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Large deviations from a stationary measure for a

class of dissipative PDE’s with random kicks

V. Jakšić∗ V. Nersesyan† C.-A. Pillet‡ A. Shirikyan§

Abstract

We study a class of dissipative PDE’s perturbed by a bounded random

kick force. It is assumed that the random force is non-degenerate, so that

the Markov process obtained by the restriction of solutions to integer

times has a unique stationary measure. The main result of the paper is a

large deviation principle for occupation measures of the Markov process

in question. The proof is based on Kifer’s large deviation criterion, a

Lyapunov–Schmidt type reduction, and an abstract result on large-time

asymptotic for generalised Markov semigroups.
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0 Introduction

This paper is devoted to the large deviations principle (LDP) for a class of
dissipative PDE’s perturbed by a smooth random force. The large-time asymp-
totics of solutions for the problem in question is well understood, and we refer
the reader to the articles [FM95, KS00, EMS01, BKL02] for the first results
in this direction and to the book [KS12] for further references and a detailed
description of the behaviour of solutions as time goes to infinity. In particular,
it is known that if the noise is sufficiently non-degenerate, then the Markov
process associated with the problem has a unique stationary distribution, which
attracts exponentially the law of all solutions. Moreover, the law of iterated
logarithm and the central limit theorem hold for Hölder-continuous function-
als calculated on trajectories and give some information about fluctuations of
their time averages around the mean value. Our aim now is to investigate the
probabilities of deviations of order one from the mean value.

Let us describe in more detail the main result of this paper on the example
of the Navier–Stokes system. More precisely, we consider the following problem
in a bounded domain1 D ⊂ R

2 with a C2-smooth boundary ∂D:

u̇− ν∆u + 〈u,∇〉u+∇p = η(t, x), div u = 0, u
∣∣
∂D

= 0, (0.1)

u(0, x) = u0(x), (0.2)

where ν > 0 is the kinematic viscosity, u = (u1(t, x), u2(t, x)) is the velocity
field of the fluid, p = p(t, x) is the pressure, and η is a random external force.

1All the results of this paper remain true for periodic boundary conditions, in which case
we assume in addition that the mean values of the velocity field and of the external force are
zero.
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We assume that η(t, x) is a random kick force of the form

η(t, x) =

+∞∑

k=1

δ(t− k)ηk(x), (0.3)

where δ is the Dirac measure concentrated at zero, and ηk are independent
identically distributed (i.i.d.) random variables defined on a probability space
(Ω,F ,P) with range in L2(D,R2) that satisfy

P{‖ηk‖L2 ≤ b} = 1 (0.4)

for some b < +∞. Problem (0.1), (0.2) is well posed in the space

H = {u ∈ L2(D,R2) : div u = 0 in D, 〈u,n〉 = 0 on ∂D}, (0.5)

where n stands for the outside unit normal to ∂D. The restrictions of solutions
for (0.1), (0.2) to integer times form a Markov chain in H . As is well known (see
Chapter 3 of the book [KS12] and the references therein), this process is ergodic
under rather general hypotheses on ηk. More precisely, suppose that there exists
an increasing sequence of finite-dimensional subspaces HN ⊂ H such that the
law of the projection of ηk to HN is absolutely continuous with respect to the
Lebesgue measure, and its support contains the origin. Let P(H) be the set of all
Borel probability measures on H endowed with topology of weak convergence.
Then the Markov chain in question possesses a unique stationary measure µ ∈
P(H), which is exponentially mixing in the sense that the law of any solution
of (0.1) with a deterministic initial condition converges to µ exponentially fast
in the Kantorovich–Wasserstein metric. We wish to investigate the probabilities
of large deviations of the occupation measures from µ. More precisely, let

ζωk =
1

k

k−1∑

j=0

δvj , k ≥ 1, (0.6)

be a sequence of random probability measures in P(H), where {vj} denotes a
stationary trajectory of the Markov chain. The following theorem is a simplified
version of the main result of this paper (see Theorem 1.3).

Theorem A. Under the above hypotheses, the sequence {ζk} satisfies a LDP.

More precisely, there is a lower semicontinuous mapping I : P(H) → [0,+∞]
which is equal to +∞ outside a compact subset such that

− inf
λ∈Γ̇

I(λ) ≤ lim inf
k→∞

1

k
logP{ζk ∈ Γ} ≤ lim sup

k→∞

1

k
logP{ζk ∈ Γ} ≤ − inf

λ∈Γ
I(λ),

(0.7)
where Γ ⊂ P(H) is an arbitrary Borel subset, and Γ̇ and Γ denote its interior

and closure, respectively.

For instance, if f : H → R
m is a continuous mapping and B ⊂ R

m is a Borel
subset, then taking Γ = {σ ∈ P(H) :

∫
H
fdσ ∈ B} in inequality (0.7), we get
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(see Section 1.2 for a precise statement)

exp(−c− k) . P

{
1

k

k−1∑

j=0

f(vj) ∈ B

}
. exp(−c+ k) as k → ∞,

where c± = c±(f,B) ≥ 0 are some constants (not depending on k) that can be
expressed in terms of the rate function I.

Let us mention that the LDP is well understood for finite-dimensional dif-
fusions and for Markov processes with compact phase space, provided that the
randomness is sufficiently non-degenerate and ensures mixing in the total vari-
ation norm. This type of results were first obtained by Donsker and Varad-
han [DV75] and later extended by many others. A detailed account of the main
achievements can be found in the books [FW84, DS89, DZ00].

In the context of randomly forced PDE’s, the problem of large deviations
was studied in a number of papers. Most of them, however, are devoted to
studying PDE’s with vanishing random perturbation and provide estimates for
the probabilities of deviations from solutions of the limiting deterministic equa-
tions. We refer the reader to the papers [Fre88, Sow92a, Sow92b, Cha96, CR04,
CR05, SS06, CM10] and the references therein for various results of this type,
including the asymptotics of stationary distributions when the amplitude of
the perturbation goes to zero. To the best of our knowledge, the only papers
devoted to large deviations from a stationary distribution in the case of stochas-
tic PDE’s are those by Gourcy [Gou07b, Gou07a]. Using a general result due
to Wu [Wu00], he established the LDP for occupation measures of stochastic
Burgers and Navier–Stokes equations, provided that the random force is white
in time and sufficiently irregular in the space variables. The present paper gives
a first result on large deviations from a stationary distribution for PDE’s with
a smooth random perturbation.

Let us note that, in Gourcy’s papers, the set of measures is endowed with
the τ-topology which is generated by the duality with respect to bounded Borel
functions (and is much stronger than the weak topology used in our paper). This
enables one to apply the LDP to physically relevant observables that are not
continuous on the energy space. Under our assumptions, the LDP is not likely
to hold for the τ -topology. However, the results established in this paper can be
applied to derive the LDP for functionals that are continuous on higher Sobolev
spaces. Furthermore, using the Dawson–Gärtner theorem [DG87], we establish
the following result on large deviations in the space of trajectories (also called
process level LDP). Let us denote by H the space of sequences u = (uj , j ≥ 0)
with uj ∈ H and endow it with the Tikhonov topology. Given a stationary
trajectory v = {vj} for the Markov chain associated with (0.1), we define the
sequence of occupation measures

ζωk =
1

k

k−1∑

j=0

δvj
, (0.8)

where we set v j = {vi, i ≥ j}.
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Theorem B. Let us assume that the above-mentioned hypotheses are satisfied.

Then the LDP holds for ζk with a rate function I : P(H) → [0,+∞].

In conclusion, let us mention that the LDP discussed above remains valid
in the case of unbounded perturbations; this question will be addressed in a
subsequent publication. We also remark that this paper is a first step of a
research program whose aim is to develop a large deviation theory for dissi-
pative PDE’s with random perturbation and to justify the Gallavotti–Cohen
fluctuation principle for some relevant functionals; cf. [GC95].

The paper is organised as follows. In Section 1 we introduce the model,
state our results, describe applications, and outline the schemes of the proofs.
Section 2 deals with the large-time asymptotics of generalised Markov semi-
groups. A central technical part of the proof is the verification of uniform Feller
property for a suitable family of semigroups. This verification is based on the
Lyapunov–Schmidt reduction and is carried out in Section 3. The proofs of the
main results are given in Sections 4 and 5. Finally, three auxiliary results used
in the main text are recalled in the Appendix.
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Notation

Let Z be the set of integers, let Zl be the set of integers less than or equal to l,
and let X be a Polish space with a metric dX(u, v). We denote by Xk the direct
product of k copies of X , by X = XZ0 the space of sequences (uk, k ∈ Z0) with
uk ∈ X , and by BX(a, d) the closed ball of radius d > 0 centered at a ∈ X .
If a = 0, we write BX(d). The distribution of a random variable ξ is denoted
by D(ξ) and the indicator function of a set C by IC .

Lp(D) and Hs(D) denote the usual Lebesgue and Sobolev spaces in a domain
D ⊂ R

n. We use the same notation for spaces of scalar and vector valued
functions. The corresponding norms are denoted by ‖·‖Lp and ‖·‖s, respectively.
Cb(X) is the space of bounded continuous functions f : X → R endowed with
the natural norm ‖f‖∞ = supX |f | and C+(X) is the set of strictly positive
functions f ∈ Cb(X).

Lb(X) stands for the space of functions f ∈ Cb(X) such that

‖f‖L := ‖f‖∞ + sup
0<dX(u,v)≤1

|f(u)− f(v)|
dX(u, v)

<∞.

In the case of a compact metric space, we shall drop the subscript b and
write C(X) and L(X).
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B(X) denotes the Borel σ-algebra on X , M(X) the vector space of signed Borel
measures onX with finite total mass,M+(X) the cone of non-negative measures
µ ∈ M(X), and P(X) the set of Borel probability measures on X . The vector
space M(X) is endowed with the total variation norm

‖µ‖var := sup
Γ∈B(X)

|µ(Γ)| = 1

2
sup

f ∈ Cb(X)
‖f‖∞ ≤ 1

∣∣∣∣
∫

X

fdµ

∣∣∣∣.

When dealing with M+(X), we also use the Kantorovich–Wasserstein (also
called dual-Lipschitz ) metric defined by

‖µ1 − µ2‖∗L := sup
f ∈ Lb(X)
‖f‖L ≤ 1

∣∣∣∣
∫

X

fdµ1 −
∫

X

fdµ2

∣∣∣∣, µ1, µ2 ∈ M+(X).

The topology defined by the Kantorovich–Wasserstein distance coincides with
that of weak convergence. We shall write µn ⇀ µ to denote the weak conver-
gence of {µn} to µ.

For an integrable function f : X → R and a measure µ ∈ M(X), we set

〈f, µ〉 =
∫

X

f(u)µ(du), ‖f‖µ =

∫

X

|f(u)|µ(du).

Given a function f : X → R, we denote by f+ and f− its positive and negative
parts, respectively:

f+ =
1

2
(|f |+ f), f− =

1

2
(|f | − f).

Given two Banach spaces X1 and X2, we denote by L(X1, X2) the Banach space
of continuous linear operators from X1 to X2 with the usual norm.

1 The model and the results

1.1 The model

In this section, we describe a class of discrete-time stochastic systems for which
we shall prove the LDP. Let H be a real separable Hilbert space with a scalar
product (·, ·) and the corresponding norm ‖·‖ and let S : H → H be a continuous
mapping. We consider the random dynamical system

uk = S(uk−1) + ηk, k ≥ 1, (1.1)

where {ηk} is a sequence of independent identically distributed (i.i.d.) random
variables in H . System (1.1) defines a homogeneous family of Markov chains,
and we denote by Pk(u,Γ) its transition function and by Pk : Cb(H) → Cb(H)
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and P∗
k : P(H) → P(H) the corresponding Markov operators. We shall assume

that S satisfies the following three conditions (which are stronger version of
those introduced in [KS00]; see also Section 3.2.1 in [KS12]).

(A) Regularity and stability. The mapping S is continuously differen-

tiable in the Fréchet sense. Moreover, for any R > r > 0 there are positive

constants C = C(R) and a = a(R, r) < 1 and an integer n0 = n0(R, r) ≥ 1 such

that

‖S(u1)− S(u2)‖ ≤ C(R)‖u1 − u2‖ for u1, u2 ∈ BH(R), (1.2)

‖Sn(u)‖ ≤ max{a‖u‖, r} for u ∈ BH(R), n ≥ n0, (1.3)

where Sn is the nth iteration of S.

