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Abstract

Gaussian Multiplicative Chaos is a way to produce a measure on Rd (or subdo-
main of Rd) of the form eγX(x)dx, where X is a log-correlated Gaussian field and
γ ∈ [0,

√
2d) is a fixed constant. A renormalization procedure is needed to make this

precise, since X oscillates between −∞ and ∞ and is not a function in the usual
sense. This procedure yields the zero measure when γ =

√
2d.

Two methods have been proposed to produce a non-trivial measure when γ =√
2d. The first involves taking a derivative at γ =

√
2d (and was studied in an earlier

paper by the current authors), while the second involves a modified renormalization
scheme. We show here that the two constructions are equivalent and use this fact
to deduce several quantitative properties of the random measure. In particular, we
complete the study of the moments of the derivative martingale, which allows us to
establish the KPZ formula at criticality.
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1. Introduction

1.1 Overview

In the eighties, Kahane [33] developed a continuous parameter theory of multifractal
random measures, called Gaussian multiplicative chaos. His efforts were followed by
several authors [2, 5, 7, 16, 25, 50, 51, 53] coming up with various generalizations at
different scales. This family of random fields has found many applications in various
fields of science, especially in turbulence and in mathematical finance.

Roughly speaking, a Gaussian multiplicative chaos on Rd or on a bounded domain of
Rd (with respect to the Lebesgue measure) is a random measure that can formally be
written as:

M(dx) = eγX(x)− γ2

2
E[X(x)2] dx (1)

whereX is a centered Gaussian distribution and γ a nonnegative parameter. The situation
of interest is when the field X is log-correlated, that is when

K(x, y)
def
= E[X(x)X(y)] = ln

1

|x− y| + g(x, y) (2)

for some bounded continuous function g. In this case, X is a Gaussian random generalized
function (a.k.a. distribution) on Rd that cannot defined as an actual function pointwise.
Kahane showed that one can nonetheless give a rigorous definition to (1). Briefly, the idea
is to cut off the singularity of the kernel (2) occurring at x = y (sometimes referred to
as ultraviolet cutoff). The cut-off strategy we will use here is based on a white noise de-
composition of the Gaussian distribution X . In short, we will assume that the covariance
kernel of X can be written as:

K(x, y) =

∫ +∞

1

k(u(x− y))

u
du

for some continuous covariance kernel k. Though not covering the whole family of kernels
of type (2), this family of fields is quite natural since it possesses nice scaling relations
(see [2]). A white noise decomposition of X involves formally writing X as

X(x) =

∫ ∞

1

∫

Rd

g(y + x)√
s

W (ds, dy)

where W is a space-time white noise and g is a convolution square root of k. Then a
cut-off of X at level t can be written as

Xt(x) =

∫ et

1

∫

Rd

g(y + x)√
s

W (ds, dy).

This is a Gaussian field with continuous covariance kernel that approximates X in the
sense that we recover the distribution X when letting t go to ∞. Having applied this
cutoff, it is now possible to define the approximate measure

Mt(dx) = eγXt(x)− γ2

2
E[Xt(x)2] dx. (3)
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The family (Mt)t is a positive martingale, so it converges almost surely. The measure M
is then understood as the almost sure limit of this martingale. The limiting measure M
is non trivial if and only if γ2 < 2d (see [33]). For γ2 > 2d, the measure M as defined by
(1) thus vanishes, giving rise to the issue of constructing non trivial objects for γ2 > 2d
in any other possible way.

In this paper, we pursue the effort initiated in [16] to understand the critical case, that
is when γ2 = 2d. It is shown in [16] that the natural object at criticality is the derivative
multiplicative chaos, which can be formally written as

M ′(dx) = (
√
2dE[X(x)2]−X(x))e

√
2dX(x)−dE[X(x)2] dx. (4)

It is a positive atomless random measure. It can be rigorously defined via cut-off approx-
imations in the same spirit as in (3). More precisely, the approximations are obtained by
differentiating (3) with respect to γ at the value γ2 = 2d, hence the term “derivative”.
Nevertheless, it is expected that derivative Gaussian multiplicative chaos at criticality,
that is M ′, can be recovered via a properly renormalized version of (3). In this paper,
inspired by analog results in the case of branching Brownian motion [43] or branching
random walk [1], we prove that

√
tMt(dx) →

√
2

π
M ′(dx), in probability as t → ∞. (5)

This renormalization procedure is sometimes called Seneta-Heyde scaling [1]. Property
(5) establishes the important fact that the derivative martingale also appears as the limit
of the natural renormalization of the vanishing martingale (3) for γ2 = 2d. Beyond this
unifying perspective, this renormalization approach to criticality is convenient to complete
the description of the main properties of the derivative martingale initiated in [16]. In
particular, the Seneta-Heyde renormalization turns out to be crucial to applying Kahane’s
convexity inequalities at criticality. From this, we complete the study of the moments of
the derivative martingale and compute its power-law spectrum. These properties are
a prerequisite for establishing the celebrated Knizhnik-Polyakov-Zamolodchikov (KPZ)
formula at criticality arising in Liouville quantum gravity. Let us stress that our proof of
the KPZ formula shows that it is valid for any log-correlated Gaussian field for which one
can prove a critical Senete-Heyde renormalization theorem of the type (5).

Recently, the authors in [19] constructed a probabilistic and geometrical framework
for two dimensional Liouville quantum gravity and the KPZ equation [38], based on the
two-dimensional Gaussian free field (GFF) (see [13, 14, 15, 19, 26, 38, 47] and references
therein for physics considerations). It consists in taking X equal to the GFF in (1). In this
context, the KPZ formula has been proved rigorously [19, 52] (see also [10] in the context
of Mandelbrot’s multiplicative cascades). This was done in the standard case of Liouville
quantum gravity, namely strictly below the critical value of the GFF coupling constant γ
in the Liouville conformal factor, i.e, for γ2 < 4 (recall that the phase transition occurs
at γ2 = 2d in dimension d, producing a phase transition for γ2 = 4 in dimension 2).
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1.2 Remarks about atomic measures at criticality

In dimension two, the Liouville quantum gravity measure on a domain D is sometimes
interpreted as the image of the intrinsic measure of a random surfaceM under a conformal
map that sends M to D. This type of “surface” is highly singular (not a manifold in the
usual sense). In certain limiting cases where the surface develops singular “bottlenecks”,
one expects the image measure on D to become an atomic measure. In a certain sense
(that we will not explain here), constructing these atomic measures requires one to replace
γ < 2 by a “dual value” γ′ > 2 satisfying γγ′ = 4.

It is interesting to consider the analogous atomic measure in the critical case γ = γ′ = 2
and to think about what its physical significance might be. We believe that the both the
γ = 2 measures (treated in this paper) and their γ′ = 2 “atomic measure” variants (see
below) have been studied in the physics literature before. However, when reading the
physics literature about γ = γ′ = 2 Liouville quantum gravity, it is sometimes difficult
to sort out which physical constructions correspond to which mathematical objects. The
remainder of this subsection will describe some of the history of these constructions and
their relationship to the current work. This discussion can be safely skipped by the reader
without specific background or interest in this area.

The issue of mathematically constructing singular Liouville measures beyond the phase
transition, namely for γ2 > 4, and deriving the corresponding (non-standard dual) KPZ
formula has been investigated in [6, 17, 20], giving the first mathematical understanding of
the so-called duality in Liouville quantum gravity (see [3, 4, 12, 18, 22, 32, 35, 36, 37, 41]
for an account of physics motivations). It thus remains to complete the mathematical
Liouville quantum gravity picture at criticality, i.e. for γ2 = 4. From the physics per-
spective, Liouville quantum gravity at criticality has been investigated in [11, 27, 28, 29,
30, 34, 36, 39, 40, 42, 48, 49, 55]. The reader is also referred to [16] for a brief summary
about the physics literature on Liouville quantum gravity at criticality. Let us just stress
that the critical case γ = 2 corresponds to the value c = 1 of the so-called central charge
c of the conformal field theory coupled to gravity, via the famous KPZ result [38]:

γ = (
√
25− c−

√
1− c)/

√
6, c 6 1.

The Liouville measure at criticality presents an unusual dependence on the Liouville field
ϕ (equivalent to X here) of the so-called “tachyon field” T (ϕ) ∝ ϕ e2ϕ [34, 36, 49]. Its
integral over a “background” Borelian set A generates the quantum area A =

∫
A
T (ϕ)dx,

that we can recognize as the formal heuristic expression for the derivative measure (4).
The possibility at criticality of another tachyon field of the atypical form T (ϕ) ∝ e2ϕ

nevertheless appears in [30, 34, 37]. This form seems to heuristically correspond to a
measure of type (1) (which actually vanishes for γ = 2). At first sight, our result (5) here
then seems to suggest that, up to the requested renormalization (5) of (1), the atypical
tachyon field would actually coincide with the usual ϕ e2ϕ tachyon field.

However, this atypical tachyon field e2ϕ in Liouville quantum gravity has been associ-
ated to another, non-standard, form of the critical c = 1, γ = 2 random surface models.
Indeed, the introduction of higher trace terms in the action of the c = 1 matrix model of
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two-dimensional quantum gravity is known to generate a new critical behavior of the ran-
dom surface [30, 34, 36, 55], with an enhanced critical proliferation of spherical bubbles
connected one to another by microscopic “wormholes”.

