rule (2.13) to deduce

IV-VGl g S KNV VG g < KNV s lm]

s—5 — s—5 — HS+% :

Therefore we have,

[R1ll g1 + [[Ral g1 + [R5

et S C{Iml ey + 1Bl + Vil

for some constant C' depending only on HnjHHS*% A1 Bjll s 5 1Vjll ys- The next step

consists in transforming again the equation. We want to replace a(; in the second
equation by

(.B+V1-VB — R1)(1.
The idea is that this allows to factor out the convective derivative 9 + V; -V .
Writing
(OB +Vi-VB)G = (0 + Vi - V)(BG) — B0+ Vi- V)G
we thus end up with

(5.21) O+ V1 - V)V +GB)+as¢=Ri(1+ B0y + V1 - V)(1 + Ra.

Since
O+ V1 -V)1 = G(m)Vi + G (1) By + 71,
we have

10+ Vi V)Gill s < F(>I0m: Bu VOl yovt e o)

By using this estimate and our previous bounds for R, Ro, we find
11y + B@i+ Vi~ V)G + Rallgos < €l ooy + 1Bllocs + 1V s}

for some constant C' depending only on [|n;|| .1, || B}l ;s , |V}l - Notice that here,

H°T2
as we used the equation satisfied by (1, it was important to have (9; + V1 - V) in the
Lh.s. of (5.21) and not (9;+ V2 - V), and this algebraic reduction required some care
in the previous step. ]
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5.3. Estimates for the good unknown. We now symmetrize System (5.20).
We set I = [0,T].

LEMMA 5.6. Set

A=V [V P)ER — (Vi - €)2,

and
0= Aias, Y= T\/x(v—i-ClB), Y= T\/@C.
Then
(5.22) (9 + Tvn - V) + Tt = g1,
(5.23) (O + Ty, - V) —Typ = g2,
where

191 921 oo 3 o pys- 3y < K, Ma)N(T).

Proor. We start from Lemma 5.5. By using Proposition 2.10, one can re-
place Vi -V by Ty, - V and as( by T5,(, modulo admissible remainders. It is found
that

(5.24) (6,5 + Ty, V)(V + CIB) +T1,,C = f{,
for some remainder f] such that

HﬁHLw(I;Hs—l) < K(My, M2)N(T).

Similarly, one can replace V2-V by Ty, -V. According to Proposition 3.13, with ¢ =
we have

1
2

GOV =TV, s, +1G0B =T B,y s, < KOMN(T),
and according to Proposition 2.10, with y =r =5 — %, w=s— %,
1GG)B —To T Bl ., ey < KN (D).
We deduce
(5'25) (825 + Ty, - V)C -1V - TClT)qB = féa
where

12l -3, < KM, Mo)N(T).
Now, according to Lemma 2.17, (3.32) and (4.10) and we find that
(5260) Ty @+Tv -V,
1 1
< K(My) (MG (VA1) + MG (0 +Vi- V)V A1) < K'(My)
and similarly, according to Lemma 2.17 and (4.21),
(627 I Tyas @+ TV
< K(Mz) (Mg (vaz) + Mg((8; + Va - V)y/az)) < K'(Ms),

which implies

(5.28) (O + Ty, - V)T 5o (V + OB) + T 5 Tan € = 1
(5.29) (O + Ty, - V)T /a5€ — T jaz (T, V — T, Ty, B) = f3,
where

| Cf1 é,)HLOO(I;HS_%) < K(My, My)N(T).
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: d
According to (2.5), (3.32) and (4.20), since s > 1+ §,

T\/XTO,Q — TmT\/@ is of order O,

which implies (5.22). On the other hand, according to (2.5) and (3.32) the op-
erators T¢, T\, — T,¢, and Ty, Ty, — Th,¢, are of order 1/2 (with norm controlled

by K(My), which allows to commute 75, and g, in (5.29)). Now, according

to Proposition 2.10 (with y =r =5 — %,u =s—1)

[T, B = QB oy < K(ML)[[B]l g1

Which implies (5.23) (using again (2.5)). O

Recall that we have set

(530) N(T) = Stléllt) H(n’ ¢’ ‘/’ B)(t)HHsf% ><I{sf% x Hs—1x Hs—1 °

LEMMA 5.7. Set

_3 )

Mluo

N(T) = sup {[0(0)] g + o)l

We have
(5.31) N'(T) < K(My, M)(N(0) + TN(T)).