Let us denote by K the support of the law for η1 and assume that it is a
compact subset in H . Given a closed subset B ⊂ H , define the sequence of sets

A0(B) = B, Ak(B) = S(Ak−1(B)) +K, k ≥ 1,

and denote by A(B) the closure in H of the union of Ak(B). We shall call A(B)
the domain of attainability from B.

(B) Dissipativity. There is ρ > 0 and a non-decreasing integer-valued

function k0 = k0(R) such that

Ak(BH(R)) ⊂ BH(ρ) for R ≥ 0, k ≥ k0(R). (1.4)

(C) Squeezing. There is an orthonormal basis {ej} in H such that, for all

R > 0 and u1, u2 ∈ BH(R),

‖(I − PN )(S(u1)− S(u2))‖ ≤ γN (R)‖u1 − u2‖, (1.5)

where PN : H → H denotes the orthogonal projection on the linear span

of e1, . . . , eN , and {γN(R)} is a decreasing sequence of positive numbers con-

verging to zero as N → ∞.

As for the sequence {ηk}, we assume that it satisfies the following hypothesis:

(D) Structure of the noise. The random variable ηk has the form

ηk =

∞∑

j=1

bjξjkej , (1.6)

where {ej} is the orthonormal basis entering (C), bj ≥ 0 are constants such that

B :=

∞∑

j=1

b2j <∞, (1.7)
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and ξjk are independent scalar random variables. Moreover, the law of ξjk is

absolutely continuous with respect to the Lebesgue measure, and the corre-

sponding density pj(r) is a Lipschitz continuous function such that pj(0) > 0
and supp pj ⊂ [−1, 1].

Recall that a measure µ ∈ P(H) is said to be stationary for (1.1) if P∗
1µ = µ.

A proof of the following theorem can be found in Chapter 3 of [KS12].

Theorem 1.1. Suppose that Conditions (A)–(D) are fulfilled and that 2

bj 6= 0 for all j ≥ 1. (1.8)

Then there is a unique stationary measure µ ∈ P(H). Moreover, there are

constants C > 0 and α > 0 such that, for any λ ∈ P(H), we have

‖P∗
kλ− µ‖∗L ≤ Ce−αk

(
1 +

∫

H

‖u‖λ(du)
)
, k ≥ 0. (1.9)

We conclude this subsection by a simple remark on the support of the sta-
tionary distribution µ. Let us denote by A = A({0}) the domain of attainability
from zero. Since A is an invariant subset for (1.1), it carries a stationary mea-
sure. Since the stationary measure is unique, we must have suppµ ⊂ A. On
the other hand, inequality (1.3) and the inclusion 0 ∈ suppD(η1) imply that
Pk(u,BH(r)) > 0 for any u ∈ A, r > 0, and k ≫ 1. Combining this fact with
the Kolmogorov–Chapman relation, one easily proves that suppµ = A.

1.2 The results

Before formulating the main results of this paper, we recall some standard defi-
nitions from the theory of large deviations (e.g., see Chapter 6 in [DZ00]). Let X
be a Polish space and let P(X) be the space of probability measures on X en-
dowed with the topology of weak convergence (generated by the Kantorovich–
Wasserstein distance). Recall that a random probability measure on X is defined
as a measurable mapping from a probability space (Ω,F ,P) to P(X). A map-
ping I : P(X) → [0,+∞] is called a rate function if it is lower semicontinuous,
and a rate function I is said to be good if the level set {σ ∈ P(X) : I(σ) ≤ α}
is compact for any α ∈ [0,+∞). For a measurable set Λ ⊂ P(X), we write
I(Λ) = infσ∈Λ I(σ).

Definition 1.2. Let {ζk = ζωk , k ≥ 1} be a sequence of random probability
measures on A. We shall say that {ζk} satisfies the LDP with a rate function I
if the following two properties are satisfied.

Upper bound. For any closed subset F ⊂ P(X), we have

lim sup
k→∞

1

k
logP{ζk ∈ F} ≤ −I(F ). (1.10)

2 Theorem 1.1 remains valid if finitely many bj are non-zero. However, the main results of
this paper on LDP will be proved under the stronger condition (1.8).
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Lower bound. For any open subset G ⊂ P(X), we have

lim inf
k→∞

1

k
P{ζk ∈ G} ≥ −I(G). (1.11)

We now consider the family of Markov chains defined by (1.1). To an ar-
bitrary random variable u0 in H , which we always assume to be independent
of {ηk}, one associates a family of occupation measures by the formula

ζk :=
1

k

k−1∑

n=0

δun
, (1.12)

where δu stands for the Dirac measure concentrated at u. Recall that A denotes
the domain of attainability from zero (see the end of Section 1.1). It is a compact
subset of H , invariant under the random dynamics defined by (1.1). Note that
if the support of D(u0) is contained in A, then ζk is also supported by A. The
following theorem is the main result of this paper.

Theorem 1.3. Let Hypotheses (A)–(D) and Condition (1.8) be fulfilled and

let u0 be an arbitrary random variable in H whose law is supported by A. Then

the family {ζk, k ≥ 1} of random probability measures on A satisfies the LDP

with a good rate function I defined by

I(σ) = sup
V ∈C(A)

(
〈V, σ〉 −Q(V )

)
, σ ∈ P(A), (1.13)

where Q(V ) is a 1-Lipschitz convex function such that Q(C) = C for any C ∈ R.

Note that the lower semi-continuity of I is built in its definition, while the
fact that I is a good rate function follows from the compactness of P(A) in
the weak topology. Choosing suitable open and closed sets in the LDP for
occupation measures, we obtain the asymptotics of the time-averages for various
functionals of trajectories of (1.1). For instance, let f : A → R

m be a continuous
mapping and let Γ ⊂ R

m be a Borel set. Define

FΓ = {σ ∈ P(A) : 〈f, σ〉 ∈ Γ}, GΓ = {σ ∈ P(A) : 〈f, σ〉 ∈ Γ̇},

where Γ and Γ̇ denote the closure and interior of Γ, respectively. In view of the
LDP, we have

lim sup
k→∞

1

k
logP

{
1

k

k−1∑

n=0

f(un) ∈ Γ

}
≤ −I(FΓ), (1.14)

lim inf
k→∞

1

k
logP

{
1

k

k−1∑

n=0

f(un) ∈ Γ

}
≥ −I(GΓ). (1.15)

Theorem 1.3 provides the LDP for the occupation measures (1.12). Some
further analysis combined with the Dawson–Gärtner theorem enables one to de-
rive a process level LDP for trajectories of (1.1) issued from A. Namely, denote
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by H = HZ+ the direct product of countably many copies of H and, given
a trajectory {uk} for (1.1), define a sequence of random probability measures
on H by the relation

ζk =
1

k

k−1∑

n=0

δun
, k ≥ 1, (1.16)

where we set un = (uk, k ≥ n).

Theorem 1.4. Let the hypotheses of Theorem 1.3 be fulfilled and let u0 be an

arbitrary random variable in H whose law is supported by A. Then the family

of random probability measures {ζk, k ≥ 1} satisfies the LDP with a good rate

function I : P(H) → [0,+∞], which is equal to +∞ outside a compact subset.

1.3 Applications

Two-dimensional Navier–Stokes system

Let us consider the Navier–Stokes system (0.1) in which η(t, x) is a random
kick force of the form (0.3). We assume that the kicks {ηk} form a sequence
of i.i.d. random variables in the space H (see (0.5)). Normalising the solu-
tions of (0.1) to be right continuous and denoting uk = u(k, x), we see that
any solution of (0.1) satisfies relation (1.1) in which S stands for the time-1
shift along trajectories of the homogeneous Navier–Stokes system (e.g., see Sec-
tion 2.3 in [KS12]). We claim that Theorems 1.3 and 1.4 can be applied to (1.1)
with the above choice of S, provided that we restrict our consideration to tra-
jectories lying in A = A({0}). Indeed, the differentiability of the flow map
for the Navier–Stokes system is well known (e.g., see Section 7.5 in [BV92]),
and all other properties entering Conditions (A) and (B) are checked in [KS00].
Furthermore, the squeezing property (C) is satisfied for any choice of an or-
thonormal basis {ej} in H (cf. proof of Proposition 1.6 below). We thus obtain
the following result.

Proposition 1.5. Let the random variables {ηk} satisfy Condition (D) with

bj 6= 0 for all j ≥ 1, let u0 be an arbitrary H-valued random variable which

is independent of {ηk} and whose law is supported by A, and let {uk} be the

corresponding trajectory of (1.1). Then the occupation measures ζk and ζk
defined by (1.12) and (1.16) satisfy the LDP with good rate functions.

In particular, taking for u0 a random variable distributed according to the
stationary measure µ, we obtain Theorems A and B of the Introduction. Fur-
thermore, in view of the discussion after Theorem 1.3, we have an LDP for the
time-averages of continuous functionals f : H → R

m calculated on trajecto-
ries of (1.1). This result is applicable, for instance, to the energy functional
f(u) = 1

2

∫
D
|u(x)|2dx.

To treat other physically relevant observables, such as the enstrophy or the
correlation tensor, we need to change the phase space of the problem, making
it more regular. More precisely, let us define the space

U = H ∩H1
0 (D) ∩H2(D)

10



(where Hs(D) denotes the usual Sobolev space of order s) and endow it with the
usual scalar product in H2. Since the flow-map for the Navier–Stokes system
preserves theH2-regularity, system (1.1) can be studied in the space U , provided
that the random kicks also belong to U . We have the following result.

Proposition 1.6. Let {ηk} be a sequence of i.i.d. random variables in U of the

form (1.6), in which {ej} is an orthonormal basis in U , and {bj} and {ξjk}
are the same as in Condition (D). Assume that bj 6= 0 for all j ≥ 1. Then the

LDP holds for the occupation measures ζk and ζk of any trajectory whose initial

state u0 is a U -valued random variable with range in A.

For instance, one can take for an initial state any function u0 ∈ U or a ran-
dom variable u0 distributed according to the stationary measure. Furthermore,
relations (1.14) and (1.15) hold for the functional f : U → R

6 defined by

f(u) =

(
1

2

∫

D

|u(x)|2dx, 1
2

∫

D

|(∇⊗ u)(x)|2dx, ui(x1)uj(x2), 1 ≤ i, j ≤ 2

)
,

where u = (u1, u2), and x1, x2 ∈ D are given points.

Proof of Proposition 1.6. We shall check that Conditions (A)–(D) of Section 1.1
(with H replaced by U) are fulfilled. The validity of (D) follows from the
hypotheses of the proposition. The facts that, for any T > 0, the time-T shift
along trajectories is uniformly Lipschitz continuous on bounded subsets of U
and is continuously differentiable in the Fréchet sense are proved in Chapter 7
of [BV92]. Let us prove (1.3). It is well known that (see the proof of Theorem 6.2
of Chapter 1 in [BV92])

‖S(u)‖ ≤ q ‖u‖, ‖S(u)‖2 ≤ C ‖u‖,

where q < 1 and C > 0 are some constants, u ∈ H in the first inequality, and
u ∈ BH(1) in the second. Combining these two estimates we see that for any
R > 0 we can find n1 = n1(R) ≥ 1 such that

‖Sn+1(u)‖2 ≤ Cqn‖u‖ for u ∈ BH(R), n ≥ n1.

This inequality immediately implies (1.3).

We now establish the dissipativity property (B). We know that this property
holds in the space H . Thus, we can find ρ1 > 0 such that, for any R > 0 and a
sufficiently large integer k1(R) ≥ 1, we have

Ak(BU (R)) ⊂ BH(ρ1) for k ≥ k1(R).

Since the mapping S is continuous from H to U , it follows that

Ak+1(BU (R)) ⊂ S(BH(ρ1)) +K for k ≥ k1(R).