In order to model this non-standard critical theory, it might be necessary to modify
the measures introduced here by explicitly introducing “atoms” on top of them, using
the approach of [6, 17, 20] for adding atoms to γ < 2 random measures Mγ in the
description of the dual phase of Liouville quantum gravity. The “dual Liouville measure”
corresponding to γ < 2 involves choosing a Poisson point process from η−α−1dηMγ(dx),
where α = γ2/4 ∈ (0, 1), and letting each point (η, x) in this process indicate an atom
of size η at location x. When γ = 2 and α = 1, we can replace Mγ with the derivative
measure M ′ (4) (i.e., the limit (5)), and use the same construction; in this case (since
α = 1) the measure a.s. assigns infinite mass to each positive-Lebesgue-measure set A ∈
B(Rd). It is nonetheless still well-defined as a measure, and all of its (infinite) mass
resides on a countable collection of atoms, each with finite mass. Alternatively, one
may use standard Lévy compensation (intuitively, this amounts to replacing an “infinite
measure” with an “infinite measure minus its expectation”, interpreted in such a way
that the result is finite) to produce a random distribution whose integral against any
smooth test function is a.s. a finite (signed) value. One may expect that this construction
yields the continuum random measure associated with the non-standard c = 1, γ = 2
Liouville random surface with enhanced bottlenecks, as described in [30, 34, 55], thus
giving a mathematical interpretation to the (formal) tachyon field e2ϕ that differs from
the renormalized measure (5).

2. Setup

2.1 Notations

For a Borelian set A ⊂ Rd, B(A) stands for the Borelian sigma-algebra on A. All the
considered fields are constructed on the same probability space (Ω,F ,P). We denote by
E the corresponding expectation. Given a Borelian set A ⊂ Rd, we denote by Ac its
complement in Rd. The relation f ≍ g means that there exists a positive constant c > 0
such that c−1f(x) 6 g(x) 6 cf(x) for all x.

2.2 ⋆-scale invariant kernels

Here we introduce the Gaussian fields that we will use throughout the paper. We consider
a family of centered stationary Gaussian processes ((Xt(x))x∈Rd)t > 0 where, for each t > 0,
the process (Xt(x))x∈Rd has covariance given by:

Kt(x) = E[Xt(0)Xt(x)] =

∫ et

1

k(ux)

u
du (6)

for some covariance kernel k satisfying k(0) = 1, of class C1 and vanishing outside a com-
pact set (actually this latter condition is not necessary but it simplifies the presentation).
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We also assume that the process (Xt(x) − Xs(x))x∈Rd is independent of the processes(
(Xu(x))x∈Rd

)
u 6 s

for all s < t. In other words, the mapping t 7→ Xt(·) has independent
increments. Such a construction of Gaussian processes is carried out in [2]. For γ > 0, we
consider the approximate Gaussian multiplicative chaos Mγ

t (dx) on Rd:

Mγ
t (dx) = eγXt(x)− γ2

2
E[Xt(x)2]dx (7)

It is well known [2, 33] that, almost surely, the family of random measures (Mγ
t )t>0

weakly converges as t → ∞ towards a random measures Mγ , which is non-trivial for
γ2 < 2d. The purpose of this paper is to investigate the phase transition, that is γ2 = 2d.
Remind that we have [16, 33]:

Proposition 1. For γ2 = 2d (and also for γ2 > 2d), the standard construction (7) yields
a vanishing limiting measure:

lim
t→∞

Mγ
t (dx) = 0 almost surely. (8)

One of the main purposes of this article is to give a non trivial renormalization of

the family (M
√
2d

t )t. We stress that a suitable renormalization should yield a non trivial
solution to the lognormal star-equation:

Definition 2. Log-normal ⋆-scale invariance. A random Radon measure M is said
to be lognormal ⋆-scale invariant if for all 0 < ε 6 1, M obeys the cascading rule

(
M(A)

)
A∈B(Rd)

law
=

( ∫

A

eωε(r)Mε(dr))
)
A∈B(Rd)

(9)

where ωε is a stationary stochastically continuous Gaussian process and Mε is a random
measure independent from ωε satisfying the scaling relation

(
Mε(A)

)
A∈B(Rd)

law
=

(
M(

A

ε
)
)
A∈B(Rd)

. (10)

Let us mention that the authors in [2] have proved that, for γ2 < 2d, the measure Mγ

is lognormal ⋆-scale invariant with

ωε(r) = γXln 1
ε
(r)−

(γ2

2
+ d

)
ln

1

ε
, (11)

where Xln 1
ε
is the Gaussian process introduced in (6). Furthermore this scaling relation

still makes perfect sense when the scaling factor ωε is given by (11) for the value γ2 = 2d.
Therefore, to define a natural Gaussian multiplicative chaos at the value γ2 = 2d, one has
to look for a solution to this equation when the scaling factor is given by (11) with γ2 = 2d
and conversely, each random measure candidate for being a Gaussian multiplicative chaos
at the value γ2 = 2d must satisfy these relations. In [16], a non trivial solution has
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been constructed, called the derivative martingale. Since it is conjectured that all the
non trivial ergodic solutions to this equation (actually we also need to impose a sufficient
decay of the covariance kernel of the process ωε, see [2] for further details) are equal up
to a multiplicative factor, it is expected that a non trivial renormalization of the family

(M
√
2d

t )t converges towards the derivative martingale. Proving this is the first purpose of
this paper. The second purpose is to prove that the derivative martingale satisfies the
KPZ formula.

The organization of this paper is as follows. In Section 3, we introduce the derivative
martingale and remind the reader of its properties as stated in [16]. In Section 4, we

explain how to renormalize (M
√
2d

t )t to obtain the derivative martingale. This entails
many non trivial moment estimates for the derivative martingale. In Section 5, we prove
that these moment estimates allow to obtain the KPZ formula at criticality.

Remark 3. As observed in [16], we stress that the main motivation for considering ⋆-
scale invariant kernels is the connection between the associated random measures and
the ⋆-equation. Nevertheless, our proofs can be easily generalized. First, we stress that
the assumption about the compact support of k involved in (6) may be relaxed, provided
that one imposes some restrictions about the decay of k at infinity. Generally speaking,
these restrictions are rather weak but may require some tedious extra computations. For
instance, it is not very difficult to see that the case when k is C1 with an exponential decay
for k and ∇k does work. One may also wonder about the case of more general Gaussian
multiplicative chaos of log-correlated Gaussian fields “à la Kahane” [33]. It is not difficult
to see that these other chaos can be written as in (6), with a kernel k depending also on
the scale u. Then the same restrictions about the decay of k(u, ·) at infinity apply. Let
us just add that one can carry out the renormalization approach associated to exact scale
invariant kernels as constructed in [5, 51].

3. Derivative martingale

A way of constructing a solution to the ⋆-equation at the critical value γ2 = 2d is to
introduce the derivative martingale M ′

t(dx) defined by:

M ′
t(dx) = (

√
2d t−Xt(x))e

√
2dXt(x)−dE[Xt(x)2]dx.

It is plain to see that, for each open bounded set A ⊂ Rd, the family (M ′
t(A))t is a

martingale. Nevertheless, it is not nonnegative. It is therefore not obvious that such a
family converges towards a (non trivial) positive limiting random variable. The following
theorem has been proved in [16]:

Theorem 4. For each bounded open set A ⊂ Rd, the martingale (M ′
t(A))t > 0 con-

verges almost surely towards a positive random variable denoted by M ′(A), such that
M ′(A) > 0 almost surely. Consequently, almost surely, the (locally signed) random mea-
sures (M ′

t(dx))t > 0 converge weakly as t → ∞ towards a positive random measure M ′(dx).
This limiting measure has full support and is atomless. Furthermore, the measure M ′ is
a solution to the ⋆-equation (9) with γ =

√
2d.

7



4. Renormalization

The main purpose of this paper is to establish that the derivative martingale can be seen

as the limit of a suitable renormalization of the family (M
√
2d

t )t.

Theorem 5. The family (
√
tM

√
2d

t )t converges in probability as t → ∞ towards a non
trivial limit, which turns out to be the same, up to a multiplicative constant, as the limit
of the derivative martingale. More precisely, we have for all bounded open set A:

√
tM

√
2d

t (A) →
√

2

π
M ′(A), in probability as t → ∞.

The main advantage of this renormalization approach is to make the derivative mar-
tingale appear as a limit of integrals over exponentials of the field: this is useful to use
Kahane’s convexity inequality (see (10)). We can then prove:

Corollary 6. The positive random measure M ′(dx) possesses moments of order q for all
q < 1. Furthermore, for all q > 0 and every non-empty bounded open set A, we have

sup
t > 1

E

[( 1
√
tM

√
2d

t (A)

)q]
< +∞.