Proor. We first prove that
(5.32) N'(T) < K(My, M)(N'(0) + TN(T) + TN'(T)).
The desired estimate (5.31) then follows from the fact that
(5.33) N'(0) < K(My, Ms)N(0), N'(T) < K(My, Ma)N(T).

which follows from the continuity of paradifferential operators in the Sobolev spaces
(see Theorem (2.6)) and the fact that H5~1(RY) is an algebra since s > 1+ 4.

The proof of (5.32) is based on a classical argument : we commute (D)5 3/2
o (5.22)-(5.23) and perform an L? estimate. Then the key points are that (see
point (iii) in Theorem 2.6)
[(Tv, - V)" + TV, V| o2 S IVillree

1T = (Tl < F (17 e

and that the commutators [Ty, -V, (D;)*~3/?] are, according to (2.5), of order s— 3.

(5.34)

Notice that since (p,9) € CL([0, Ty]; Hs_%), we do not need to regularize the equa-
tions to justify the computations. O

Finally, let us notice that an elementary argument allows to control lower norms
of (V,B) (and hence also of V' + (1 B):

(5.35) IV, B < K(My, M2)(N(0) + TN(T)).

Indeed, (the proof of) Theorem 5.2 implies that (with a = a; — ag)

< ’C(Ml, MQ)N(T)
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Since ;B + V1 - VB =a —V - VBy, we have
(5.37)
T
1Bl rey < 1BO 2+ [ (- TBles + a1V -V Bales )
< ||B(0)|| gs—2 + TK(My, Ma)N(T).

Similarly, we have
(539 Vi) < IV (0) o2 + TIC(My, Mo)N (D).
Now we have

V+GB= Tmfltp + (Id — T\/HflT\/K)(V + (1B),

where according to (2.5), the operator Id — T 1Ty, s of order—1/2. Hence, we
deduce from (5.33), (5.31), (5.35), (5.38) and a bootstrap argument

(5.39) |V + G Bl poc 151y < K(My, M2){N(0) + TN(T)}.

5.4. Back to the original unknowns. Recall that I = [0,7] (resp. J =
(—1,0)) is an interval in the ¢ variable (resp. in the z variable).

LEMMA 5.8. There holds

(5.40) < K(My, M){N(0) + TN(T)}.

P

ProoF. ;From the equation 0yn; = G(n;)1; we have,

t t
) =00+ [ Glnyu(e)ar + [ (Glm) = Glom)) ottt
from which we deduce according to Theorem 5.2,
641 e < InOlges + TR0, ey
Let R = Id — T 1 T s, which, according to (2.5) and (4.20) is an operator of
Jaz
order —1 (with norm estimated by K(M>)). We have
Vn=RVn+T 1 9.
Jaz

Therefore we deduce from (5.41), (5.31) and a bootstrap argument,

IV -8y S KM M) (N(0) + TN(T)).

Combining with (5.41) gives Lemma 5.8. O

We are now ready to estimate (V, B).
PROPOSITION 5.9. There holds
(5.42) 1V, Bl ey < KM, Mo){N(0) + TN(T)}.

The proof will require several preliminary Lemmas. We begin by noticing that it is
enough to estimate B. Indeed, if

1Bl oo (1;115-1) < K(My, M) {N(0) + TN(T)},

then, by using the triangle inequality, the estimate (5.39) for V + (3 B implies that
V' satisfies the desired estimate.
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Let v = 51 — 52, where % is the harmonic extension in  of the function 1 and set
az¢2
azp2

by = , w=0v—"Typ.

We notice that

(5.43) Wz=0 = — T,n.

We first state the following result.

LEMMA 5.10. We have

(5.44) 6 = Tl oo ey < KM, Mp){N(0) + TN(T)}.