Choosing ρ > 0 such that S(BH(ρ1))+K ⊂ BU (ρ), we obtain (1.4) with H = U
and k0(R) = k1(R) + 1.
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It remains to prove the squeezing property (C). Let ui(t), i = 1, 2, be two
solutions of the homogeneous Navier–Stokes system, which we write as a non-
local PDE in the space H :

∂tu+ νLu+B(u) = 0. (1.17)

Here L = −Π∆, B(u) = B(u, u), B(u, v) = Π(〈u,∇〉v), and Π is the orthogonal
projection in L2(D,R2) onto H . We wish to show that, if the initial conditions
ui0 = ui(0) belong to the ball BU (R) and {ej} is an orthonormal basis in U ,
then ∥∥(I − PN )

(
u1(1)− u2(1)

)∥∥
2
≤ γN (R)‖u10 − u20‖2,

where γN (R) depends only on the basis {ej} and goes to zero as N → ∞. A
simple compactness argument implies that this inequality will hold if we prove
that

‖u1(1)− u2(1)‖3 ≤ C(R)‖u10 − u20‖2 for u10, u20 ∈ BU (R). (1.18)

The proof of this inequality is carried out by standard methods (e.g., see [BV92]),
and we confine ourselves to outlining the main steps. We shall denote by Ci(R)
unessential positive constants depending only on R.

Step 1. It suffices to prove that

‖u1(1)− u2(1)‖2 ≤ C1(R) ‖u10 − u20‖2, (1.19)

‖u̇1(1)− u̇2(1)‖1 ≤ C2(R) ‖u10 − u20‖2 (1.20)

for u10, u20 ∈ BU (R), where v̇ = ∂tv. Set u = u1 − u2 and note that (1.17)
implies

νLu(1) = −u̇(1)−B
(
u1(1), u(1)

)
−B

(
u(1), u2(1)

)
.

Since ui(1), i = 1, 2 are bounded in H2 (see Theorem 6.2 in [BV92]) and the
bilinear mapping (u, v) 7→ B(u, v) is continuous from U to H1, we see that

ν ‖Lu(1)‖1 ≤ ‖u̇(1)‖1 + C3(R) ‖u(1)‖2.

Recalling that L−1 is continuous fromH1
0∩H toH3 and using inequalities (1.19)

and (1.20), we obtain the required estimate (1.18).

Step 2. To prove (1.19) and (1.20), we first show that

sup
0≤t≤1

(
‖u̇(t)‖2 +

∫ t

0

‖u̇(s)‖21ds
)

≤ C4(R) ‖u10 − u20‖2. (1.21)

Differentiating (1.17) in time, we derive the following equation for u̇ = u̇1 − u̇2:

∂tu̇+ νLu̇+B(u̇1, u) +B(u1, u̇) +B(u̇, u2) +B(u, u̇2) = 0. (1.22)

Taking the L2-scalar product with 2u̇ and performing some standard transfor-
mations, we obtain

∂t‖u̇‖2 + ν‖u̇‖21 ≤ C5‖u2‖21‖u̇‖2 + C5‖u‖1‖u‖
(
‖u̇1‖1‖u̇1‖+ ‖u̇2‖1‖u̇2‖

)
.
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Applying the Gronwall and Cauchy–Schwarz inequalities and using the fact
that u̇i belong to a bounded set in L∞(0, 1;H) ∩ L2(0, 1;H1), we derive

‖u̇(t)‖2+ν
∫ t

0

‖u̇(s)‖21ds ≤ C6(R)
(
‖u̇(0)‖2+‖u‖L∞(Jt;H)‖u‖L2(Jt;H1)

)
, (1.23)

where Jt = (0, t). It follows from (1.17) that (cf. Step 1)

‖u̇(0)‖ ≤ C7(R) ‖u(0)‖2.

Furthermore, it is well known that

sup
0≤t≤1

(
‖u(t)‖2 + t ‖u(t)‖21 +

∫ t

0

‖u(s)‖21 ds
)

≤ C8(R) ‖u(0)‖2. (1.24)

Combining these two inequalities with (1.23), we obtain (1.21).

Step 3. We now derive (1.19). To this end, note that

νLu(1) = g := −∂tu(1)−B(u1(1), u(1))−B(u(1), u2(1)). (1.25)

Using the continuity properties of B and inequalities (1.21) and (1.24) one easily
obtains

‖g‖ ≤ ‖∂tu(1)‖+ C9(R) ‖u(1)‖1 ≤ C10(R) ‖u(0)‖2.
Combining this with (1.25) and the continuity of L−1 from H to H2, we ob-
tain (1.19).

Step 4. It remains to prove (1.20). To this end, we take the L2-scalar product
of (1.22) with 2tLu̇. After some standard transformations, we derive

∂t
(
t‖u̇‖21

)
− ‖u̇‖21 + 2νt ‖u̇‖22 = q(t), (1.26)

where we set q(t) = −2t
(
B(u̇1, u) + B(u1, u̇) + B(u̇, u2) + B(u, u̇2), Lu̇

)
. Well-

known estimates for the bilinear term B imply that

|q(t)| ≤ νt ‖u̇‖22 + C11t q1(t), (1.27)

where

q1(t) = ‖u̇1‖ ‖u̇1‖1‖u‖1‖u‖2 + ‖u1‖2‖u1‖22‖u̇‖2

+ ‖u2‖1‖u2‖2‖u̇‖ ‖u̇‖1 + ‖u̇2‖21‖u‖ ‖u‖2.

Integrating (1.26) in time and using (1.27), we obtain

t ‖u̇‖21 + ν

∫ t

0

s ‖u̇‖22 ds ≤
∫ t

0

‖u̇‖21 ds+ C11

∫ t

0

sq1(s) ds. (1.28)
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The first integral on the right-hand side can be estimated with the help of (1.21).
We now bound each term of the second integral:

∫ t

0

s ‖u̇1‖ ‖u̇1‖1‖u‖1‖u‖2ds ≤ C12(R)

(∫ t

0

‖u(s)‖22 ds
)1/2

sup
0≤s≤t

‖u(s)‖1,
∫ t

0

s ‖u1‖2‖u1‖22‖u̇‖2ds ≤ C13(R)

(∫ t

0

‖u̇(s)‖2 ds
)1/2

,

∫ t

0

s ‖u2‖1‖u2‖2‖u̇‖ ‖u̇‖1ds ≤ C14(R)

(∫ t

0

‖u̇(s)‖21 ds
)1/2

sup
0≤s≤t

‖u̇(s)‖,
∫ t

0

s ‖u̇2‖21‖u‖ ‖u‖2ds ≤ C15(R)

(∫ t

0

‖u(s)‖22 ds
)1/2

sup
0≤s≤t

‖u(s)‖,

where 0 ≤ t ≤ 1, and we used the fact that the functions ui and u̇i belong to
bounded sets in the spaces L∞(J1, H

2) and L∞(J1, L
2) ∩ L2(J1, H

1), respec-
tively. On the other hand, it is well known that

sup
0≤t≤1

(
‖u(t)‖21 +

∫ t

0

‖u(s)‖22 ds
)

≤ C17(R) ‖u(0)‖21.

Combining these estimates with (1.28), (1.24), and (1.21), we obtain (1.20).
This completes the proof of Proposition 1.6.

Complex Ginzburg–Landau equation

Let us consider a complex Ginzburg–Landau (CGL) equation perturbed by a
random kick force:

∂tu− (ν + i)∆u+ ia|u|2u = η(t, x), x ∈ D, u
∣∣
∂D

= 0. (1.29)

Here a > 0 is a parameter, D ⊂ R
3 is a bounded domain with C2-smooth

boundary ∂D, u = u(t, x) is a complex-valued unknown function, and η is
an external force of the form (0.3), where {ηk} is a sequence of i.i.d. random
variables in the complex spaceH1

0 (D). It is well known that the Cauchy problem
for (1.29) is well posed in H1

0 (D) (see [KS04]), that is, for any u0 ∈ H1
0 (D),

problem (1.29) has a unique solution such that

u(0, x) = u0(x). (1.30)

Let us assume that the random kicks entering (1.29) have the form

ηk(x) =

∞∑

j=1

bj(ξ
1
jk + iξ2jk)ej ,

where {ej} is an orthonormal basis inH1
0 (D) consisting of the real eigenfunctions

of the Dirichlet Laplacian, {bj} ⊂ R is a sequence satisfying (1.7), and ξijk are
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independent real-valued random variables whose laws possess the properties
stated in Condition (D) of Section 1.1. We denote by A ⊂ H1

0 (D) the set of
attainability from zero. The following result is an analogue of Propositions 1.5
and 1.6 for the case of the CGL equation.

Proposition 1.7. In addition to the above hypotheses, assume that bj 6= 0 for

all j ≥ 1. Then the LDP holds for the occupation measures (1.12) and (1.16) of
the trajectories whose initial state is an H1

0 -valued random variable with range

in A.

Proof. We endow the space H1
0 = H1

0 (D) with the scalar product

(u1, u2)1 = Re

∫

D

∇u1(x) · ∇u2(x) dx

and regard it as a real Hilbert space. Let S : H1
0 → H1

0 be the time-1 shift
along trajectories of the problem (1.29) with η ≡ 0. The required results will
be established if we check that the stochastic system (1.1) considered in the
space H = H1

0 possesses properties (A)–(D). Regularity of the mapping S and
its Lipschitz continuity on bounded subsets are standard, and (D) is satisfied in
view of the hypotheses of the proposition. Thus, it remains to check (1.3)–(1.5).

Step 1. Let us introduce the following continuous functionals on H1
0 :

H0(u) =
1

2

∫

D

|u(x)|2dx, H1(u) =

∫

D

(1
2
|∇u(x)|2 + a

4
|u(x)|4

)
dx.

It is well known 3 that if u(t) is a solution of (1.29) and η is a locally integrable
function of time with range in H1

0 , then

d

dt
H0(u) = −ν ‖∇u‖2 + (u, η), (1.31)

d

dt
H1(u) = −ν ‖∆u‖2 − 2aν(|u|2, |∇u|2) + aν(u2, (∇u)2) + (−∆u+ a|u|2u, η),

(1.32)

where (·, ·) and ‖ · ‖ stand for the real L2-scalar product and the corresponding
norm:

(u1, u2) = Re

∫

D

u1(x) ū2(x) dx, ‖u‖2 = (u, u).

Using the inequalities

‖∆u‖2 ≥ α1‖∇u‖2, |(u2, (∇u)2)| ≤ (|u|2, |∇u|2), (|u|2, |∇u|2) ≥ c

∫

D

|u|4dx,

where α1 > 0 is the first eigenvalue of the Dirichlet Laplacian, we derive
from (1.32) the inequality

d

dt
H1(u(t)) ≤ −δH1(u(t))−

ν

2
‖∆u‖2 + (−∆u+ a|u|2u, η), (1.33)

3 For instance, see Section 2.2 in [KS04] for the more complicated case of a white noise
force.
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where δ > 0 depends only on a, ν, and α1. Taking η ≡ 0 and applying the
Gronwall inequality, we see that

H1(u(t)) ≤ e−δtH1(u(0)), t ≥ 0.

It follows that if u0 ∈ BH1
0
(R), then

‖Sn(u0)‖1 ≤
(
2H1(u(n))

)1/2 ≤
(
2e−δnH1(u0)

)1/2 ≤ C1Re
−δn/2‖u0‖1,

where we used the inequality

H1(v) ≤ C‖v‖41, v ∈ H1
0 , (1.34)

following immediately from the continuity of the embedding of H1
0 ⊂ L4. The

above estimate for ‖Sn(u0)‖1 implies (1.3).

Step 2. We now prove the dissipativity property (1.4). To this end, we first
establish a bound for the L2-norm. It follows from (1.31) that, for any ε > 0,
the function ϕε(t) = (H0(u(t)) + ε)1/2 satisfies the inequality

ϕ′
ε(t) ≤ −να1ϕε(t) +

1√
2
‖η(t)‖ + να1

√
ε.

Applying the Gronwall inequality and passing to the limit ε→ 0, we obtain

‖u(t)‖ ≤ e−να1t‖u0‖+
∫ t

0

e−να1(t−s)‖η(s)‖ ds. (1.35)

Now note that if
∫
J
‖η(s)‖ds ≤ b0 for any interval J ⊂ R+ of length 1, then

∫ t

0

e−να1(t−s)‖η(s)‖ ds ≤ b0
1− e−να1

for t ≥ 0.

Combining this with (1.35), we see that

‖u(k)‖ ≤ e−να1k‖u0‖+
b0

1− e−να1
, k ≥ 0. (1.36)

This inequality, established in the case of locally time-integrable functions η(t),
remains true for kick forces of the form (0.3) with L2 bounded functions ηk. In
particular, (1.4) holds with H = L2(D).