We can then determine the power law spectrum of the random measure M ′:

Corollary 7. The power law spectrum of the random measure M ′ is given for 0 6 q < 1
by

ξ(q) = 2dq − dq2. (12)

More precisely, for each bounded open set A of Rd, we have

∀q < 1, E[M ′(λA)q] ≍ Cqλ
ξ(q)

when λ goes to 0, and where the coefficient Cq depends on q.

5. KPZ formula

5.1 The KPZ formula

In this section, we investigate the KPZ formula for the derivative martingale, which
corresponds to the natural construction of Gaussian multiplicative chaos at criticality
γ2 = 2d. The KPZ formula is a relation between the Hausdorff dimensions of a given set
A as measured by the Lebesgue measure or M ′. So we first recall how to define these
dimensions. Given an atomless Radon measure µ on Rd and s ∈ [0, 1], we define

Hs,δ
µ (A) = inf

{∑

k

µ(Bk)
s
}
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where the infimum runs over all the covering (Bk)k of A with open Euclidean balls centered
at A with radius rk 6 δ. Clearly, the mapping δ > 0 7→ Hs,δ

µ (A) is decreasing. Hence we
can define the s-dimensional µ-Hausdorff outer measure:

Hs
µ(A) = lim

δ→0
Hs,δ

µ (A).

The limit exists but may be infinite. Hs
µ is a metric outer measure on Rd (see [24] for

definitions). Thus Hs
µ is a measure on the σ-field of Hs

µ-measurable sets, which contains
all the Borelian sets.

The µ-Hausdorff dimension of the set A is then defined as the value

dimµ(A) = inf{s > 0; Hs
µ(A) = 0}. (13)

Notice that dimµ(A) ∈ [0, 1]. Since µ is atomless, the Hausdorff dimension is also charac-
terized by:

dimµ(A) = sup{s > 0; Hs
µ(A) = +∞}. (14)

Since M ′ does not possess atoms, this relation is valid for M ′. This allows to characterize
the Hausdorff dimension as the threshold value at which the mapping s 7→ Hs

µ(A) jumps
from +∞ to 0.

In what follows, given a compact set K of Rd, we define its Hausdorff dimensions
dimLeb(K) and dimM ′(K) computed as indicated above with µ respectively equal to the
Lebesgue measure or M ′. So, a priori, the value of dimM ′(K) is random. Nevertheless, a
straightforward 0 − 1 law argument shows that dimM ′(K) is actually deterministic. We
reinforce this intuition by stating:

Theorem 8. KPZ at criticality γ2 = 2d. Let K be a compact set of Rd. Almost surely,
we have the relation

dimLeb(K) =
ξ(dimM ′(K))

d
= 2d dimM ′(K)− d dimM ′(K)2.

Remark 9. Let us stress that our proof also allows one to choose K random but inde-
pendent of the measure M . We could also consider sets K depending on M through the
first scales of M , that is depending on (Xs(x))x∈Rd,s 6 T for some T > 0. Strengthening
this dependence would give rise to non trivial additional difficulties.

5.2 Heuristics and open questions on the KPZ formula

Here, we give a direct and heuristic derivation of Theorem 8 for the following reasons:

• it gives a quick intuitive idea of why Theorem 8 is valid;

• it enlightens the idea behind the proof of Theorem 8 (which involves introducing
very particular Frostman measures);
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• it leads in a natural way to open questions which can be seen as generalizations (or
complements to) Theorem 8.

In fact, we will work in the subcritical case γ2 < 2d (a similar heuristic can be derived
for the case γ2 = 2d). Recall that lognormal ⋆-scale invariance for M , defined by (1) with
γ2 < 2d, amounts to the following equivalent:

M(B(x, r)) ∼ rde
γX

ln 1
r
(x)− γ2

2
ln 1

r

where ∼ denotes that both quantities are equal up to multiplication by a random factor
of order 1 which does not depend on r (note that the random factor depends on x). If we

set ξγ(s) = (d + γ2

2
)s − γ2

2
s2, it is thus tempting to write the following equivalents for a

set K:

Hs
M(K) = lim

δ→0
inf

{∑

k

M(B(xk, rk))
s, K ⊂ ∪kB(xk, rk), |rk| 6 δ

}

∼ lim
δ→0

inf
{∑

k

(rdke
γX

ln 1
rk

(xk)− γ2

2
ln 1

rk )s, K ⊂ ∪kB(xk, rk), |rk| 6 δ
}

= lim
δ→0

inf
{∑

k

e
sγX

ln 1
rk

(xk)− s2γ2

2
ln 1

rk r
ξγ(s)
k , K ⊂ ∪kB(xk, rk), |rk| 6 δ

}

∼
∫

K

esγX(x)− s2γ2

2
E[X(x)2]Hξγ(s)/d(dx),

where the last term is a Gaussian multiplicative chaos applied to the Radon measure
Hξγ(s)/d(K ∩ dx) (at least if Hξγ(s)/d(K) < ∞). This heuristics shows that the quan-

tum Hausdorff measure Hs
M should not be too far from

∫
.
esγX(x)− s2γ2

2
E[X(x)2]Hξγ(s)/d(dx)

(though up to possible logarithmic corrections). In particular, Hs
M(K) is of order 1 if and

only if Hξγ(s)/d(K) is of order 1. Note that the esγX(x)− s2γ2

2
E[X(x)2]Hξγ(s)/d(dx) measure

appears in the physics litterature on KPZ in the so-called “gravitational dressing” (see,
e.g., [26]), and in the rigorous context of the coupling of Schramm-Loewner Evolution
to Liouville quantum gravity [21]. Naturally, one could ask to what extent the above
heuristics can be made rigorous.

A. Auxiliary results

We first state the classical “Kahane’s convexity inequalities” (originally written in [33] ,
see also [2, 53] for a proof in English):

Lemma 10. Let F : R+ → R be some convex function such that

∀x ∈ R+, |F (x)| 6 M(1 + |x|β),
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for some positive constants M,β, and σ be a Radon measure on the Borelian subsets
of Rd. Given a bounded Borelian set A, let (Xr)r∈A, (Yr)r∈A be two continuous centered
Gaussian processes with continuous covariance kernels kX and kY such that

∀u, v ∈ A, kX(u, v) 6 kY (u, v).

Then

E

[
F
(∫

A

eXr− 1
2
E[X2

r ] σ(dr)
)]

6 E

[
F
(∫

A

eYr− 1
2
E[Y 2

r ] σ(dr)
)]

.

If we further assume
∀u ∈ A, kX(u, u) = kY (u, u)

then for any increasing function F : R+ → R:

E
[
F
(
sup
x∈A

Yx

)]
6 E

[
F
(
sup
x∈A

Xx

)]
.

B. Proofs of Section 4

We denote by Ft the sigma algebra generated by {Xs(x); s 6 t, x ∈ Rd} and by F the
sigma algebra generated by

⋃
tFt. Given a fixed open bounded set A ⊂ Rd and parameters

t, β > 0, we introduce the random variables

Zβ
t (A) =

∫

A

(
√
2dt−Xt(x) + β)1I{τβx>t}e

√
2dXt(x)−dt dx

Rβ
t (A) =

∫

A

1I{τβx >t}e
√
2dXt(x)−dt dx

where, for each x ∈ A, τβx is the stopping time adapted to the filtration Gt = σ(Xs(x); s 6 t, x ∈
Rd) defined by

τβx = inf{u > 0, Xu(x)−
√
2d u > β}.

For x ∈ Rd, we also define

fβ
t (x) = (

√
2d t−Xt(x) + β)1I{τβx >t}e

√
2dXt(x)−dt.

It is plain to check that for each β > 0 and each bounded open set A, (Zβ
t (A))t is a

nonnegative martingale with respect to (Ft)t such that E[Zβ
t (A)] = β|A|. It is proved in

[16] that it is uniformly integrable and therefore almost surely converges towards a non
trivial limit.

We first stress that, for each x fixed, the process t 7→ Xt(x) is standard Brownian
motion. We will repeatedly use this fact throughout the proof without mentioning it
again.
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B.1 Rooted measure

Since for each x, (fβ
t (x))t is a martingale, we can define the probability measure Θβ

t on
B(A)⊗ Ft by

Θβ
t =

fβ
t (x)

β|A| dx dP. (15)

We denote by EΘβ
t
the corresponding expectation. In fact, since the above definition

defines a pre-measure on the ring
⋃

tFt, one can define the rooted measure Θβ on B(A)⊗F
by using Caratheodory’s extension theorem. We recover Θβ

|B(A)⊗Ft
= Θβ

t . We observe that

Θβ
t (Z

β
t (A) > 0) = 1 for any t.

Similarly, we construct the probability measure Qβ on F by setting:

Qβ
|Ft

=
Zβ

t (A)

β|A| dP,

which is nothing but the marginal law of (ω, x) 7→ ω with respect to Θβ
t . Since (Z

β
t (A))t > 0

is a uniformly integrable martingale which converges to a limit Zβ(A), we can also define
Qβ directly on F by:

Qβ =
Zβ(A)

β|A| dP.

We state a few elementary results below. The conditional law of x given Ft is given by:

Θβ
t (dx|Ft) =

ft(x)

Zβ
t (A)

dx.