PROOF. Indeed, the low frequencies are estimated by (5.35), while for the high
frequencies, we write

V(¢ —Tp,n) =V —Tp,Vn—Typ,n
= Vi1 — Vipo =T,V — Typ,n
=Vi+ BV — Vo — BoVine — T,V —Typ,n
=V +(B1 — B2)Vn + Bo(Vi — Vi) — T,V — Ty,n
=V + OB+ (B —Tg,)Vn — Typ,n,
where we used that, by definition, V1); = V; + B;Vn; and (1 = V.
The main term V + (1B is estimated using (5.39), while the two other terms are

estimated using (5.40), the a prior: estimate on By and the product rules (2.9)
and (2.11). O

We next relate w, p and B.
LEMMA 5.11. We have

B:[ <a—b—Ta T )H .
o, O (be = Ty, )0:p + To.pyp -
PrROOF. Write
0.3 ~
B, - By = 291 020
(9z,01 asz 2=0
_ 1 (35_55)+(L_L>5$
- (9z,01 zP1 zP2 azpl azp2 zP2 2=0
1 1 0.0
= — v —
(9z,01 ‘ azpl asz = 2=0
and replace v by w + T3, p in the last expression. O
LEMMA 5.12. Recall that by := gz—f:’j. For k=0,1,2, we have
0% <C ,
‘ e S L7

for some constant C' depending only on H772\|HS+%.

PrROOF. We estimate Vnggg in CO([-1,0], L>(I, Hsfé)) by using the elliptic
regularity (see Proposition 3.16 and Remark 3.15). Now, using the equation satisfied
by ¢2 and the product rule in Sobolev spaces, we successively estimate 92¢, and

3;’52. This proves the lemma since the derivatives of p, are estimated directly from
the definition of ps. O
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Notice that n and hence p are estimated in L*(I; Hs_%) (see (5.40)). Now, use
Lemma 5.12 and Proposition 2.10 (applied with s > 1+d/2, vy =s—1,r=s—1/2,
u=s—3/2) to obtain

1(b2 = T, )0zpll o1 S M2l oy Nl g1
Now, (2.12) implies that

1 To.00ll o1 S b2l o172 Ill g1,
and hence, to complete the proof of the Proposition 5.9, it remains only to estimate
O.w|,—o in L°°(I, H3~1). This is the purpose of the following result.
LEMMA 5.13. Fort € [0,T] we have
(545) va’szCO([,l,O]’Hs—l) < K(Ml, Mg){N(O) + TN(T)}

PRrOOF. To prove this estimate, we are going to show that w satisfies an elliptic
equation in the variables (z, z) to which we may apply the results of Proposition 3.16.
We have B

33?} + alAU + /81 : vazv - 71327} = (71 - 72)8z¢2 + F17
where (see (5.10))

Py = (a2 — a1)Ady + (B2 — B1) - V..
We claim that for ¢ € [0, 7]

e
The two terms in F; are estimated by the same way. We will only consider the first
one. Using the product rule (2.13) with s) = s — 3,5 = s — 1,8 = s — 3 we can
write for fixed ¢,

(a2 — a1) Agn|| < Cllaz — aillgz(g.ms-1) || Ada

3 3.
L2(J,H°"2) — Loo(J,HS™2)

Then we use (5.11), Proposition 3.16 with o = s —  and Lemma 5.8 to conclude
that the term above is estimated by the right hand side of (5.46).

Now we introduce the operators
Pj = 8§+ajA+ﬁj-V62, Lj :Pj—wjﬁz, (]: 1,2).

With these notations we have v; = BLp'Pj p; and
2Pj

(5.47) Liv=(y— 72)5z$2 + F1.
Moreover
1 1 1 1 1 1
g = ——Pip) — ——Pypy = ——P ( ——>P —_—p
Y1 — V2 Dop 101 9 202 90 101 + 91 Oup 101 .12 202
1 1 1 1
___p P, — P < - )P
0. 1p+8zp2( 1= Po)pa + d.p1 0:p2 o
__1p +< ! ! )P s
0ops P \Oopr T Opy) T
where
1
(5.48) F= ((oé1 — a2)Aps + (B1 — f2) - vazm).
2 P2
Now we observe that
< 11 >P1p1:_8zp Ppy :_@p%
azpl az;02 asz azpl az;02 ’
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which implies

1 0.p
— —P, L Fs.