We now use the regularising property of the homogeneous CGL equation to
prove (1.4) with H = H1

0 . Namely, if we show that the mapping S : u0 7→ u(1)
from L2 to H1

0 is bounded on bounded subsets, then (1.36) will obviously imply
the existence of a universal constant ρ > 0 satisfying (1.4) with H = H1

0 . To
prove the boundedness of S, let us fix a solution u of (1.29), define a function
ψ(t) = t

√
H1(u(t)), and calculate its derivative. It follows from (1.32) and (1.34)

that4

ψ′(t) =
√
H1 +

t√
H1

d

dt
H1 ≤

√
C ‖u(t)‖21.

4 A rigorous derivation of (1.37) can be carried out by the simple argument used to estab-
lish (1.35).
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Furthermore, integrating relation (1.31) with η ≡ 0, we see that

‖u(t)‖2 + 2ν

∫ t

0

‖u(s)‖21ds ≤ ‖u0‖2.

Combining these two relations, we obtain

‖u(t)‖1 ≤
√
2H1(u(t)) =

√
2

t
ψ(t) ≤

√
2C

t

∫ t

0

‖u‖21ds ≤
C2

νt
‖u0‖2. (1.37)

The boundedness of S from L2 to H1
0 is a straightforward consequence of this

inequality.

Step 3. It remains to establish the squeezing property (1.5), in which PN is
the orthogonal projection in H1

0 (endowed with the scalar product (·, ·)1) to the
vector span of {ej, iej, j = 1, . . . , N}. Let us set QN = I − PN . By hypothesis,
we have ‖ej‖1 = 1, hence it follows that

‖ej‖ =
1

√
αj
, j ≥ 1,

where αj is the eigenvalue of the Dirichlet Laplacian corresponding to the eigen-
function ej . Using this relation, it is straightforward to check that {√αj ej} is
an orthonormal basis in L2 and that the norm of QN regarded as an operator
in L2 is equal to 1.

Now let u1, u2 be two solutions of (1.29) corresponding to initial data u10, u20 ∈
BH1

0
(R). Applying QN to (1.29) and setting w = QN (u1 − u2), we derive the

equation
ẇ − (ν + i)∆w + iaQN

(
|u1|2u1 − |u2|2u2

)
= 0.

It follows that

∂t‖w‖21 = 2Re

∫

D

∇ẇ · ∇w̄ dx = −2Re

∫

D

ẇ∆w̄ dx

= −2
(
(ν + i)∆w − iaQN (|u1|2u1 − |u2|2u2),∆w̄

)

≤ −2ν ‖∆w‖2 + a
∥∥|u1|2u1 − |u2|2u2

∥∥ ‖∆w‖, (1.38)

where we used the fact that the norm of QN is equal to 1. Using the Hölder
inequality and the continuity of the embedding H1

0 ⊂ L6, we derive

∥∥|u1|2u1 − |u2|2u2
∥∥ ≤ C3

(
‖u1‖1 + ‖u2‖1

)2 ‖w‖1.

Substituting this into (1.38) and using the Poincaré inequality ‖∆w‖2 ≥ αN‖w‖21,
we obtain

∂t‖w‖21 ≤ −
(
ναN − C4(‖u1‖1 + ‖u2‖1)4

)
‖w‖21. (1.39)

Since u10, u20 ∈ BH1
0
(R) and the resolving operator for the CGL is bounded on

bounded subsets, we can find C5(R) such that

‖ui(t)‖1 ≤ C5(R) for 0 ≤ t ≤ 1, i = 1, 2.
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Combining this with (1.39) and the Gronwall inequality, we derive

‖w(t)‖21 ≤ exp

(
−ναN t+ C4

∫ t

0

(‖u1‖1 + ‖u2‖1)4ds
)
‖w(0)‖21

≤ exp
(
−ναN t+ C6(R) t

)
‖w(0)‖21.

Since QN is an orthogonal projection in H1
0 , we have ‖w(0)‖1 ≤ ‖u10 − u20‖1.

Substituting this into the above estimate and taking t = 1, we obtain

‖u1(1)− u2(1)‖1 ≤ γN (R) ‖u10 − u20‖1, γ2N (R) = exp
(
−ναN + C6(R)

)
.

This completes the proof of (1.5) and Proposition 1.7 follows.

1.4 Scheme of the proof of Theorem 1.3

Along with ζk, let us consider “shifted” occupation measures defined as

ζ̂k =
1

k

k∑

n=1

δun
.

The sequences {ζk} and {ζ̂k} are exponentially equivalent (see Lemma 6.2), and

therefore, by Theorem 4.2.13 of [DZ00], it suffices to prove the LDP for ζ̂k. The
proof of this property is based on an abstract result established by Kifer [Kif90].
For the reader’s convenience, its statement is recalled in the Appendix (see
Theorem 6.1). We shall prove that the following two properties hold.

Property 1: The existence of a limit. For any V ∈ C(A), the limit

Q(V ) = lim
k→+∞

1

k
logE exp

( k∑

n=1

V (un)

)
. (1.40)

exists and does not depend on the initial condition u0.

Let us denote by I : M(A) → R+ the Legendre transform of Q(V ); see (6.2).
It is well known that

Q(V ) = sup
σ∈P(A)

(
〈V, σ〉 − I(σ)

)
;

see Lemma 2.2 in [BD99] and Theorem 2.2.15 in [DS89]. In view of the com-
pactness of P(A), for any V ∈ C(A) the supremum in the above relation is
attained at some point σV ∈ P(A). Any such point is called an equilibrium

state.

Property 2: Uniqueness of the equilibrium state. There is a dense vec-
tor space V ⊂ C(A) such that, for any V ∈ V , there exists unique σV
satisfying:

Q(V ) = 〈V, σV 〉 − I(σV ). (1.41)
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According to Kifer’s theorem, the first of the above properties implies the
LD upper bound for ζ̂k, while the second is sufficient for the LD lower bound.
The proofs of these two properties are related to the large-time behaviour of
a generalised Markov semigroup associated with uk. More precisely, given a
function V ∈ C(A), we consider the semigroup

PV
k f(u) := Euf(uk) exp

( k∑

n=1

V (un)

)
, f ∈ C(A), (1.42)

where the subscript u means that we consider the trajectory of (1.1) starting
from u ∈ H . The dual semigroup is denoted by PV ∗

k : P(A) → P(A). We
construct explicitly a dense vector space V ⊂ C(A) such that, for any V ∈ V ,
the semigroup PV

k is uniformly Feller and uniformly irreducible (see Section 2
for the definition of these concepts). Then, by an abstract result proved in
Section 2, there is a number λV > 0, a function hV ∈ C+(A), and a measure
µV ∈ P(A) satisfying

PV
1 hV = λV hV , PV ∗

1 µV = λV µV , (1.43)

such that for any f ∈ C(A) and ν ∈ P(A) we have

λ−kV PV
k f → 〈f, µV 〉hV in C(A) as k → +∞, (1.44)

λ−kV PV ∗
k ν ⇀ 〈hV , ν〉µV in P(A) as k → +∞. (1.45)

Taking f = 1 in (1.44), one gets immediately the existence of the limit (1.40)
for V ∈ V and any initial function u0 whose law is supported by A. Then, by
a simple approximation argument, we prove the existence of the limit for any
V ∈ C(A).

To establish the uniqueness of σV ∈ P(A) satisfying (1.41), we first show
that any equilibrium state σV is a stationary measure for the following Markov
semigroup:

S
V
k g := λ−kV h−1

V PV
k (ghV ), g ∈ C(A). (1.46)

We then deduce the uniqueness of stationary measure for S V
k from conver-

gence (1.45), showing that σV (du) = hV (u)µV (du).

The crucial point in the realisation of the above scheme is the verification of
the uniform Feller property for the semigroup {PV

k }. This verification is based
on the Lyapunov–Schmidt reduction and is carried out in Section 3.

1.5 Scheme of the proof of Theorem 1.4

Let pm :H → Hm be the projection that maps a sequence (uj , j ∈ Z+) to the
vector (uj , 0 ≤ j ≤ m− 1). It is straightforward to check that if {uk, k ≥ 0} is a
trajectory for (1.1), then the image of ζk (see (1.16)) under pm coincides with
the random probability measure

ζmk =
1

k

k−1∑

n=0

δum
n
, k ≥ 1, (1.47)
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where umn = (un, . . . , un+m−1). It follows from the Dawson–Gärtner theorem
(see Theorem 6.3 in the Appendix) that to prove Theorem 1.4 it suffices to
show that for any integer m ≥ 1, the LDP holds for ζmk with a good rate
function Im : P(Hm) → [0,+∞]. The proof of this fact is very similar to the
proof of Theorem 1.3 and the argument is outlined in Section 5. To formulate
the result precisely, let A(m) be the set of vectors (u1, . . . , um) ∈ Hm such that
u1 ∈ A and uk = S(uk−1) + ηk for 2 ≤ k ≤ m, where ηk ∈ K. Note that if a
trajectory {uk} for (1.1) is such that u0 is an A-valued random variable, then
the measures ζmk are concentrated on A(m). In Section 5 we prove

Theorem 1.8. Under the conditions of Theorem 1.3, let u0 be a random vari-

able in H whose law is supported by A. Then the family {ζmk , k ≥ 1} regarded

as a sequence of random probability measures on A(m) satisfies the LDP with a

good rate function Im : P(A(m)) → [0,+∞]. Moreover, Im can be written as

Im(σ) = sup
V ∈C(A(m))

(
〈V, σ〉 −Qm(V )

)
, σ ∈ P(A(m)), (1.48)

where Qm : A(m) → R is a 1-Lipschitz convex function such that Qm(C) = C
for any C ∈ R.

This result immediately implies that ζmk , as measures on Hm, satisfy the
LDP. To see this, extend the rate function Im constructed in Theorem 1.8 to the
space P(Hm) by setting Im(σ) = +∞ for any measure σ ∈ P(Hm) satisfying
σ(A(m)) < 1. Then, recalling that ζmk are supported on A(m) if so is the the
initial measureD(u0), we readily check that the LD upper and lower bounds hold
for the family {ζmk , k ≥ 1} regarded as random probability measures on Hm.

1.6 Uniform large deviations principle

The arguments of the proofs of Theorems 1.3 and 1.4 enable one to obtain
a uniform LDP for the families {ζk} and {ζk}, which depend on the initial
point. More precisely, let us denote by ζk(u) the occupation measure (1.12) for
the trajectory issued from a deterministic point u ∈ A and define ζk(u) in a
similar way. The definition of the uniform LDP is recalled in the Appendix (see
Section 6.3). We have the following result.

Theorem 1.9. Let Hypotheses (A)–(D) and Condition (1.8) be satisfied. Then

the uniform LDP holds for the families {ζk(u), u ∈ A} and {ζk(u), u ∈ A} with

the good rate functions I and I defined in Theorems 1.3 and 1.4, respectively.

Sketch of the proof. Let us define the set Θ := N × A and introduce an order
relation ≺ on it by the following rule: if θi = (ki, u

i) ∈ Θ for i = 1, 2, then
θ1 ≺ θ2 if and only if k1 ≤ k2. Then (Θ,≺) is a directed set. Defining r(θ) = k,
we apply Theorem 6.1 to the family ζθ = ζk(u) indexed by θ = (k, u) ∈ Θ. The
scheme of the proof described above for Theorem 1.3 applies equally well in this
case, and using the fact that the convergence in (1.40) is uniform with respect

20



to the deterministic initial condition u0 ∈ A, we get the existence of limit (6.1)
and uniqueness of equilibrium measure. Thus, we have the LDP

− I(Γ̇) ≤ lim inf
θ∈Θ

1

k
logP{ζθ ∈ Γ} ≤ lim sup

θ∈Θ

1

k
logP{ζθ ∈ Γ} ≤ −I(Γ). (1.49)

Now notice that the middle terms in this inequality can be written as

lim inf
θ∈Θ

1

k
logP{ζθ ∈ Γ} = lim inf

k→+∞

1

k
inf
u∈A

logP{ζk(u) ∈ Γ},

lim sup
θ∈Θ

1

k
logP{ζθ ∈ Γ} = lim sup

k→+∞

1

k
sup
u∈A

logP{ζk(u) ∈ Γ}.

Substituting these relations into (1.49), we obtain the uniform LDP for ζk(u).

To establish the uniform LDP for ζk(u), we apply Theorem 6.4. We thus
need the uniform LDP for the projected measures ζmk = ζmk (u) defined in Sec-
tion 1.5. The latter can be obtained by modifying the proof of Theorem 1.8
exactly in the same way as we did above to get the uniform LDP for ζk(u).