If Y is a B(A) ⊗ Ft-measurable random variable then it has the following conditional
expectation given Ft:

EΘβ
t
[Y |Ft] =

∫

A

Y (x, ω)
fβ
t (x)

Zβ
t (A)

dx.

In particular, for any event E ∈ Ft, we have

EQβ [1IEEΘβ
t
[Y |Ft]] = EQβ [1IE

∫

A

Y (x, ω)
fβ
t (x)

Zβ
t (A)

dx] = EΘβ
t
[1IEY ].

Under Θβ
t , the law of the random process (β+

√
2ds−Xs)s 6 t is that of a 3-dimensional

Bessel process started at β. In what follows, we will use the notation:

Y β
s (x) = β +

√
2ds−Xs(x). (16)

Of course, Y 0
s (x) simply stands for

√
2ds−Xs(x).

The proof is inspired from [1]. Mainly, we follow their argument. Nevertheless, we
make two remarks. First, most of the auxiliary estimates obtained in [1] about the
minimum of the underlying random walk are much easier to obtain in our context because
of the Gaussian nature of our framework (in particular, the random walk conditioned to
stay positive is here a Bessel process). Second, the continuous structure makes correlations
much more intricate to get rid of: we have no spinal decomposition at our disposal, no
underlying tree structure, etc. We adapt some arguments developed in [16] at this level.
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B.2 Proofs under the rooted measure

The first step is to prove the convergence under Qβ. This subsection is thus entirely
devoted to the proof of the following result:

Proposition 11. Given β > 0, we have

EQβ

[Rβ
t (A)

Zβ
t (A)

]
≃

√
2

πt
as t → ∞ (17)

and

EQβ

[(Rβ
t (A)

Zβ
t (A)

)2]
≃ 2

πt
as t → ∞. (18)

As a consequence, under Qβ, we have

lim
t→∞

√
t
Rβ

t (A)

Zβ
t (A)

=

√
2

π
in probability. (19)

Proof. It is clear that (17)+(18) imply that the variance of the ratio
√
tRβ

t (A)

Zβ
t (A)

under Qβ

goes to 0 a t goes to ∞. Therefore, under Qβ, this ratio converges in quadratic mean

towards
√

2
π
, and hence in probability, thus proving (19).

It is plain to establish the relation (17). First observe that:

EQβ

[Rβ
t (A)

Zβ
t (A)

]
=

1

β|A|E[R
β
t (A)]

=
1

β
E[1I{τβx >t}e

√
2dXt(x)−dt]

Let us denote by B a standard one-dimensional Brownian motion. By using the Girsanov
transform, we have:

EQβ

[Rβ
t (A)

Zβ
t (A)

]
=

1

β
P( sup

0 6 u 6 t
Bu 6 β)

=
1

β
P(|Bt| 6 β)

≃
√

2

πt
as t → ∞.

Relation (17) is established.
The proof of (18) is much more involved and will be carried out in several steps. To

begin with, it may be worth sketching the strategy of the proof:

1. Observe that
Rβ

t (A)

Zβ
t (A)

= EΘβ
t

[ 1

Y β
t (x)

|Ft

]
. (20)
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2. Deduce that

EQβ

[(Rβ
t (A)

Zβ
t (A)

)2]
= EΘβ

t

[Rβ
t (A)

Zβ
t (A)

× 1

Y β
t (x)

]
. (21)

3. The third step consists in subtracting a ball centered at x with radius e−ht to the set
A, call it B(x, e−ht). This is convenient because if the radius is well chosen the ratio
Rβ

t (A\B(x,e−ht ))

Zβ
t (A\B(x,e−ht ))

and the weight 1

Y β
t (x)

will be “almost” independent. Roughly speaking,

the reason why we can subtract a ball is that the measure does not possess atom.
So, at least if the radius of the ball is small enough, it is always possible to subtract
a ball centered at x without radically affecting the behaviour of the quantity (21).
In the forthcoming rigorous proof, we won’t base our argument on the fact that the
measure is atomless. Instead, we will use estimates on the process Y β

t (x) under the
rooted measure, which amounts to the same (as proved in [16]).

4. The last step consists in factorizing (21) because of (almost) independence:

EQβ

[(Rβ
t (A)

Zβ
t (A)

)2]
≃ EΘβ

t

[Rβ
t (A \Bx,t)

Zβ
t (A \Bx,t)

× 1

Y β
t (x)

]

≃ EΘβ
t

[Rβ
t (A \Bx,t)

Zβ
t (A \Bx,t)

]
EΘβ

t

[ 1

Y β
t (x)

]

≃ EQβ

[Rβ
t (A)

Zβ
t (A)

]
EQβ

[Rβ
t (A)

Zβ
t (A)

]
.

This last quantity is equivalent for t large to 2
πt
. Actually, most of the forthcoming

computations are made to justify that the factorization can be made rigorously.
This point is highly technical and the related computations may appear tedious to
the reader.

Now we begin with the rigorous proof of (18). Recall that we use the shorthand (16).
Let us first claim:

Lemma 12. We have

EQβ

[(Rβ
t (A)

Zβ
t (A)

)2]
= O

(1
t

)
as t → ∞.

Proof. By Jensen inequality, we have:

EQβ

[(Rβ
t (A)

Zβ
t (A)

)2]
= EQβ

[(
EΘβ

t

[ 1

Y β
t (x)

|Ft

])2]

6 EQβ

[
EΘβ

t

[ 1

Y β
t (x)

2
|Ft

]]

6 EΘβ
t

[ 1

Y β
t (x)

2

]

14



Since, under Θβ
t , the law of the process (Y β

s (x))s 6 t is that of a 3-dimensional Bessel
process starting at β > 0, the lemma follows.

Now we will decompose the space in two parts: a part, call it Et, where we have strong
estimates on the process (Y β

s (x))s 6 t and an other part that we want to be “small”. More
precisely, let Et be a B(A) ⊗ Ft-measurable event such that EΘβ

t
(1IEt) → 1 as t goes to

∞. Let

ξt = EΘβ
t

[
1IEc

t

1

Y β
t (x)

|Ft

]
.

Notice that
Rβ

t (A)

Zβ
t (A)

= EΘβ
t

[ 1

Y β
t (x)

|Ft

]
= ξt + EΘβ

t

[
1IEt

1

Y β
t (x)

|Ft

]
. (22)

We deduce:

EQβ

[(Rβ
t (A)

Zβ
t (A)

)2]
= EQβ

[Rβ
t (A)

Zβ
t (A)

ξt

]
+ EΘβ

t

[Rβ
t (A)

Zβ
t (A)

1IEt

1

Y β
t (x)

]
. (23)

We will treat separately the two terms in the above right-hand side. The Cauchy-Schwarz
inequality and Lemma 12 yield

EQβ

[Rβ
t (A)

Zβ
t (A)

ξt

]
6 EQβ

[(Rβ
t (A)

Zβ
t (A)

)2]1/2
EQβ

[
ξ2t

]1/2
6

C√
t
EQβ

[
ξ2t

]1/2
. (24)

If we can prove that EQβ

[
ξ2t
]
= o

(
1
t

)
then (24) will tell us that EQβ

[
Rβ

t (A)

Zβ
t (A)

ξt

]
= o

(
1
t

)
.

Therefore, Proposition 11, in particular (18), is a consequence of the two following lemma:

Lemma 13. Let β > 0 and Et be an event such that EΘβ
t
(1IEt) → 1 as t goes to ∞. We

have

EQβ

[
ξ2t

]
= o

(1
t

)
.

Lemma 14. Let β > 0. There exists a family of events Et such that EΘβ
t
(1IEt) → 1 as t

goes to ∞ and

EΘβ
t

[Rβ
t (A)

Zβ
t (A)

1IEt

Y β
t (x)

]
6

2

πt
+ o

(1
t

)
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Proof of Lemma 13. Fix ε > 0. By Jensen’s inequality, we have

EQβ

[
ξ2t

]
6 EΘβ

t

[
1IEc

t

1

Y β
t (x)

2

]

6 EΘβ
t

[ 1IEc
t

Y β
t (x)

2
1I{ε

√
t 6 Y β

t (x)}

]

+ EΘβ
t

[ 1

Y β
t (x)

2
1I{ε

√
t>Y β

t (x}

]

6 EΘβ
t

[ 1IEc
t

Y β
t (x)

2
1I{ε

√
t 6 Y β

t (x}

]

+
1

β
E

[1I{τβx >t}

Y β
t (x)

1I{ε
√
t>Y β

t (x)}e
√
2dXt(x)−dt

]

6
EΘβ

t

[
1IEc

t

]

ε2t
+

1

β
E

[1I{sup[0,t] Xu(x) 6 β}

(β −Xt(x))
1I{Xt(x)>β−ε

√
t}

]

Using the joint law of a Brownian motion together with its maximum, we prove that, for
some constant C independent of t, ε, we have:

1

β
E

[1I{sup[0,t] Xu(x) 6 β}

(β −Xt(x))
1I{Xt(x)>β−ε

√
t}

]
6 εC/t.

Since EΘβ
t

[
1IEc

t

]
→ 0 as t → ∞, we deduce:

lim sup
t→∞

tEQβ

[
ξ2t

]
6 εC.