M= = 20 1P — 2. 3z,02 1p+ I3
Plugging this into (5.47) yields
(5.49) Lyv = by(L1p) = Fy + (0:02) F
We claim that for fixed ¢t we have
5.50 Hath,- < K(My, My){N(0) + TN(T)}.
(5.50) (0:02)B(t:0)|| ) oy S KM, MR)AN(0) + TN(T)}

Indeed we first use the product rule (2.13) to write

H(OZ%)FQ@’ )‘ L2(J,H %)

By the elliptic regularity the first term in the right hand side is bounded by K(My).
It is therefore sufficient to bound the second one. We have, for fixed ¢

1
0z 2 12,1 %)

Using (5.11) and (3.12) we see that the right hand side is bounded by the right hand
side of (5.50). The second term in F; is estimated by the same way.

S [CRICH T O —

(1 — ag)Aps < K(Ma)llar — azl[ Lo g, m5-1) || Ap2]|

I
Loo(J,H ™ 2)

To estimate v — Ty, p we paralinearize in writing

(5.51) bQ(Llp) = Tb2L1p + TLlpb2 + F3.

We claim that for ¢ € [0, 7]

(5.52) [ E35(t, < K(My, My){N(0) + TN(T)}.

SIS

To prove it we shall use (2.9) witha =s—1,8=s—-2 Thena+8—-4%>s-3. 1t
follows that, for fixed z and ¢ we have

1Byt DIy < Cllbal,y 1 Eaples.
Therefore

ES0 M gy sy < Ol ey B0z s
Now as we have seen before we have ||ba(t )||Loo e < K(Mz) and due to the

smoothing of the Poisson kernel [|L1p| r2(sps—2) < K(MI)HWHHV%- The estimate
(5.52) thus follows from (5.40).

Setting Fy = T}, ,b2 we claim that for fixed ¢ we have

(55 11t ) ety < KO MR)N(0) + TN(T)}.

;’,sl s—2,32:s—%.We get

To see this we use (2.12) with sy = s —
st My ety < Wt g airen ooty ey,
and (5.53) follows from estimates used above.
Now according to (5.49), (5.51) we have
Lyv =Ty, Lip = Fy + (9:62)F2 + F3 + Fy.

We claim that we have
LlTpr = T52L1p — F5
with
[ F5 (¢, ) < K(My, M2){N(0) + TN(T)}.
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To see this we use (5.12) and (2.12). It follows then that we have
Liw = Li(v — Thyp) = Fi + (0:02)Fa + F3 + Fy + Fs := F

where || F(t, ')HLQ(JHS*%) is bounded by the right hand side of (5.53).

Using (5.43) and Lemma 5.10 we may then apply to w Proposition 3.16 with 0 = s—1
to conclude the proof of Lemma 5.13 and thus that of Proposition 5.9. O

6. Well-posedness of the Cauchy problem

Here we conclude the proof of Theorem 1.2 about the Cauchy theory for the system
(6.1) 1 (V- VY + Gw)”
2 1+ |Vn?

1
O +gn+ 5 [V - =0.
We previously proved the uniqueness of solutions (see Theorem 5.1). To complete
the proof of Theorem 1.2, we prove here the existence of solutions to the water waves
system as limits of smooth solutions to approximate systems. This approach has
been detailed in [1], where we considered the problem with surface tension.

To explain the scheme of the proof, we first consider the case without bottom (T' = ).
Then we know, from previous results (see Wu [52, 53|, Lannes [37], Lindblad [39]),
that the Cauchy problem is well-posed for smooth initial data. Then, one can
obtain the existence of smooth approximate solutions in a straightforward way : by
smoothing the initial data. Namely, denote by J. the usual Friedrichs mollifiers,
defined by J. = j(¢D,) where j € C5°(R%), 0 < 7 < 1, is such that

)€ =1 for ¢ <1, 5(§) =0 for [¢]>2.

Set 1§ = Jotb and 15 = Jemp. Then (v§,n5) € H*(R%)? and the Cauchy problem
for (6.1) has a unique smooth solution ()%, 7°) defined on some time interval [0, 7).
It follows from Proposition 4.1 that there exists a function F such that, for all
e € (0,1] and all T' < T, we have

(6.2) MS(T) < F(F(Msp) + TF(M(T))),

with obvious notations. Then by standard argument, we infer that the lifespan
of (ne,1e) is bounded from below by a positive time T independent of e and that
we have uniform estimates on [0, 7p]. The fact that one can pass to the limit in the
equations follows from the previous contraction estimates (see (5.1)), which allows us
to prove that (1., 1., Be, VZ) is a Cauchy sequence (this argument has been explained
in [1]). Notice that these estimates were proved under the assumption a(t) > ag/2.
This actually follows from the a priori bound (6.2), (4.20), (4.21) and a bootstrap
method. Then, it remains to prove that the limit solution has the desired regularity
properties. Again, this follows from the analysis in [1].