2 Large-time asymptotics for generalised Markov

semigroups

In this section, we prove a general result on the large-time behaviour of trajec-
tories for a class of dual semigroups. This type of results were established earlier
for Markov semigroups satisfying a uniform Feller and an irreducibility proper-
ties; see [LY94, Sza97, KS00, LS06, KS12]. The main theorem of this section is
a generalisation of Theorem 4.2 in [KS00] and has independent interest.

Let X be a compact metric space, let M+(X) be the space of non-negative
Borel measures on X endowed with the topology of weak convergence, and let
{P (u, ·), u ∈ X} ⊂ M+(X) be a family satisfying the following condition:

Feller property. The function u 7→ P (u, ·) from X to M+(X) is continuous
and non-vanishing.

In this case, we shall say that P (u,Γ) is a generalised Markov kernel . One
obvious consequence of the Feller property is the inequality

C−1 ≤ P (u,X) ≤ C for all u ∈ X .

Define the operators

Pf(u) =

∫

X

P (u, dv)f(v), P∗µ(Γ) =

∫

X

P (u,Γ)µ(du)

and denote Pk = Pk and P∗
k = (P∗)k. It is easy to see that

Pkf(u) =

∫

X

Pk(u, dv)f(v), P∗
kµ(Γ) =

∫

X

Pk(u,Γ)µ(du),
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where Pk(u,Γ) is defined by the relations P0(u, ·) = δu, P1(u, ·) = P (u, ·), and

Pk(u, ·) =
∫

X

Pk−1(u, dv)P (v, ·), k ≥ 2.

To simplify the notation, the sup-norm on C(X) is denoted in this section by ‖·‖.
Let 1 be the function onX identically equal to 1. Recall that a family C ⊂ C(X)
is called determining if any two measures µ, ν ∈ M+(X) satisfying the relation
〈f, µ〉 = 〈f, ν〉 for all f ∈ C coincide. In this section we prove:

Theorem 2.1. Let P (u,Γ) be a generalised Markov kernel satisfying the fol-

lowing conditions.

Uniform Feller property. There is a determining family C ⊂ C+(X) of non-
zero functions such that 1 ∈ C and the sequence {‖Pkf‖−1Pkf, k ≥ 0} is

equicontinuous for any f ∈ C.

Uniform irreducibility. For any r > 0 there is an integer m ≥ 1 and a

constant p > 0 such that

Pm(u,B(û, r)) ≥ p for all u, û ∈ X. (2.1)

Then there is a constant λ > 0, a unique measure µ ∈ P(X) whose support

coincides with X, and a unique h ∈ C+(X) satisfying 〈h, µ〉 = 1, such that for

any f ∈ C(X) and ν ∈ M+(X) we have

Ph = λh, P∗µ = λµ, (2.2)

λ−kPkf → 〈f, µ〉h in C(X) as k → ∞, (2.3)

λ−kP∗
kν ⇀ 〈h, ν〉µ as k → ∞. (2.4)

Proof. Note that the uniqueness of h and µ is an immediate consequence of the
normalisation and relations (2.2)-(2.4). We split the proof in four steps.

Step 1. We first prove the existence of a measure satisfying the second
relation in (2.2). To this end, let F : P(X) → P(X) be a map defined by

F (µ) = (P∗µ(X))−1P∗µ.

The Feller property implies that this map is well defined and continuous in
the weak topology. Since P(X) is a convex compact set, by the Leray–Schauder
theorem, the mapping F has a fixed point µ ∈ P(X). We thus obtain the second
relation in (2.2) with λ = P∗µ(X). In what follows, we may assume without
loss of generality that λ = 1; otherwise, we can replace P (u,Γ) by λ−1P (u,Γ).

Step 2. Let us prove that, for any f ∈ C, we have

C−1
f ≤ ‖Pkf‖ ≤ Cf for all k ≥ 1, (2.5)

where Cf > 1 is a constant not depending on k. Indeed, suppose that there is
a sequence kj → ∞ such that

‖Pkjf‖+ ‖Pkjf‖−1 → +∞ as j → ∞. (2.6)
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In view of the uniform Feller property, we can assume that

‖Pkjf‖−1Pkjf → g in C(X) as j → ∞,

where g ∈ C(X) is function whose norm is equal to 1. Integrating with respect
to µ and using the invariance of µ, we derive

‖Pkjf‖−1〈f, µ〉 → 〈g, µ〉 as j → ∞. (2.7)

The uniform irreducibility implies that for any û ∈ X and r > 0 we have

µ
(
B(û, r)

)
=

∫

X

Pm
(
u,B(û, r)

)
µ(du) ≥ p µ(X) > 0.

Hence, suppµ = X , and since f, g ∈ C+(X) are non-zero functions, we have
that 〈f, µ〉 > 0 and 〈g, µ〉 > 0. It now follows from (2.7) that the sequence
‖Pkjf‖ has a finite positive limit, and therefore (2.6) cannot hold.

Step 3. Let us prove the existence of h ∈ C+(X) satisfying the first rela-
tion in (2.2) with λ = 1. Let f ∈ C be an arbitrary function. The uniform
Feller property and inequality (2.5) imply that the sequence Pkf is uniformly
equicontinuous. It follows that so is the sequence

fk =
1

k

k−1∑

l=0

Plf.

Let h be a limit point for {fk}. It is straightforward to see that h ≥ 0 and
P1h = h. Furthermore, since 〈fk, µ〉 = 〈f, µ〉 > 0, we see that h is non-zero.
Multiplying h by a constant, we can assume that 〈h, µ〉 = 1. It remains to prove
that h(u) > 0 for all u ∈ X . Indeed, let û ∈ X be any point at which h is
positive. Then there is r > 0 such that h(v) ≥ r for v ∈ B(û, r). It follows that,
for any u ∈ X , we have

h(u) = Pmh(u) =

∫

X

Pm(u, dv)h(v) ≥
∫

B(û,r)

Pm(u, dv)h(v)

≥ rPm
(
u,B(û, r)

)
≥ rp > 0,

where m ≥ 1 is the integer from (2.1).

Step 4. We now establish convergence (2.3) and (2.4) with λ = 1. To this
end, we first note that (2.4) is an immediate consequence of (2.3). Furthermore,
the right-hand inequality in (2.5) with f = 1 implies that the norms of the
operators Pk are bounded by C1 for all k ≥ 1. Since the linear span of a
determining family is dense in C(X), it suffices to establish (2.3) for any f ∈ C.

Let us fix an arbitrary f ∈ C and define the function g = f − 〈f, µ〉h.
We need to prove that Pkg → 0 in C(X). Since {Pkg, k ≥ 0} is uniformly
equicontinuous and the norms of Pk are bounded, the required assertion will
be established if we prove that any sequence of integers ni → ∞ contains a
subsequence {kj} ⊂ {ni} for which

‖gkj‖µ → 0 as j → ∞, (2.8)
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where we set gk = Pkg. Since 〈gk, µ〉 = 0 for k ≥ 0, convergence (2.8) certainly
holds for any subsequence {kj} such that ‖g+kj‖ → 0 or ‖g−kj‖ → 0 as j → ∞.
Let us assume that there is no subsequence satisfying this property. Then there
exists sequences {u±i } ⊂ X and a constant α > 0 such that

g̃+i (u
+
i ) = max

u∈X
g̃+i (u) ≥ α, g̃−i (u

−
i ) = max

u∈X
g̃−i (u) ≥ α, (2.9)

where we set g̃i = gni
. Since g̃±i are uniformly equicontinuous, we can find r > 0

not depending on k such that

g̃±i (u) ≥
1

2
g̃±i (u

±
i ) for u ∈ B(u±i , r). (2.10)

Let m and p be the constants arising in the uniform irreducibility condition.
Then (2.10) and (2.5) imply

Pmg̃
±
i (u) =

∫

X

Pm(u, dv)g̃±i (v) ≤ C1g̃
±
i (u

±
i ),

Pmg̃
±
i (u) ≥

∫

B(u±

i
,r)

Pm(u, dv)g̃±i (v) ≥ p g̃±i (u
±
i )/2,

and it follows that

sup
u∈X

Pmg̃
±
i (u) ≤ Ag inf

u∈X
Pmg̃

±
i (u), (2.11)

where Ag = 2C1/p. We now write

‖Pmg̃i‖µ =

∫

X

|Pm(g̃
+
i − g̃−i )|dµ

=

∫

X

∣∣(Pmg̃
+
i −A−1

g ‖g̃+i ‖µ)− (Pmg̃
−
i −A−1

g ‖g̃−i ‖µ)
∣∣dµ

≤
∫

X

∣∣Pmg̃
+
i −A−1

g ‖g̃+i ‖µ
∣∣dµ+

∫

X

∣∣Pmg̃
−
i −A−1

g ‖g̃−i ‖µ
∣∣dµ

=

∫

X

Pm(g̃
+
i + g̃−i )dµ−A−1

g

(
‖g̃+i ‖µ + ‖g̃−i ‖µ

)

= (1 −A−1
g )‖g̃i‖µ. (2.12)

Furthermore, for any f ∈ C(X) and k ≥ 1, we have

‖Pkf‖µ = 〈|Pkf |, µ〉 ≤ 〈Pk|f |, µ〉 = 〈|f |, µ〉 = ‖f‖µ.
It follows that the sequence {‖Pkg‖µ} is non-increasing. Combining this prop-
erty with (2.12), we see that if nl ≥ ni +m, then

‖gnl
‖µ ≤ (1−A−1

g )‖gni
‖µ. (2.13)

Let us choose a subsequence {kj} ⊂ {ni} such that kj+1 ≥ kj +m. Then (2.13)
implies that

‖gkj‖µ = ‖Pkjg‖µ ≤ (1−A−1
g )j‖g‖µ for j ≥ 0,

where k0 = 0. This proves convergence (2.8) and completes the proof of the
theorem.
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3 The uniform Feller property

We shall use freely the notation introduced in Subsection 1.1 (we recall in partic-
ular that {ej} is the orthonormal basis introduced in Condition (C), that PN is
the orthogonal projection onto HN = span{e1, . . . , eN}, and that A = A({0}) is
the domain of attainability from zero). Let V be the set of functions V ∈ C(A)
for which there is an integer N ≥ 1 and a function F ∈ C(HN ) such that

V (u) = F (PNu) for u ∈ A. (3.1)

It is easy to see that V is a dense subspace in C(A) containing the constant
functions. In particular, the intersection C = V ∩C+(A) is a determining family
for P(A).

For any V ∈ C(A), let us consider the following generalised Markov kernel
on A:

PV1 (u,Γ) = Eu

(
IΓ(u1)e

V (u1)
)
=

∫

Γ

P1(u, dv)e
V (v), u ∈ A, Γ ∈ B(A). (3.2)

The corresponding semigroup of operators is given by (1.42). The goal of this
section is to prove:

Theorem 3.1. Under the hypotheses of Theorem 1.3, for any V ∈ V the semi-

group {PV
k } possesses the uniform Feller property for the determining class C.

In other words, for any V ∈ V and f ∈ C the sequence {‖PV
k f‖−1

∞ PV
k f, k ≥ 0}

is uniformly equicontinuous.

The theorem will play a key role in the proof of our main results. We start
its proof by discussing a Lyapunov–Schmidt type reduction which gives a useful
formula for the Markov semigroup applied to functions depending on finitely
many Fourier modes and an auxiliary inhomogeneous Markov chain that will
be needed in what follows.

3.1 Lyapunov–Schmidt reduction

In this subsection we introduce a Markov family which is defined in the space
of sequences and is closely related to system (1.1). Recall that 5

HN =
(
HN ×H⊥

N

)Z0
,

where Z0 the set of non-positive integers. The set HN is endowed with the
Tikhonov topology and the corresponding Borel σ-algebra. Given a measurable
mapping T0 : HN → HN , define a family of Markov chains in HN by the
relations

Υ 0 = U , Υ k =

(
Υ k−1, T (Υ k−1) +

(
ϕk
ψk

))
, (3.3)

5 The space HN is, of course, the same as H = HZ0 . We use, however, different notation
because the components lying in HN and H⊥

N
will have different meanings.
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where U =
(
v

w

)
∈ HN is an initial point and

ϕk = PNηk, ψk = (I − PN )ηk, T (U) =

(
T0(U)

0

)
.