Since ε can be chosen arbitrarily small, the proof of the lemma follows.

Proof of Lemma 14. We consider a function h such that ht → ∞ as t → ∞. We define

Rβ,h
t (x) =

∫

B(x,e−ht )∩A
1I{τβz >t}e

√
2dXt(z)−dt dz Rβ,h,c

t (x) = Rβ
t (A)−Rβ,h

t (x)

Zβ,h
t (x) =

∫

B(x,e−ht )∩A
fβ
t (z) dz Zβ,h,c

t (x) = Zβ
t (A)− Zβ,h

t (x).

Now we precise the choice of the set Et:

E1
t = {h1/3

t 6 Y 0
ht
(x) 6 ht} ∩ {h1/6

t 6 inf
u∈[ht,t]

Y 0
u (x)}

E2
t = {Zβ,h

t (x) 6 t−2}
E3

t = {Rβ,h,c
t (x) 6 Zβ,h,c

t (x)} ∩ {Rβ,h
t (x) 6 Zβ,h

t (x)}
Et = E1

t ∩ E2
t ∩ E3

t

Let us admit for a while the following lemma:
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Lemma 15. Let β > 0. There is a constant a > 0 such that for every function ht

satisfying

lim
t→∞

ht

ln ta
= +∞

and

lim
t→∞

ht√
t
= 0, (25)

then
lim
t→∞

Θβ
t (Et) = 1, lim

t→∞
inf

u∈[h1/3
t ,ht]

Θβ
t (Et|Y 0

ht
(x) = u) = 1. (26)

So we pursue the proof of Lemma 14 while assuming now that the conditions and
conclusions of Lemma 15 are in force. In what follows, C will denote a constant that may
change from line to line and that does not depend on relevant quantities. On Et, we have
Rβ,h

t 6 Zβ,h
t 6 t−2. Therefore

EΘβ
t

[ Rβ,h
t

Zβ
t (A)

1

Y β
t (x)

1IEt

]
6 t−2EΘβ

t

[ 1

Zβ
t (A)

1

Y β
t (x)

1IEt

]
.

On Et, in particular on E1
t , we have Y β

t (x) > β + h
1/6
t . Hence

EΘβ
t

[ Rβ,h
t

Zβ
t (A)

1

Y β
t (x)

1IEt

]
6 t−2EΘβ

t

[ 1

Zβ
t (A)

1

(β + h
1/6
t )

]

6
1

t2(β + h
1/6
t )

EQβ

[ 1

Zβ
t (A)

]

6
1

β2|A|t2 .

Here we have used EQβ

[
1

Zβ
t (A)

]
= 1

β|A| . Thus we have

EΘβ
t

[ Rβ,h
t

Zβ
t (A)

1

Y β
t (x)

1IEt

]
= o

(1
t

)
. (27)

Let us treat the quantity:

EΘβ
t

[ Rβ,h,c
t

Zβ
t (A)

1

Y β
t (x)

1IEt

]

=
1

β|A|

∫

A

E

[Rβ,h,c
t (x)

Zβ
t (A)

1

Y β
t (x)

1IEtf
β
t (x)

]
dx

6
1

β|A|

∫

A

E

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1

Y β
t (x)

1I{h1/3
t 6 Y 0

ht
(x) 6 ht}f

β
t (x)

]
dx.
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We know that the covariance kernel k appearing in (6) vanishes outside a compact set.
Without loss of generality, we may assume that k vanishes outside the ball B(0, 1). Let us
introduce the sigma algebra Gt generated by the random variables {Xs(y); y ∈ Rd, s 6 t}.
Conditionally to x,Ght , the random variables

Rβ,h,c
t (x)

Zβ,h,c
t (x)

and 1

Y β
t (x)

fβ
t (x) are independent.

Therefore we have:

EΘβ
t

[Rβ,h,c
t (x)

Zβ
t (A)

1

Y β
t (x)

1IEt

]

6 EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1

Y β
t (x)

1I{h1/3
t 6 Y 0

ht
(x) 6 ht}

]

= EΘβ
t

[
1I{h1/3

t 6 Y 0
ht

(x) 6 ht}EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

|x,Fht

]
EΘβ

t

[ 1

Y β
t (x)

|x,Fht

]]

To complete the proof of Lemma 14, we admit for a while the two following lemma, the
proof of which are gathered in the next subsubsection.

Lemma 16. We have

EΘβ
t

[ 1

Y β
t (x)

|x,Ght

]
6

√
2

πt
.

Lemma 17. We have

EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1I{h1/3
t 6 Y 0

ht
(x) 6 ht}

]
6

√
2

πt
(1 + ε(t)),

for some function ε such that limt→∞ ε(t) = 0.

We conclude the proof of Lemma 14. With the help Lemma of 16 and 17, we obtain:

EΘβ
t

[
1I{h1/3

t 6 Y 0
ht

(x) 6 ht}EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

|x,Ght

]
EΘβ

t

[ 1

Y β
t (x)

|x,Ght

]]

6

√
2

πt
EΘβ

t

[
1I{h1/3

t 6 Y 0
ht

(x) 6 ht}EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

|x,Ght

]]

=

√
2

πt
EΘβ

t

[
1I{h1/3

t 6 Y 0
ht

(x) 6 ht}
Rβ,h,c

t (x)

Zβ,h,c
t (x)

]

6
2

πt
(1 + ε(t))

for some function ε such that limt→∞ ε(t) = 0.
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B.2.1 Proofs of auxiliary lemmas

Proof of Lemma 15. Under Θβ
t , the process (Y

β
s (x))s 6 t is a 3-dimensional Bessel process.

It is plain to deduce that
lim
t→∞

Θβ
t (E

1
t ) = 1. (28)

Let us prove that limt→∞Θβ
t (E

3
t ) = 1. We define the random variables

St = sup
x∈A

Xt(x)−
√
2dt +

1

4
√
2d

ln(t+ 1), S = sup
t > 0

St,

and the event
B =

{
S < +∞

}
.

It is proved in [16] that P(B) = 1. It is plain to deduce that Θβ(B) = 1. We have

Zβ,h,c
t (x) =

∫

A\B(x,e−ht )

Y β
t (z)1I{τβz >t}e

√
2dXt(z)−dt dz

>

∫

A\B(x,e−ht )

(
β +

√
2dt− sup

x∈A
Xt(x)

)
1I{τβz >t}e

√
2dXt(z)−dt dz

=
(
β +

1

4
√
2d

ln(t+ 1)− St

)
Rβ,h,c

t (x)

>

(
β +

1

4
√
2d

ln(t+ 1)− S
)
Rβ,h,c

t (x).

Therefore

{β +
1

4
√
2d

ln(t + 1)− S > 1} ⊂ {Zβ,h,c
t (x) > Rβ,h,c

t (x)},

from which we deduce:

lim
t→∞

Θβ
t

(
Zβ,h,c

t (x) > Rβ,h,c
t (x)

)
= 1.

With the same argument, we prove

lim
t→∞

Θβ
t

(
Zβ,h

t (x) > Rβ,h
t (x)

)
= 1.

Hence
lim
t→∞

Θβ
t (E

3
t ) = 1. (29)

For E2
t , we will use some computations made in [16]. By using the Markov inequality

and by conditioning on an event B, we get:

Θβ
t (Z

β,h
t (x) > t−2) 6 t2EΘβ

t
[Zβ,h

t (x)|B] + Θβ
t (B

c) (30)

for every measurable set B. We set for R > 0

BR =
{
∀t > 0;

√
t

R(ln(2 + t))2
6 Y β

t (x) 6 R(1 +
√

t ln(1 + t))
}
.
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We choose B = BR in (30). It is proved in [16] that the quantity Θβ
t (B

c
R) can be made

arbitrarily close to 0 when choosing R large enough. Intuitively, this is just a precise
statement corresponding to the fact that a Bessel βt process goes to infinity with speed
rate

√
t as t goes to ∞.

So it just remains to prove that, for R fixed, the quantity t2EΘβ
t
[Zβ,h

t |BR] goes to 0 as

t goes to ∞. To that purpose, it suffices to estimate the quantity

t2EΘβ
t
[Zβ,h

t (x)|(Xs(x))s 6 t, x, BR]

and prove that it goes to 0 when t goes to ∞ uniformly with respect to the inputs
(Xs(x))s 6 t, x. We first rewrite this quantity as:

EΘβ
t
[Zβ,h

t (x)|(Xs(x))s 6 t, x, BR]

=EΘβ
t

[ ∫

A∩B(x,e−ht )

Y β
t (z)1I{τβz >t}e

√
2dXt(z)−dt dz

∣∣(Xs(x))s 6 t, x, BR

]
.