In the case with a general bottom, to apply the strategy explained above, the only
remaining point is to prove that, for smooth enough initial data, the Cauchy problem
has a smooth solution. Namely, for our purposes it is enough to prove the following
weak well-posedness result (where we allow an arbitrarily large loss of N derivatives).

PROPOSITION 6.1. For all sy > O there exists N > 0 such that the following result
holds. Consider an initial data (o, o) € HOTN(R®)? such that, initially, the Taylor
coefficient a is bounded from below by ag > 0. Then, there exists T > 0 and a
solution (n,v) € C1([0,T]; H* (R%))? to (6.1) satisfying (1(0),%(0)) = (no,%0) and
a>ap/2.
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PRrOOF. We use a parabolic regularization of the equations and seek solutions of
the Cauchy problem (6.1) as limits of solutions of the following approximate systems:

8“7 - G(n)w = EAT]a

(Vn Vi + G’
1+ |Vn?

(6.3) O +gn+ 3 |V¢| -5
(77?7:[))|t=0 :( eNo, 57/)0),

where € €]0, 1] is a small parameter and
_ V-V + Gy
1+ [Vn?

= A,

(6.4)

Write (6.3) under the form

t
u = ePug + / ee(t*T)A.A[u(T)] dr, u=(n,).
0
To solve this Cauchy problem we use two ingredients. Firstly we have

165 1| 2o zrsny < K@) 1 F g

together with a dual estimate, and secondly (for s large enough)

AR 2o, 1y 5-1) < VT Flull poo (o 19 0)) 28l oo 0.2, 225) »
which follows from Theorem 3.12 and the product rule in Sobolev spaces. Then,
given € > 0 and (1o, ¢o) € (H5(R%))? with s large enough, by applying the Banach
fixed point theorem in L>°([0,T]; H%) N L?([0,T]; H**!), one gets that, for T small
enough possibly depending on €, the Cauchy problem for (6.3) has a smooth solution.
Moreover, the maximal time of existence T, satisfies: either T, = +oc or

€

We have to prove that these solutions exist for a time interval independent of ¢ €
10,1]. To do so, we begin by computing the equations satisfied by B and V =
Vi — BVn.

We first observe that, since G(n)y = B —V - Vn, we have
(6.5) on+V-Vn=B+ecAn.
On the other hand, as in (4.50), we have
(6.6) Op+V -V = —gn + %\V\Z - %BZ + ey
We next write that
oV +V.-VV=(0+V -V)(Vy—BVn)
=V +V -V¢Y)—(0:B+V - -VB)Vn—BV(Omn+V-Vn)+ R
where R = (Ry,..., Rg) with
= 0kVi0b+ B> 0k V;0m.
J J
Then, it follows from (6.5) and (6.6) that

1 1
HV+V-VV = V(—gn+§|V|2—§Bz+sAw) —(0:B+V -VB)Vn+BV (B+eAn)+R.

Now, observing that R + %V|V|2 = 0 and simplifying,

OV +V -VV+(g+0B+V -VB)Vn=eVAy —eBVAnp
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which in turn implies that

0V +V -VV+al =cAV +2¢(VB-V)(,
where ¢ = V) and
(6.7) a=9g+0B+V - -VB—-cAB.