We shall sometimes write Υ k(U) to indicate the dependence of the random
trajectory on the initial point. Let us note that, if Condition (D) is satisfied
with bj > 0 for all j ≥ 1, then for any function f ∈ Cb(HN ) that can be written
in the form

f (U) = F (v1−k, . . . , v0), U =
(
σj =

(
vj
wj

)
, j ∈ Z0

)
, (3.4)

where F : (HN )k → R is a measurable function, we have

EU f (Υ
k) =

∫

(HN )k
Dk(U , σ1, . . . , σk)F (v1, . . . , vk) dℓN(σ1) . . . dℓN (σk). (3.5)

Here the subscript U means that we consider the trajectory starting from U ,
ℓN ∈ P(HN × H⊥

N ) denotes the direct product of the Lebesgue measure LN
onHN and the law of ψ1 (which is a measure on H⊥

N ), σj =
(
vj
wj

)
for j = 1, . . . , k,

and

Dk(U , σ1, . . . , σk) =

k∏

n=1

D(vn − T0(U , σ1, . . . , σn−1)), (3.6)

where D(v) denotes the density of the law for ϕ1 with respect to LN :

D(v) =
N∏

i=1

b−1
i pi(b

−1
i xi), v = (x1, . . . , xN ) ∈ HN . (3.7)

We now prove a refined version of the Lyapunov–Schmidt type reduction es-
tablished in Section 3 of [KS00]. Given an integerN ≥ 1 and positive numbers R
and b, define

BR,b := BHN
(R)×BH⊥

N
(b), BR,b := (BR,b)

Z0 .

If W0 : BR,b → H⊥
N is a continuous mapping, then we extend W0 to the entire

space HN by setting it to zero outside BR,b. Given such a mapping, we define
T0 : HN → HN by the relation

T0(v,ψ) = PNS(v0 +W0(v,ψ)). (3.8)

Proposition 3.2. Let Conditions (A)–(D) be satisfied and let b =
√
B. Then

for any R > 0 and κ > 0 there is an integer N∗ ≥ 1 such that for any N ≥ N∗
one can find a constant C > 0 and a continuous mapping

W0 : BR,b → H⊥
N , U = (v ,ψ) 7→ w0,

possessing the following properties.
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Lipschitz continuity. For any U i = (v i,ψi) ∈ BR,b, i = 1, 2, we have

‖W0(U 1)−W0(U2)‖ ≤ C sup
j≤0

{
eκj

(
‖v1j − v2j‖+ ‖ψ1j − ψ2j‖

)}
, (3.9)

where v1j stands for the jth element of v1, and we used similar notation for the

other sequences.

Regularity. For any j ≤ 0, the mapping W0(v ,ψ) is continuously differ-

entiable with respect to Υj =
(
vj
ψj

)
in the closed ball BR,b.

Reduction. Let r ≥ 0 be such that A(BH(r)) ⊂ BH(R) and let u ∈
A(BH(r)) be a vector written as u = v0 +W0(U) for some U = (v ,ψ) ∈ BR,b.

Then the trajectory Υ k = Υ k(U) defined by (3.3), (3.8) is such that

P
{
Υ k(U) ∈ BR,b for all k ≥ 0

}
= 1. (3.10)

Moreover, if a bounded measurable function f : Hk → R is of the form

f(u1, . . . , uk) = F (PNu1, . . . ,PNuk), u1, . . . , uk ∈ H,

where F : (HN )k → R is a measurable function, then

Euf(u1, . . . , uk) = EU f (Υ
k) for k ≥ 0, (3.11)

where f ∈ Cb(HN ) is defined as f (v ,ψ) = F (v1−m, . . . , v0), and the subscripts u
and U in (3.11) mean that we consider trajectories of (1.1) and (3.3) starting

from u and U , respectively.

Let us note that the regularity of W0 with respect to (vj , ψj) and inequal-
ity (3.9) imply that

∥∥∥∥
∂W0

∂Υj
(Υ )

∥∥∥∥
L(H,H⊥

N
)

≤ Ceκj, (3.12)

for all Υ =
(
v

ψ

)
∈ BR,b and j ≤ 0.

Scheme of the proof of Proposition 3.2. Let us consider the equation

ṽk = QNS(vk−1 + ṽk−1) + ψk, k ≤ 0, (3.13)

where QN = I − PN , and {(vj , ψj), j ≤ 0} ∈ BR,b is a given vector. It follows
from Theorem 3.1 of [KS00] that if N ≥ 1 is sufficiently large, then (3.13) has

a unique solution ṽ ∈ (BH⊥
N
(R̃))Z0 , where R̃ depends on R. We denote by W0

the mapping that takes (v ,ψ) to the zeroth component of ṽ. Then (3.9) follows
immediately from inequality (3.7) of [KS00], while relations (3.10) and (3.11)
are consequences of the construction. Thus, it remains to prove the regularity
ofW0 with respect to (vj , ψj). This property would follow immediately from the
implicit function theorem if (3.13) was a uniquely solvable equation in a Banach
space. Since this is not the case, we apply the following simple argument.
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Let χ : H → R be a smooth cut-off function equal to 1 on the ball BH(R+R̃).
Choosing N sufficiently large, we derive from (1.5) that

‖(I − PN )((χS)(u1)− (χS)(u2))‖ ≤ 1

2
‖u1 − u2‖ for u1, u2 ∈ H. (3.14)

It follows that, for any (v ,ψ) ∈ L∞(Z0, HN ×H⊥
N ), the equation

ṽk = QN (χS)(vk−1 + ṽk−1) + ψk, k ≤ 0, (3.15)

has a unique solution ṽ ∈ L∞(Z0, H
⊥
N ). This solution coincides with that

of (3.13) for (v ,ψ) ∈ BR,b. Since the mapping entering the right-hand side
of (3.15) is C1-smooth in appropriate spaces, the unique solution ṽ of Eq. (3.15)
will be a C1-smooth function of (v ,ψ) if we show that Eq. (3.15) can be solved
locally with the help of the implicit function theorem. In particular, the depen-
dence of the zeroth component of ṽ on (vj , ψj) will be C

1 for any j ≤ 0.
To prove the applicability of the implicit function theorem, let us define a

mapping G : L∞(Z0, HN ×H⊥
N ) → L∞(Z0, H

⊥
N ) by the formula

G(v , ṽ) =
(
ṽk − QN (χS)(vk−1 + ṽk−1)− ψk, k ∈ Z0

)
,

where v = (vk, k ∈ Z0) and ṽ = (ṽk, k ∈ Z0). Equation (3.15) is satisfied if and
only if G(v , ṽ) = 0. The derivative of G with respect to ṽ has the form

G′(v , ṽ) = I −G1(v , ṽ),

where I denotes the identity operator in L∞(Z0, H
⊥
N) and G1(v , ṽ) is a linear

operator in the same space whose norm does not exceed 1/2 in view of (3.14).
Thus, one can apply the implicit function theorem. This completes the proof of
the proposition.

3.2 An auxiliary family of Markov chains

In what follows, we shall need an auxiliary inhomogeneous Markov family in
the space HN . Namely, let us fix an integer r ≥ 1, an initial point U ∈ HN ,
and a measurable mapping T0 : HN → HN and define a random sequence
{Υ kr = Υ kr (U), k ≥ 0} by the relations

Υ 0
r = U , Υ kr =

(
Υ k−1
r , T (Υ k−1

r ) +

(
ϕk,r
ψk

))
, (3.16)

where T is the same as in (3.3), ϕk,r = ϕk for k 6= r, and ϕr,r is a random
variable in HN that is independent of {ηk, k ≥ 1} and is uniformly distributed
on the support of the law for ϕ1 = PNη1. The latter means that

D(ϕr,r) = C IPNK(x)LN (dx), x ∈ HN ,

where C > 0 is a normalising constant and K = suppD(η1). Note that
{Υ kr (U),U ∈ HN , k ≥ 0} is a family of inhomogeneous Markov chains in HN
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satisfying Υ kr(U ) = Υ k(U) for k ≤ r − 1 and for k ≥ r + 1. In particular, the
Markov property implies that, if g : Hm → R is a bounded measurable function,
then

E
(
g
(
Υ r+1
r (U ), . . . ,Υ r+mr (U)

)
| Fr

)
= E g

(
Υ 1(V ), . . . ,Υm(V )

)∣∣
V =Υ r

r(U)
,

(3.17)
where Fr is is the σ-algebra generated by {Υ j}j≤r.

Let A ⊂ HN be the domain of attainability from zero for {Υ k}. That is, we
define

A0 = {0}, Ak =
{
(Υ , T (Υ ) +K),Υ ∈ Ak−1

}
for k ≥ 1,

where 0 ∈ HN stands for the zero element and K is the support of D(η1), and
denote by A the closure of the union of Ak, k ≥ 0, in the Tikhonov topology
of HN . Since suppD(ϕk,r) = suppD(ϕk) and, hence, the support of the law

for
(ϕk,r

ψk

)
is equal to K, the domain of attainability from zero for {Υ kr} coincides

with A. In particular, A is an invariant subset for {Υ kr}.
We shall also need the following property of A established in Section 3.2

of [KS00]. Let R∗ > 0 be such that b =
√
B ≤ R∗ and A ⊂ BH(R∗). Then

A ⊂
(
BH(R∗)

)Z0
. (3.18)

3.3 Proof of Theorem 3.1

Step 1. We first reduce the proof of the uniform Feller property to a similar
question for the Markov family {Υ k} with the state space HN (see Section 3.1).
Recall that the relationship between {Υ k} and {uk} is described in Proposi-
tion 3.2 and the domain of attainability from zero A was defined in Section 3.2.
Given a function V ∈ Cb(HN ), we introduce a semigroup acting on C(A) by
the formula

(PV
k f )(Υ ) = EΥ exp

( k∑

n=1

V
(
PNΥ

k
1−n)

))
f (Υ k), k ≥ 1,

where Υ k = (Υ kj , j ∈ Z0) and f ∈ C(A). To any function f ∈ C(HN ) we
associate f ∈ C(A) defined by

f (Υ ) = f(v0), Υ =
(
v

ψ

)
=

((
vj
ψj

)
, j ∈ Z0

)
. (3.19)

We claim that the uniform Feller property for {PV
k } with the determining class C

of Theorem 3.1 will be established if we prove the following assertion:

(P) Let R∗ > 0 be the constant for which (3.18) holds, let κ > 0 satisfy the

inequality

κ > OscA(V ) := sup
A
V − inf

A
V, (3.20)
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and let N∗ = N∗(R∗,κ) ≥ 1 be the integer constructed in Proposition 3.2.

Then, for any integer N ≥ N∗, any function V ∈ C(A) representable

in the form (3.1), and any function f ∈ C(A) of the form (3.19) with

f ∈ C+(HN ), the sequence {‖PV
k f ‖−1

∞ PV
k f , k ≥ 1} is relatively compact

in C(A).

Indeed, let V ∈ V , f ∈ C, and let f be the function defined by (3.19). There
is no loss of generality in assuming that N ≥ 1 is so large that the conclusion
of (P) holds. Thus, any sequence of positive integers going to +∞ contains a
subsequence {kn} such that

sup
Υ∈A

∣∣‖PV
kmf ‖−1

∞ PV
kmf (Υ )−‖PV

knf ‖
−1
∞ PV

knf (Υ )
∣∣ → 0 as m,n→ ∞. (3.21)

On the other hand, if u ∈ A is such that u = v0 +W0(Υ ) for some Υ ∈ A, then
by (3.11) we have

(PV
k f )(Υ ) = EΥ exp

( k∑

n=1

V (PNΥ
k
1−n)

)
f(Υ k0 )

= Eu exp

( k∑

n=1

V (PNun)

)
f(PNuk) = (PV

k f)(u). (3.22)

Since the image of A by the mapping Υ =
((
vj
ψj

)
, j ∈ Z0

)
7→ v0 + W0(Υ )

coincides with A (see Section 3 in [KS00]), it follows from (3.21) and (3.22) that

sup
u∈A

∣∣‖PV
kmf‖

−1
∞ PV

kmf(u)− ‖PV
knf‖

−1
∞ PV

knf(u)
∣∣ → 0 as m,n→ ∞.

By the Arzelà theorem, what has been established implies that the sequence
{‖PV

k f‖−1
∞ PV

k f} is uniformly equicontinuous. Since V ∈ V and f ∈ C were
arbitrary, we obtain the required uniform Feller property.