This expectation has been computed in [16] thanks to explicit formulae for the conditional
expectations of the process (Xs(z))s given (Xs(x))s 6 t. Before making these formulae
precise, we clarify a few points. The kernel k involved in (6) vanishes outside a compact
set. So, without loss of generality, we assume that k vanishes outside the ball B(0, 1).
We divide the ball B(x, e−ht) in two areas: the ring C(t) = B(x, e−ht) \B(x, e−t) and the
ball B(x, e−t). The results of the computations are the following. Concerning the ring,
we have:

EΘβ
t

[ ∫

A∩C(t)

Y β
t (z)1I{τβz >t}e

√
2dXt(z)−dt dz|(Xs(x))s 6 t, x, BR

]

6

∫

A∩C(t)

eD

|x− z|dG
(
ln

1

|x− z|
)
dz

for some function G given by

G(y) =
(
1 +

√
y ln(1 + y)

)2

e
−
√
2dD

√
y

ln2(2+y)

and some constant D > 0 depending on irrelevant quantities. Therefore, by making a
change of polar coordinates, we get (C stands for a constant, more precisely the area of
the d-dimensional sphere):

EΘβ
t

[ ∫

A∩C(t)

Y β
t (z)1I{τβz >t}e

√
2dXt(z)−dt dz|(Xs(x))s 6 t, x, BR

]

6 C

∫ e−ht

e−t

eD

rd
G
(
ln

1

r

)
rd−1dr

= CeD
∫ t

ht

G(y) dy.
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Now we just want to make sure that there exists a > 0 such that the condition limt→∞
ht

ln ta
=

+∞ implies that the integral t2eD
∫ t

ht
G(y) dy goes to 0 as t → ∞. Observe that for y

large enough, the function G is decreasing. Therefore, a rough bound of the quantity
under study is

t2eD
∫ t

ht

G(y) dy 6 t3eDG(ht).

Now, for y large enough again, we observe that G is less than e−
√
2dDy1/3 . Therefore it is

plain to check that any a > 9√
2dD

suits.

On the ball B(x, e−t), we have

EΘβ
t

[ ∫

A∩B(x,e−t)

Y β
t (z)1I{τβz >t}e

√
2dXt(z)−dt dz|(Xs(x))s 6 t, x, BR

]

6 eDG(t)

for some irrelevant constant D, which may be different from that involved in the bound
on the ring. Once again, the condition limt→∞

ht

ln ta
= +∞ for some well chosen a > 0

implies that the term G(t) goes to 0 as t → ∞. Finally we deduce that

Θβ
t (Z

β,h
t (x) 6 t−2) → 1, as t → ∞. (31)

By gathering (28)+(29)+(31), we have proved that

Θβ
t (Et) → 1, as t → ∞.

It just remains to prove that

lim
t→∞

inf
u∈[h1/3

t ,ht]

Θβ
t (Et|Y 0

ht
(x) = u) = 1.

We first prove that
lim
t→∞

Θβ
t ((E

3
t )

c|Y 0
ht
(x) = u) = 0

uniformly with respect to u ∈ [h
1/3
t , ht]. Observe that

Θβ
t ((E

3
t )

c|Y 0
ht
(x) = u)

6 Θβ
t ((E

3
t )

c|Y 0
ht
(x) = u, sup

x∈A
−Y 0

t (x) 6 − 1) + Θβ
t (sup

x∈A
−Y 0

t (x) > −1)

= 0 + Θβ
t ( inf

x∈A
Y 0
t (x) < 1).

It results from the observations made at the beginning of the proof of this lemma that
the above quantity becomes arbitrarily small as t gets large.

Concerning E2
t , observe that

Θβ
t (Z

β,h
t (x) > t−2|Y 0

ht
(x) = u) 6 Θβ

t (Z
β,h
t (x) > t−2|Y 0

ht
(x) = u,BR) + Θβ(Bc

R).
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Now we observe that we have already proved that Θβ
t (Z

β,h
t (x) > t−2|Y 0

ht
(x) = u,BR) → 0

as t → ∞. Therefore

lim sup
t→∞

sup
u∈[h1/3

t ,ht]

Θβ
t (Z

β,h
t (x) > t−2|Y 0

ht
(x) = u) 6 Θβ(Bc

R).

Since Θβ(Bc
R) can be made arbitrarily close to 0 for R large enough, we conclude that:

lim sup
t→∞

sup
u∈[h1/3

t ,ht]

Θβ
t (Z

β,h
t (x) > t−2|Y 0

ht
(x) = u) = 0.

It just remains to prove that

lim
t→∞

Θβ
t (E

1
t |Y 0

ht
(x) = u) = 1

uniformly with respect to u ∈ [h
1/3
t , ht]. This is obvious since (Y 0

t )t is a 3-dimensional
Bessel process.

Proof of Lemma 16. By using standard tricks of changes of probability measures, we have:

EΘβ
t

[ 1

Y β
t (x)

|x,Ght

]
=

1

fβ
ht
(x)

E

[ fβ
t (x)

Y β
t (x)

|Ght

]
.

Let us compute the latter conditional expectation:

E

[ fβ
t (x)

Y β
t (x)

|Ght

]

= 1I{τβx >ht}e
√
2dXht

(x)−dhtE

[
1I{sup[0,t] Xs(x)−ds 6 β}e

√
2d(Xt(x)−Xht

(x))−d(t−ht)|Ght

]

= 1I{τβx >ht}e
√
2dXht

(x)−dhtF (Y β
ht
(x))

where
F (y) = E

[
1I{sup[0,t−ht]

Xs(x)−ds 6 y}e
√
2d(Xt−ht

(x))−d(t−ht)
]
.

By using the Girsanov transform, we get:

F (y) =E

[
1I{sup[0,t−ht]

Xs(x) 6 y}

]
.

This quantity is plain to compute since the process s 7→ Xs(x) is a Brownian motion:

F (y) =P(|Xt−ht(x)| 6 y)

=
1√
2π

∫ y√
t−ht

− y√
t−ht

e−u2/2 du

6

√
2

π

y√
t− ht

.
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The lemma follows.

Proof of Lemma 17. We have:

EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1IEt

]

> EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1I{h1/3
t 6 Y 0

ht
(x) 6 ht}

]
inf

u∈[h1/3
t ,ht]

Θβ
t

(
Et|Y 0

ht
(x) = u

)

From Lemma 15, we have Θβ
t

(
Et|Y 0

ht
(x) = u

)
→ 1 as t → ∞ uniformly with respect to

u ∈ [h
1/3
t , ht]. Therefore

EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1I{h1/3
t 6 Y 0

ht
(x) 6 ht}

]
6 (1 + ε(t))EΘβ

t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1IEt

]
(32)

for some function ε such that limt→∞ ε(t) = 0. On Et we have Rβ,h,c
t (x) 6 Zβ,h,c

t (x), from
which we get:

EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1IEt

]
6 EΘβ

t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1IEt∩{Zβ
t (A)>1/t}

]
+ EΘβ

t
[1I{Zβ

t (A) 6 1/t}]. (33)

By using the Markov inequality, we have:

EQβ [1I{Zβ
t (A) 6 1/t}] 6

1

t
EQβ [

1

Zβ
t (A)

] 6
1

t
. (34)

By gathering (33) and (34), we deduce

EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1IEt

]
6 EΘβ

t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1IEt∩{Zβ
t (A)>1/t}

]
+

1

t
.

Since Zβ,h
t (x)1IEt 6 t−2, we have on the set Et∩{Zβ

t (A) > 1/t} the estimate Zβ,h
t (x) 6 1

t
Zβ

t (A).

Therefore, on the set Et ∩ {Zβ
t (A) > 1/t}, we have

Zβ,h,c
t (x) > (1− t−1)Zβ

t (A).

We deduce

EΘβ
t

[Rβ,h,c
t (x)

Zβ,h,c
t (x)

1IEt

]
6

1

1− t−1
EΘβ

t

[Rβ,h,c
t (x)

Zβ
t (A)

1IEt∩{Zβ
t (A)>1/t}

]
+

1

t

6
1

1− t−1
EΘβ

t

[Rβ
t (A)

Zβ
t (A)

]
+

1

t
. (35)

The result follows by gathering (17)+(32)+(35).
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B.3 Proof of Theorem 5

In the previous subsection, we have proved the convergence of
√
t
Rβ

t (A)

Zβ
t (A)

in probability

towards
√

2
π
under the measure Qβ for any β > 0. This is the content of Proposition 11.

Our objective is now to use this convergence under Qβ to establish the convergence under
the original probability measure P.

Proposition 11 ensures that, for any ε > 0,

Qβ
(∣∣∣
√
t
Rβ

t (A)

Zβ
t (A)

−
√

2

π

∣∣∣ >
√

2

π
ε
)
→ 0, as t → ∞.

Equivalently

E

(
Zβ

t (A)1I{∣∣√t
R
β
t (A)

Z
β
t (A)

−
√

2
π

∣∣>√ 2
π
ε
}
)
→ 0, as t → ∞.

From [16], we know that

sup
t

max
x∈A

Xt(x)−
√
2d t < ∞

almost surely. By setting

ER = {sup
t

max
x∈A

Xt(x)−
√
2d t < R},

we obtain an increasing family such that

P

( ⋃

R>0

ER

)
= 1.