Now, for s > 5/2 + d/2, from the proof of (4.34) (using Lemma 2.17 instead of
Lemma 2.15 as in the proof of Lemma 5.5), we obtain that U =V + T, B satisfies

(6.8) U +Ty - VU + T3¢ — AU — eTyp - V(= Fy
where
HF1HL§°(HS) < F(I(&,n, V7B7d)HL;’O(HSH/?XHSH/?><HS><HS><Cl/2))'
Also, as in the proof of Proposition 4.10, we find that 6 = T,( (where ¢ = \/a/\)
satisfies
00+ Ty - VO —T,U — A0 — [Ty, A]T,-10 = F,

where F5 is estimated by means of Theorem 2.6 and (2.17):

HFZHL;X’(H;) < F([(¥,n,V.B,a,0a+V - vEL)HL;X’(HSH/?><H5+1/2><H5'><HS><C1/2><L<><>))'
Using the unknown 6, one can rewrite (6.8) as

(6.9) U + Ty - VU + T — AU — eTyp - VT,10 = F
where F} = F) + eTvp - V(T,T,~» — I)¢ and it follows from Theorem 2.6 that

1/2 —-1/2, _
S IVB oo Ma2 ()M 4 (a7 10l ez -

HTVB V(T Ty — I)d Hs ~ 3/2 3/2

Since M?}//;(q)Mg_/;/z(qfl) < C(|[nllgss2 s ||a]|s/2) we obtain

HF1HL§O(H5) < f(H(dm% V,B, d)”L;X’(HS“/Q><H5+1/2><H5><H5><C3/2))'

Now, since the operator
A Tvp - Vqul
(0 A+ [Ty, A]Tq1>
is elliptic (being a perturbation of A of order 3/2), we estimate (U, 6) in L{°(H®x H®)
by commuting the equation with (I — A)S/ 2 and performing an L? estimate. To do
so it remains only to prove that

(@, 0+ V - v5‘)”L;;<>(03/2xL°<>) < -7:(”(1/17777 v, B)HLgO(HsH/?st+1/2xHSxHS))-

Here this is much easier than in the above analysis. Indeed, since we do not need to
work with critical regularity, it is enough to prove that there exist so > s1 > 3/2+ s
with sp > d/2 and sy < s (possibly sy < s; < s2) such that

(6.10) @ = gl geqresy < F (N0 0) | o rrma e )

(6.11) 100l e a0y < F (109 o e )

To prove (6.10) we express a — ¢ in terms of 7, (as noticed in [36]). To do so, we
use two observations. Firstly, by definition of B (see (6.4)), we have

2Vom -V
(Vo - V4 + V- Vo + aiG v ) — T

o,B 2Voin - V1
! 14 |[Vnl?

B 1
1+ [V
Secondly, we have

(6.12) oG ()Y = G(n)(0wp — Boyn) — div(V ).
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The formula (6.12) is proved by Lannes for smooth bottoms (see [37]) or infinite
depth ([36]). In the case with a general bottom considered here, this follows from [3].
Then, replacing 9yt and 9yn by their expressions computed using System (6.3), we
are in position to express 0; B in terms of 1,9 only. Setting the result thus obtained
in (6.7) we get an expression of @ — ¢ in terms of 7,1 only. The estimate (6.10) then
follows from the nonlinear estimates in Sobolev spaces (see (2.14) and (2.16)) and
repeated uses of the estimate for the Dirichlet-Neumann proved in Theorem 3.12.
Repeating this reasoning, we get an expression of dia in terms of 7,1 only and
hence (6.11).

Up to now, this gives uniform estimates in ¢ for (U,6) in L*°([0,T]; H® x H?®),
as long as a(t) is bounded from below by ag/2. Moreover, as in the proof of
Lemma 4.13 and Lemma 4.14, it follows from (6.11) that one can estimate (1, B, V')
in L>([0,T]; H® x H* x H*®). Now we can recover estimates for the unknowns
(n,v,B,V) in LOO([O,T];HSJF% x H5V2 x H® x H?) by a bootstrap argument as in
the proof of Lemma 4.15.

Using these uniform estimates, we get by a bootstrap argument that the solutions
to (6.3) exist on a time interval independent of € (and satisfy a(t) > agp/2 according
to (6.10) (6.11)) on this time interval uniform estimates. To conclude it remains
to pass to the limit in (6.3). For this we use again the uniform estimates which
hold as long as the Taylor coefficient a(t) is bounded from below by ay/2 (and the
equation to bound the time derivatives) to extract subsequences converging weakly
and the fact that the Dirichlet-Neumann operator, though nonlocal, passes to the
limit. Eventually, we use again a bootstrap argument to control the Taylor coefficient
using (4.20) and (4.21). O
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