Step 2. We now prove Property (P). To this end, it suffices to find positive
constants C and c such that

‖PV
k f ‖−1

∞ sup
Υ∈A

∥∥∥∥
∂PV

k f

∂Υj
(Υ )

∥∥∥∥ ≤ Cecj , (3.23)

where Υ = (Υj , j ∈ Z0). Indeed, let us endow the set A with the metric

dc(Υ 1,Υ 2) =
∑

j∈Z0

ecj‖Υ 1
j − Υ 2

j ‖, Υ i =
(
Υ ij , j ∈ Z0

)
.

The topology defined by dc on A coincides with the Tikhonov topology. Let us
set gk = ‖PV

k f ‖−1
∞ PV

k f . If we show that gk is C-Lipschitz continuous on A

with respect to the metric dc for any k ≥ 1, then the relative compactness
of {gk} in C(A) will follow by the Arzelà theorem.
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Assuming that (3.23) is established, we use the mean value theorem with
respect to the variable Υj =

(
vj
ψj

)
to estimate the Lipschitz constant of gk:

|gk(Υ 1)− gk(Υ 2)| ≤
∑

j∈Z0

Lipj(gk)‖Υ 1
j − Υ 2

j ‖

≤
∑

j∈Z0

Cecj‖Υ 1
j − Υ 2

j ‖ = C dc(Υ 1,Υ 2),

where Lipj(gk) stands for the Lipschitz constant of gk with respect to
(
vj
ψj

)
.

This inequality shows that gk is C-Lipschitz continuous.

Step 3. Let us prove (3.23). In view of (3.5), we have

(PV
k f )(Υ ) =

∫
Dk(Υ , σ1, . . . , σk) exp

( k∑

n=1

V (vn)

)
f(vk) dℓN(σ1) . . . dℓN (σk).

(3.24)

Here and henceforth, the integrals without limits are taken over (BR,b)
k and, as

before, we write σn =
(
vn
wn

)
for n = 1, . . . , k. Taking the derivative of the above

relation with respect to Υj and defining ℓkN as the direct product of k copies
of ℓN , we get

PV
k f

∂Υj
(Υ ) =

∫
Dk(Υ ,σk)

∂Υj
exp

( k∑

n=1

V (vn)

)
f(vk) dℓ

k
N(σk), (3.25)

where we set σn = (σ1, . . . , σn). Note that

∂Dk(Υ ,σk)

∂Υj
=

k∑

r=1

Dkr(Υ ,σr)

〈
∂D

∂v

(
vr − T0(Υ ,σr−1)

)
,
∂T0
∂Υj

(Υ ,σr−1)

〉
,

where

Dkr(Υ ,σk) =

k∏

r 6=n=1

D
(
vn − T0(Υ ,σn−1)

)
.

In view of (3.9), (3.12), and the regularity of S, we have

∥∥∥∥
∂T0
∂Υj

(Υ ,σr−1)

∥∥∥∥
L(H,HN )

≤ C1e
κ(j−r) for any (Υ ,σr−1) ∈ BR,b,

where we denote by Ci unessential positive constants. Substituting the above
relations into (3.25), we derive

∥∥∥∥
PV
k f

∂Υj
(Υ )

∥∥∥∥ ≤ C2(N)
k∑

r=1

eκ(j−r)
∫
Dkr(Υ ,σk) exp

( k∑

n=1

V (vn)

)
f(vk) dℓ

k
N(σk).

(3.26)
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Let us recall that, given an integer N ≥ 1, the inhomogeneous family of Markov
chains {Υ kr = (Υ kr,j , j ∈ Z0)} was defined in Section 3.2. The integral on the
right-hand side of (3.26) can be rewritten as

Ikr(Υ ) :=
1

LN (PNK)
EΥ

{
exp

( k∑

n=1

V
(
PNΥ

k
r,n

))
f
(
PNΥ

k
r,k

)}
.

Conditioning on Fr and using the Markov property (3.17), we can estimate Ikr
as follows:

|Ikr(Υ )| ≤ ‖f‖∞ exp(r supA V )

LN (PNK)
EΥEΥ

{
exp

( k∑

n=r+1

V
(
PNΥ

k
r,n

)) ∣∣∣∣Fr
}

= C3 exp(r supA V )EΥEΥ r
r

{
exp

( k−r∑

n=1

V
(
PNΥ

k
n

))}

≤ C3 exp(r supA V ) sup
U∈A

EU

{
exp

( k−r∑

n=1

V
(
PNΥ

k
n

))}

≤ C3 exp
(
rOscA(V )

)
‖PV

k 1‖∞.

Substituting this estimate into (3.26), we obtain

∥∥∥∥
PV
k f

∂Υj
(Υ )

∥∥∥∥ ≤ C4(N) eκj‖PV
k 1‖∞

k∑

r=1

e−r(κ−OscA(V )).

Recalling (3.20), we see that

sup
Υ∈A

∥∥∥∥
PV
k f

∂Υj
(Υ )

∥∥∥∥ ≤ C5(N)eκj‖PV
k 1‖∞. (3.27)

On the other hand, since f is continuous and positive on the compact set A, it
can be minorised by a constant cf > 0. It follows that

PV
k f (Υ ) ≥ cf (P

V
k 1)(Υ ),

and we conclude that
‖PV

k f ‖∞ ≥ cf ‖PV
k 1‖∞.

Comparing this with (3.27), we obtain inequality (3.23) with C = C5(N)/cf
and c = κ. The proof of Theorem 3.1 is complete.

4 Proof of Theorem 1.3

We shall prove Theorem 1.3 by verifying Property 1 (the existence of a limit)
and Property 2 (uniqueness of the equilibrium state) of Section 1.4.
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Let PVk (u,Γ), {PV
k }, V , and C be as in Theorem 3.1. For any V ∈ C(A),

PVk (u, ·) ≥ e−k‖V ‖∞Pk(u, ·) for any u ∈ A.

Since Pk(u,Γ) is uniformly irreducible (e.g., see Section 5 of [KS00] for a proof
of a similar assertion in a more complicated setting), so is PVk (u,Γ). By The-
orem 3.1, for any V ∈ V the semigroup {PV

k } possesses the uniform Feller
property for the determining class C. Thus, for V ∈ V , Theorem 2.1 holds for
the semigroup {PV

k } and the class C.
We now turn to the proof of Property 1 and the existence of the limit (1.40).

Theorem 2.1 implies that for any V ∈ V there is hV ∈ C+(A) and a constant
λV > 0 such that

λ−kV PV
k 1 → hV in C(A) as k → ∞.

It follows that for V ∈ V

Q(V ) = lim
k→+∞

1

k
log(PV

k 1)(u) = logλV (4.1)

uniformly in u ∈ A. The estimate

(PV1

k 1)(u) = Eu exp

( k∑

n=1

V1(un)

)
≤ ek‖V1−V2‖∞ Eu exp

( k∑

n=1

V2(un)

)

= ek‖V1−V2‖∞ (PV2

k 1)(u),

which holds for any V1, V2 ∈ C(A), implies

∣∣∣∣
1

k
log(PV1

k )(u)− 1

k
log(PV2

k 1)(u)

∣∣∣∣ ≤ ‖V1 − V2‖∞ for k ≥ 1, u ∈ A. (4.2)

Hence, (4.1) holds for all V ∈ C(A), the limit is uniform in u ∈ A, and

|Q(V1)−Q(V2)| ≤ ‖V1 − V2‖∞ for V1, V2 ∈ C(A). (4.3)

The existence of the limit (1.40) for an arbitrary A-valued initial function u0
now follows by integration with respect to the law of u0.

We now turn to Property 2. We shall show that for any V ∈ V , there is
only one equilibrium state σV ∈ P(A) for Q(V ). We begin with three auxiliary
lemmas.

The functional Q : C(A) → R is 1-Lipschitz continuous and convex. Let
I : M(A) → R be its Legendre transform. A proof of the following result can
be found in Section 6.5.1 of [DZ00].

Lemma 4.1. For any σ ∈ P(A), we have

I(σ) = − inf
g∈C+(A)

〈
log

(
P1g

g

)
, σ

〉
. (4.4)

33



Until the end of the proof, we fix V ∈ V . We denote by

(λV , µV , hV ) ∈ R+ × P(A)× C+(A)

the triple constructed in Theorem 2.1 for the generalisedMarkov semigroup {PV
k }.

Recall that the Markov semigroup {S V
k } is defined by (1.46) and denote by {S V ∗

k }
its dual semigroup acting on P(A). The following lemma establishes the unique-
ness of stationary measure for {S V ∗

k } and provides a formula for it.

Lemma 4.2. νV = hV µV is the unique stationary measure for {S V ∗
k }.

Proof. The relation 〈hV , µV 〉 = 1 implies that νV ∈ P(A). For any g ∈ C(A)
we have

〈S V
1 g, νV 〉 = λ−1

V 〈PV
1 (ghV ), µV 〉 = 〈ghV , µV 〉 = 〈g, νV 〉,

and so νV is a stationary measure for S
V ∗
1 . Let ν ∈ P(A) be another stationary

measure for S V ∗
1 . Then the measure µ defined by µ = h−1

V ν satisfies the relation

〈ghV , µ〉 = 〈g, ν〉 = 〈S V
1 g, ν〉 = λ−1

V 〈PV
1 (ghV ), µ〉 for any g ∈ C(A).

Since hV is everywhere positive, this relation implies PV ∗
1 µ = λV µ and so

µ = CµV . Since 〈hV , µ〉 = 〈hV , µV 〉 = 1, we conclude that µ = µV and
ν = νV .

Lemma 4.3. The infimum in (4.4) is attained at the function g = hV e
V if and

only if σ = νV .

Proof. Let us define h̃V := hV e
V , so that eVP1h̃V = λV h̃V . Assume that

I(σ) = −
〈
log

(
P1h̃V

h̃V

)
, σ

〉
for some σ ∈ P(A). Then, for any g ∈ C+(A), we have

d

dε

〈
log

(
P1(h̃V + εg)

h̃V + εg

)
, σ

〉∣∣∣∣
ε=0

= 0.

This implies that 〈(
P1g

P1h̃V
− g

h̃V

)
, σ

〉
= 0,

which is equivalent to the relation 〈S V
1 g, σ〉 = 〈g, σ〉. Since this is true for any

g ∈ C+(A), Lemma 4.2 implies that σ = νV .

Now let us prove that I(νV ) = −
〈
log

(
P1h̃V

h̃V

)
, νV

〉
. We need to show that

〈
log

(
P1h̃V

h̃V

)
, νV

〉
≤

〈
log

(
P1g

g

)
, νV

〉
for any g ∈ C+(A).

The relation is equivalent to

〈
log

(
h̃VP1g

gP1h̃V

)
, νV

〉
≤ 0. (4.5)
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Since νV is a stationary measure for S V ∗
1 , we have 〈S V

1 f − f, νV 〉 = 0 for any
f ∈ C(A). Combining this with Jensen’s inequality, we see that

〈log(S V
1 e

f )− f, ν〉 ≥ 0.

Taking f = log g in this equality and using the definition of S V
1 , we get

〈
log

(
P1(h̃V g)

gP1h̃V

)
, νV

〉
≥ 0.

Replacing g by g/h̃V , we obtain (4.5).

We can now establish the uniqueness of equilibrium state. Let σV ∈ P(A)
be such that (1.41) holds. The definition of h̃V and the relation Q(V ) = logλV
imply that

〈V, σV 〉 − I(σV ) = Q(V ) =

〈
V + log

(
P1h̃V

h̃V

)
, σV

〉
.

It follows that I(σV ) = −
〈
log

(
P1h̃V

h̃V

)
, σV

〉
. By Lemma 4.3, we have σV = νV .

This completes the proof of uniqueness of the equilibrium measure for V ∈ V
and Theorem 1.3 follows.

5 Proof of Theorem 1.4

As described in Section 1.5, Theorem 1.4 follows from Theorem 1.8 (which in
turn is a generalisation of Theorem 1.3). To establish Theorem 1.8, one follows
the general scheme used in the proof of Theorem 1.3, applying it to the Markov
chain formed by the segments of trajectories of lengthm. Namely, let us consider
the following family of Markov chains in A(m):

uk = S(uk−1) + ηk, (5.1)

where uk = (u1k, . . . , u
m
k ), ηk = (0, . . . , 0, ηk+m−1), and S : Hm → Hm is the

mapping given by

S(v1, . . . , vm) =
(
v2, . . . , vm, S(vm)

)
, (v1, . . . , vm) ∈H.