From the convergence (Zβ
t (A) is nonnegative)

E

(
Zβ

t (A)1I{∣∣√t
R
β
t (A)

Z
β
t (A)

−
√

2
π

∣∣>√ 2
π
ε
}1IER

)
→ 0, as t → ∞,

we deduce the convergence of

Zβ
t (A)1I{∣∣√t

R
β
t (A)

Z
β
t (A)

−
√

2
π

∣∣>√ 2
π
ε
}1IER

→ 0 (36)

in probability as t → ∞. Fix β > R. On ER we have Rβ
t (A) = M

√
2d

t (A). Concerning
Zβ

t (A), we observe that, for β > R, we have

∀t > 0, βM
√
2d

t (A) +M ′
t(A) = Zβ

t (A).

Therefore limt→ Zβ
t (A) = M ′(A) > 0 on ER for β > R (recall that M

√
2d

t (A) → 0 as
t → ∞). From (36), we deduce that, necessarily on ER:

1I{∣∣√t
R
β
t (A)

Z
β
t (A)

−
√

2
π

∣∣>√ 2
π
ε
} → 0, as t → ∞
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that is
1I{∣∣√t

M

√
2d

t (A)

M′
t(A)

−
√

2
π

∣∣>√ 1
π
ε
} → 0, as t → ∞.

The proof of Theorem 5 is over.

B.4 Other proofs of Section 4.

We use the comparison with multiplicative cascades set out in the appendix of [16]. The
idea is to compare moments of discrete lognormal multiplicative cascades to moments of
the family (Mt)t thanks to Lemma 10. More precisely and sticking to the notations in
[16], we have

E
[(
Z
√
nM

√
2d

n ln 2([0, 1]
d)
)α]

6 E
[(√

n

∫

T

eXn(t)− 1
2
E[Xn(t)2] σ(dt)

)α]
, (37)

where

• Z is a Gaussian random variable with fixed mean and variance (thus independent
of n), and independent of the family (Mt)t,

• the parameter α belongs to ]0, 1[, making the mapping x 7→ xα concave,

•
∫
T
eXn(t)− 1

2
E[Xn(t)2] σ(dt) stands for a lognormal multiplicative cascade at generation

n, the parameters of which are adjusted to be in the critical situation (see [16] for
a precise definition).

It is now well established that the right-hand side of (37) is bounded uniformly with
respect to n. The reader may consult [1, 8, 31] for instance about this topic. By the
Fatou lemma and Theorem 5, we have

E
[(
M ′([0, 1]d)

)α]
6 lim inf

n→∞
E
[(√

nM
√
2d

n ln 2([0, 1]
d)
)α]

This shows that the measure M ′ possesses moments of order q for 0 6 q < 1. We already
know that it possesses moments of negative order [16].

It remains to prove that

sup
t > 1

E

[( 1
√
tM

√
2d

t (A)

)q]
< +∞.

We write the proof in dimension 1 (generalization to higher dimensions is straightforward)
and we assume that the kernel k of (6) vanishes outside the interval [−1, 1]. Our proof
is based on an argument in [45], which we adapt here to get bounds that are uniform in
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t. We work with the ball A = [0, 1]. The first step consists in writing an appropriate

decomposition for the measure
√
tM

√
2d

t ([0, 1]). We have:

M
√
2d

t+ln 8([0, 1]) =

∫ 1

0

e
√
2Xt+ln 8(x)−(t+ln 8) dx

>

3∑

k=0

∫ 2k+1
8

k
4

e
√
2Xt+ln8(x)−(t+ln 8) dx

>

3∑

k=0

inf
x∈[ k

4
, 2k+1

8
]
e
√
2Xln 8(x)−ln 8

∫ 2k+1
8

k
4

e
√
2(Xt+ln 8−Xln 8)(x)−t dx.

We set

Yi =
1

8
inf

x∈[ i
4
, 2i+1

8
]
e
√
2Xln 8(x)−ln 8 , Ni = 8

∫ 2i+1
8

i
4

e
√
2(Xt+ln 8−Xln 8)(x)−t dx.

for i = 0, . . . , 3. A straightforward computation of covariances shows that ((Xt+ln 8 −
Xln 8)(x))x∈R has same distribution as (Xt(8x))x∈R. It is plain to deduce that

• the random variables (Yi)i are independent of (Ni)i,

• the random variables (Yi)i are identically distributed,

• the random variables (Ni)i are identically distributed with common lawM
√
2d

t ([0, 1]).

Let us define
ϕt(s) = E[e−s

√
tM

√
2d

t ([0,1])].

Since the mapping x 7→ e−s
√
tx is convex, we can apply Lemma 10 and obtain

ϕt(s) 6 E[e−s
√
tM

√
2d

t+ln8([0,1])].

Therefore:

ϕt(s) 6 E[e−s
√
tM

√
2d

t+ln8([0,1])]

6 E[e−s
√
t
∑3

i=0 YiNi]

=E[

3∏

i=0

ϕt(sYi))]

6 E[ϕt(sY1)
4].

Let us denote by F the distribution function of Y1. We have:

ϕt(s) 6

∫ ∞

0

ϕt(sx)
4 F (dx)

=

∫ s−1/2

0

ϕt(sx)
4 F (dx) +

∫ ∞

s−1/2

ϕt(sx)
4 F (dx)

6 F (s−1/2) + ϕt(s
1/2)4.
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It is plain to check that E[(Y1)
−q] < +∞ for all q > 0. Fix q0 > 0. By the Markov

inequality, we deduce:
ϕt(s) 6 s−

q0
2 E[(Y1)

−q0] + ϕt(s
1/2)4.

Therefore
ϕt(s) 6

(
s2q−

q0
2 E[(Y1)

−q0] + ϕt(s
1/2)2

)(
s−2q + ϕt(s

1/2)2
)
. (38)

for all q < q0/4. Let us admit for a while the following lemma

Lemma 18. The family of functions (ϕt(·))t uniformly converges on R+ as t → ∞
towards

ϕ(s) = E[e−sM ′([0,1])].

Since P(M ′([0, 1]) = 0) = 0, we deduce lims→∞ ϕ(s) = 0. Therefore there exist s0 > 0
and t0 > 0 such that

∀s > s0, ∀t > t0
(
s2q−

q0
2 E[(Y1)

−q0] + ϕt(s
1/2)2

)
6

1√
2
.

Plugging this estimate into (38) yields:

∀s > s0, ∀t > t0 ϕt(s) 6
1√
2

(
s−2q + ϕt(s

1/2)2
)
.

Then, by induction, we check that:

ϕt(s
2n) 6

1√
2

(
an+1s

−q2n+1

+ ϕ2n+1

t (s1/2)
)

(39)

where a1 = 1 and an+1 = a2n + 1. Let us choose Q >
1+

√
5

2
so as to have Q2 −Q− 1 > 0.

It is then plain to check by induction that Q2n > Q + an. Let us choose s = s0 + Q1/q.
Then for all x > s, there exists n ∈ N such that:

s2
n

6 x < s2
n+1

.

In other words,

2n 6
ln x

ln s
< 2n+1.

Thus we obtain from (39)

ϕt(x) 6 ϕ(s2
n

) 6
1√
2

(
Q2n+1

s−q2n+1

+ ϕ2n+1

t (s1/2)
)

6
1√
2
(x−α + x−β)

where α = q − lnQ
ln s

> 0 and β = − lnϕt(s1/2)
ln s

> 0. Since limt→∞ ϕt(s) = E[e−sM ′([0,1])], we

can choose β arbitrarily close to β0 = − lnϕ(s1/2)
ln s

> 0. To sum up, we have proved that,
for all β < β0, there exists x0 = s0 +Q1/q and t0 > 0 such that

∀x > x0, ∀t > t0 ϕt(x) 6
1√
2
(x−α + x−β). (40)
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It is straightforward to deduce

sup
t > 1

E

[( 1
√
tM

√
2d

t (A)

)q]
< +∞

for all 0 < q < min(α, β0). Put in other words, we have proved the result “only for small
q”. But, remembering that

ϕt(x) 6 E[ϕt(xY1)
4]

and E[Y −q
1 ] < +∞ for all q > 0, we can deduce from (40) the result for arbitrary q by

induction.

Proof of Lemma 18. Define the family of functions

ft : y ∈ [0, 1[7→ ϕt(tan
πy

2
).

Since P
(√

tM
√
2

t ([0, 1]) = 0
)
= 0, it is plain to deduce that ft can be continuously extended

to [0, 1] by setting ft(1) = 0 for all t. In the same way we define a continuous function on
[0, 1] by

f : y ∈ [0, 1[7→ ϕ(tan
πy

2
)

and f(1) = 0 (possible because P
(
M ′([0, 1]) = 0

)
= 0). The family (ft)t pointwise

converges as t → ∞ towards f . Furthermore, the functions ft are non increasing for all
t. It is then standard to deduce the uniform convergence. The lemma follows.

C. Proof of Section 5

Proof of Proposition 7. Consider a solution M of the ⋆-equation (9) with ωε given by (11)
and γ2 = 2d. Consider an exponent 0 < q < 1, an open bounded set A and λ < 1. From
equation (9) (with ε = λ) and the Jensen inequality we have:

E[(M(λA)q] = E

[( ∫

λA

e
γX

ln 1
λ
(r)− γ2

2
E[X

ln 1
λ
(r)2]

λdMλ(dr)
)q]

> λdqE

[
e
γqX

ln 1
λ
(0)− γ2q

2
E[X

ln 1
λ
(0)2]

M(A)q
]

= λξ(q)E
[
M(A)q

]
.