It is clear that if u0 is anA-valued random variable independent of {ηk} and {uk}
is the corresponding trajectory of (1.1), then ζmk is the occupation measure for
the trajectory of (5.1) starting from the (random) initial point (u0, . . . , um−1).
Since its law is supported by A(m), the LDP for ζmk will be established if we
prove the LDP for the Markov family (5.1) restricted to the invariant compact
set A(m). By Kifer’s theorem and the argument described Section 1.4, the latter
result is a consequence of the following two properties (which were described in
Section 1.4 for {uk}):
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Property 1’: The existence of a limit. For any function V ∈ C(A(m)) the
limit

Qm(V ) = lim
k→+∞

1

k
logE exp

( k∑

n=1

V (un)

)
. (5.2)

exists and does not depend on the initial point u = (u1, . . . , um) ∈ A(m).

Property 2’: Uniqueness of equilibrium state. There exists a dense vec-
tor space Vm ⊂ C(A(m)) such that, for any V ∈ Vm, there is a unique
measure σV ∈ P(A(m)) satisfying the relation

Qm(V ) = sup
σ∈P(A(m))

(
〈V, σ〉 − Im(σ)

)
,

where Im(σ) denotes the Legendre transform of Qm.

To establish these assertions, we introduce a generalised Markov semigroup by
the relation (cf. (1.42))

PV
k f(u) := Euf(uk) exp

( k∑

n=1

V (un)

)
, f ∈ C(A(m)), (5.3)

where V ∈ C(A(m)) is a given function. If we prove that {PV
k } satisfies the

uniform Feller and uniform irreducibility properties of Theorem 2.1 for any V
belonging to a dense subspace Vm that contains constant functions, then the
required results will following line by line the proof of Theorem 1.3.

To show the uniform irreducibility, note that A(m) is the domain of attain-
ability from zero for system (5.1). Therefore the required property follows by
repeating the proof of a similar property for (1.1).

We now turn to the uniform Feller property. Let Vm be the space of functions
V ∈ C(A(m)) for which there is an integer N ≥ 1 and a function F ∈ C(Hm

N )
such that

V (u) = F (PNu) for u = (u1, . . . , um) ∈ A(m),

where PNu = (PNu
1, . . . ,PNu

m). Then, for V, f ∈ Vm and k ≥ m, we can
write (cf. (3.22) and (3.24))

(PV
k f)(u) =

∫

Bk
R,b

Dk(Υ , σ1, . . . , σk) exp

( k∑

n=1

V (vn−m+1, . . . , vn)

)

× f(vk−m+1, . . . , vk) dℓN (σ1) . . . dℓN(σk). (5.4)

Here Υ =
((
vj
ψj

)
, j ∈ Z0

)
∈ A is an arbitrary point such that

ul+m = vl +W0(Υ l) for 1−m ≤ l ≤ 0,
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where Υ l =
((
vj
ψj

)
, j ∈ Zl

)
, and we use the same notation as in (3.24). Let us

denote by fk(Υ ) the right-hand side of (5.4). As was explained in Section 3.3,
the uniform equicontinuity of {PV

k f, k ≥ 0} follows from the uniform equicon-
tinuity of {fk(Υ ), k ≥ m} (note that these functions act on A). The latter
property can be proved by literal repetition of the argument used to establish
assertion (P) of Section 3.3, provided that V ∈ Vm and f ∈ Vm ∩ C+(A(m)).
This completes the proof of Theorems 1.8 and 1.4.

6 Appendix

In this section, we recall three results on the large deviation principle (LDP). The
first of them was established by Kifer [Kif90] and provides a sufficient condition
for the validity of LDP for a family of random probability measures. The second
result shows that, when studying the LDP for occupation measures of random
processes, one can take the average starting from any non-negative time. The
third result due to Dawson and Gärtner [DG87] shows that the process level LDP
is a straightforward consequence of the LDP for finite segments of solutions.

6.1 Kifer’s sufficient condition for LDP

Let Θ be a directed set, let X be a compact metric space, and let (Ω,F ,P) be
a probability space. We consider a family {ζθ} = {ζωθ } of random probability
measures on X depending on θ ∈ Θ such that the following limit exists for any
V ∈ C(X):

Q(V ) = lim
θ∈Θ

1

r(θ)
log

∫

Ω

exp

(
r(θ)

∫

X

V dζωθ

)
dP(ω), (6.1)

where r : Θ → R is a given positive function such that limθ∈Θ r(θ) = ∞. Then
Q : C(X) → R is a convex 1-Lipschitz functional such that Q(V ) ≥ 0 for any
V ∈ C+(X) and Q(C) = C for any constant C ∈ R. Recall that the Legendre
transform of Q is defined on the space M(X) by

I(σ) = sup
V ∈C(X)

(
〈V, σ〉 −Q(V )

)
(6.2)

if σ ∈ P(X) and I(σ) = ∞ otherwise. The function I(σ) is convex and lower
semicontinuous in the weak topology, and Q can be reconstructed by the formula

Q(V ) = sup
σ∈P(X)

(
〈V, σ〉 − I(σ)

)
.

Since P(X) endowed with topology of weak convergence is compact, for any
V ∈ C(X) there is σV ∈ P(X) such that

Q(V ) = 〈V, σV 〉 − I(σV ). (6.3)

Any measure σV ∈ P(X) satisfying (6.3) is called an equilibrium state for V .
The following result of Kifer shows that if the equilibrium state is unique for a
dense vector subspace of V ∈ C(X), then the LDP holds for ζθ.
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Theorem 6.1. Suppose that limit (6.1) exists for any V ∈ C(X). Then the

LD upper bound

lim sup
θ∈Θ

1

r(θ)
logP{ζθ ∈ F} ≤ −I(F )

holds with the rate function I given by (6.2). Furthermore, if there exists a

dense vector space V ⊂ C(X) such that the equilibrium state σV ∈ P(X) is

unique for any V ∈ V, then the LD lower bound also holds:

lim inf
θ∈Θ

1

r(θ)
logP{ζθ ∈ G} ≥ −I(G).

6.2 Exponential equivalence of random probability mea-

sures

LetX be a Polish space and let {µk} and {µ′
k} be two sequences of random prob-

ability measures on X . Recall that {µk} and {µ′
k} are said to be exponentially

equivalent if

lim
k→∞

P
{
‖µk − µ′

k‖∗L > δ
}1/k

= 0 for any δ > 0. (6.4)

It is well known that if two sequences of random probability measures are ex-
ponentially equivalent, then an LDP with a good rate function for one of them
implies the same LDP for the other; see Section 4.2.2 in [DZ00].

Now let {un} be a random sequence in X . We denote by ζ
(m)
k the occupation

measures for {un} starting at time m ≥ 0:

µ
(m)
k =

1

k

m+k−1∑

n=m

δun
.

The following result was used in Sections 1.4.

Lemma 6.2. The sequences µ
(m)
k and µ

(l)
k are exponentially equivalent for any

integers m, l ≥ 0.

Proof. Let f ∈ Lb(X) be such that ‖f‖L ≤ 1. Then

∣∣(f, µ(m)
k

)
−
(
f, µ

(l)
k

)∣∣ ≤ 2|m− l|
k

.

It follows that
∥∥µ(m)

k − µ
(l)
k

∥∥∗
L
≤ 2|m−l|

k , whence we see that

P
{
‖µ(m)

k − µ
(l)
k

∥∥∗
L
> δ

}
= 0 for k > 2δ−1|m− l|.

Hence, condition (6.4) is satisfied for any δ > 0, and the sequences in question
are exponentially equivalent.
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6.3 Dawson–Gärtner theorem

For a given Polish space X , we denote by X = XZ+ the direct product of
countably many copies of X , endowed with the Tikhonov topology, and by
pm : X → Xm the natural projection to the first m components of X. Let
{ζk} = {ζωk } be a sequence of random probability measures on P(X) and
let ζmk be the image of ζk under the projection pm. The following theorem
is a particular case of a more general result established in [DG87] (see also
Theorem 4.6.1 in [DZ00]).

Theorem 6.3. Suppose that for any integer m ≥ 1 the sequence {ζmk } satisfies

the LDP with a good rate function Im : P(Xm) → [0,+∞]. Then the LDP holds

for {ζk} with the good rate function

I(σ) = sup
m≥1

Im
(
σ ◦ p−1

m

)
. (6.5)

Proof. Step 1: Rate function. Let us prove that the function I defined by (6.5)
is a good rate function. Indeed, since Im are good rate functions, for any α ∈ R

we have

{I ≤ α} =

∞⋂

m=1

{
σ ∈ P(X) : Im

(
σ ◦ p−1

m

)
≤ α

}
=

∞⋂

m=1

{σ ◦ p−1
m ∈ Km

α }, (6.6)

where Km
α are compact subsets in P(Xm). This relation immediately implies

that the set {I ≤ α} is closed and therefore I is lower semicontinuous. Further-
more, since a sequence {σj} ⊂ P(X) converges if and only if so does {σj ◦p−1

m }
for any m ≥ 1, it follows from (6.6) that the level sets of I are compact.

Step 2: Lower bound. Let G ⊂ P(X) be an open subset. It suffices to prove
that, for any σ ∈ G, we have

lim inf
k→∞

1

k
logP{ζk ∈ G} ≥ −I(σ).

Since G is open, for any σ ∈ G, one can find an integer m ≥ 1 and open subset
Gm ⊂ P(Xm) containing σ ◦p−1

m such that G ⊃ p−1
m (Gm). Since the LDP holds

for ζmk = ζk ◦ p−1
m , it follows that

lim inf
k→∞

1

k
logP{ζk ∈ G} ≥ lim inf

k→∞

1

k
logP{ζk ∈ p−1

m (Gm)}

= lim inf
k→∞

1

k
logP{ζmk ∈ Gm} ≥ −Im(Gm).

It remains to note that Im(Gm) ≤ Im(σ ◦ p−1
m ) ≤ I(σ).

Step 3: Upper bound. Let F ⊂ P(X) be a closed subset. It suffices to prove
that, if α < I(F ), then

lim inf
k→∞

1

k
logP{ζk ∈ F} ≤ −α. (6.7)
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Relation (6.6) implies that

∅ = F ∩ {I ≤ α} =

∞⋂

m=1

F ∩
{
Im

(
σ ◦ p−1

m

)
≤ α

}
.

Since F ∩{I ≤ α} is a compact set, it follows that one can find an integer m ≥ 1
such that F ∩

{
Im

(
σ ◦ p−1

m

)
≤ α

}
= ∅. Denoting by Fm the image of F under

the projection pm, we conclude that Im(Fm) > α. Since F ⊂ p−1
m (Fm), using

the LDP for ζmk , we derive

lim inf
k→∞

1

k
logP{ζk ∈ F} ≤ lim inf

k→∞

1

k
logP{ζk ∈ p−1

m (Fm)}

= lim inf
k→∞

1

k
logP{ζmk ∈ Fm} ≤ −Im(Fm) < −α.

This completes the proof of (6.7) and of the theorem.

Theorem 6.3 admits a simple generalisation to the case of uniform LDP.
Namely, let us assume that we are given a sequence of random probability mea-
sures {ζk(y)} on X depending on a parameter y ∈ Y , where Y is an arbitrary
set. We shall say that {ζk(y)} satisfies the uniform LDP with a good rate
function I : P(X) → [0,+∞] if

−I(Γ̇) ≤ lim inf
k→∞

1

k
log inf

y∈Y
P{ζk(y) ∈ Γ}

≤ lim inf
k→∞

1

k
log sup

y∈Y
P{ζk(y) ∈ Γ} ≤ −I(Γ), (6.8)

where Γ ⊂ P(X) is an arbitrary Borel subset. The proof of the following result
literally repeats that of Theorem 6.3, and we omit it.

Theorem 6.4. Suppose that for any integer m ≥ 1 the sequence {ζmk (y), y ∈ Y }
satisfies the uniform LDP with a good rate function Im : P(Xm) → [0,+∞].
Then the uniform LDP holds for {ζk(y), y ∈ Y } with the good rate func-

tion (6.5).
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[CR04] S. Cerrai and M. Röckner, Large deviations for stochastic reaction–

diffusion systems with multiplicative noise and non-Lipschitz reaction

term, Annals Prob. 32 (2004), no. 1B, 1100–1139.

[CR05] , Large deviations for invariant measures of stochastic

reaction–diffusion systems with multiplicative noise and non-Lipschitz

reaction term, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), 69–
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