Conversely, we use Lemma 10 and equation (9):

E[M(λA)q] = E

[( ∫

λA

e
γX

ln 1
λ
(r)− γ2

2
E[X

ln 1
λ
(r)2]

Mλ(dr)
)q]

6 E

[( ∫

λA

eγ
√
aλZ− γ2

2
aλMλ(dr)

)q]
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where Z is a standard Gaussian random variable and aλ = infx,y∈λAKln 1
λ
(y − x). There-

fore:

E[M(λA)q] 6 λdqE
[
eγq

√
aλZ− qγ2

2
aλ
]
E

[
M(A)q

]
.

We complete the proof by noticing that aλ > C + ln 1
λ
.

Remark 19. Actually, using the ⋆-equation to compute the power-law spectrum is not
necessary: it can be computed with similar arguments for any derivative martingale asso-
ciated to a log-correlated Gaussian field.

Proof of Theorem 8. Without loss of generality, we assume that k vanishes outside the
ball B(0, 1). Let K be a compact set included in the ball B(0, 1) with Lebesgue Hausdorff
dimension dimLeb(K) < 1 (the case dimLeb(K) = 1 is obvious). Let q ∈ [0, 1[ be such that
ξ(q) > d dimLeb(K) with ξ(q) < d. For ε > 0, there is a covering of K by a countable
family of balls (B(xn, rn))n such that

∑

n

rξ(q)n < ε.

By using in turn the stationarity and the power law spectrum of the measure, we have

E

[∑

n

M ′(B(xn, rn))
q
]
=

∑

n

E

[
M ′(B(0, rn))

q
]

6 Cq

∑

n

rξ(q)n

6 Cqε.

Using the Markov inequality, we deduce

P

(∑

n

M ′(B(xn, rn))
q
6 Cq

√
ε
)
> 1−

√
ε.

Thus, with probability 1−√
ε, there is a covering of balls of K such that

∑

n

M ′(B(xn, rn))
q
6 Cq

√
ε.

So q > dimM ′(K) almost surely. Therefore d dimLeb(K) > dimM(K).
Conversely, consider q ∈ [0, 1[ such that ξ(q) < d dimLeb(K). By the Frostman Lemma,

there is a probability measure γ supported by K such that

∫

B(0,1)2

1

|x− y|ξ(q)γ(dx)γ(dy) < +∞. (41)
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For q ∈ [0, 1[, let us define the random measure γ̃ as the almost sure limit of the following
family of positive random measures:

γ̃(dx) = lim
t→∞

eq
√
2dXt(x)−q2dE[(Xt(x))2]γ(dx). (42)

The limit is non trivial: Kahane [33] (see also a more general proof in [50]) proved that,
for a Radon measure γ(dx) satisfying (41) with a power exponent κ (instead of ξ(q) in
(41)) the associated chaos

γ̃(dx) = lim
t→∞

esXt(x)− s2

2
E[(Xt(x))2]γ(dx)

is non degenerate (i.e. the martingale is regular) provided that κ− s2

2
> 0. In our context,

this condition reads q2d < ξ(q), that is q < 1.
From the Frostman lemma again, we just have to prove that the quantity

∫

B(0,1)2

1

M ′(B(x, |y − x|))q γ̃(dx)γ̃(dy)

is finite almost surely, which will follow from

E

[ ∫

B(0,1)2

1

M ′(B(x, |y − x|))q γ̃(dx)γ̃(dy)
]
< +∞. (43)

Actually, by using the Fatou lemma in (43), it is even sufficient to prove that:

lim inf
t→∞

∫

B(0,1)2
E

[eq
√
2dXt(x)x+q

√
2dXt(y)−2q2dE[(Xt(x))2]

(√
tM

√
2d

t (B(x, |y − x|))
)q

]
γ(dx)γ(dy) < +∞. (44)

From now on, we will focus on computing the above integral (44). There is a way of
making the computations with minimal effort: we change the process Xt with the perfect
scaling process introduced in [51]. We just have to justify that this change of processes is
mathematically rigorous. So let us admit for a while the following lemma:

Lemma 20. If (44) is finite for the process (Xt(x))t, > 0,x∈Rd with correlations given by

E[Xt(x), Xs(y)] =

∫

S

ge−min(s,t)(|〈x− y, s〉|)σ(ds) (45)

where S stands for the sphere of Rd, σ the uniform measure on the sphere and the function
gu (for 0 < u 6 1) is given by

gu(r) =

{
ln+

2
r

if r > u
ln 2

u
+ 1− r

u
if r < u

then (44) is finite for the process (Xt(x))t, > 0,x∈Rd with correlations given by (6).
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So, from now on, we assume that the correlations of (Xt(x))t, > 0,x∈Rd are the new
correlations specified in Lemma 20 (see [51] for further details). Notice also that the
measure Mγ also involves this new process. Such a family of kernels possesses useful
scaling properties, namely that for |x| 6 1 and 0 < λ < 1, Kt+h(e

−hx) = Kt(x) + h. In
particular, we have the following scaling relation for all 0 < l < 1 and all 0 < λ < 1:

(
(Xt+h(e

−hx))x∈B(0,1), (M
√
2d

t+h (e
−hA))A⊂B(0,1T )

)

law
=

(
(Xt(x) + Ωh)x∈B(0,1), (e

√
2dΩh−2dhM

√
2d

t (A))A⊂B(0,1)

)
. (46)

where Ωh is a centered Gaussian random variable with variance h and independent of the
couple (

(X t
x)x∈B(0,1), (M

√
2d

t (A))A⊂B(0,1)

)
.

We will use the above relation throughout the proof.
By stationarity of the process Xt, we can translate the integrand in the quantity (44)

to get

∫

B(0,1)2
E

[eq
√
2dXt(x)+q

√
2dXt(y)−2q2dE[(Xt(x))2]

(√
tM

√
2d

t (B(x, |y − x|))
)q

]
γ(dx)γ(dy)

6

∫

B(0,1)2
E

[eq
√
2dXt(0)+q

√
2dXt(y−x)−q2dE[(Xt(0))2 ]

(√
tM

√
2d

t (B(0, |y − x|))
)q

]
γ(dx)γ(dy).

Now we split the latter integral according to scales larger or smaller than e−t and obtain

∫

B(0,1)2
E

[eq
√
2dXt(0)+q

√
2dXt(y−x)−q2dE[(Xt(0))2]

(√
tM

√
2d

t (B(0, |y − x|))
)q

]
γ(dx)γ(dy)

6

∫

|x−y|>e−t

E

[eq
√
2dXt(0)+q

√
2dXt(y−x)−q2dE[(Xt(0))2]

(√
tM

√
2d

t (B(0, |y − x|))
)q

]
γ(dx)γ(dy)

+

∫

|x−y| 6 e−t

E

[eq
√
2dXt(0)+q

√
2dXt(y−x)−q2dE[(Xt(0))2 ]

(√
tM

√
2d

t (B(0, |y − x|))
)q

]
γ(dx)γ(dy)

def
= I1(t) + I2(t)
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We first estimate I1(t). For |x− y| > e−t, by using (46) with e−h = |y− x|, we deduce

E

[eq
√
2dXt(0)+q

√
2dXt(y−x)−q2dE[(Xt(0))2]

(√
tM

√
2d

t (B(0, |y − x|))
)q

]

= E

[eq2
√
2dΩh−2q2dheq

√
2dXt−h(0)+q

√
2dXt−h(

y−x
|y−x| )−2q2dE[(Xt−h(0))

2]

(
e
√
2dΩh−2dh

√
tM

√
2d

t−h (B(0, 1))
)q

]

= E

[
eq

√
2dΩh−2(q2−q)dh

]
E

[eq
√
2dXt−h(0)+q

√
2dXt−h(

y−x
|y−x| )−2q2dE[(Xt−h(0))

2]

(√
tM

√
2d

t−h (B(0, 1))
)q

]

6
C

|y − x|ξ(q)E
[ 1(√

tM
√
2d

t−h (B(0, 1/2))
)q

]
.

In the last line, we have used a Girsanov transform to get rid of the numerator. Therefore,

if we set c = supu 6 1 E

[
1(

M
√

2d
u (B(0,1/2))

)q

]
, then

I1(t) 6 C(sup
u > 1

E

[ 1(√
uM

√
2d

u (B(0, 1/2))
)q

]
+

c√
t
)

∫

|x−y|>e−t

C

|y − x|ξ(q)γ(dx)γ(dy). (47)

From Corollary 6, the quantity

sup
u > 1

E

[ 1(√
uM

√
2d

u (B(0, 1/2))
)q

]

is finite.

Remark 21. Corollary 6 only deals with Gaussian fields with correlations given by (6).
From Kahane’s convexity inequality, this quantity is also finite for every Gaussian fields
with correlations given

K(x, y) = 2d ln+
1

|y − x| + g(x, y)

for some bounded function g. In particular, it is finite for the field considered in Lemma
20.

To treat the term I2(t), we use quite a similar argument excepted that we use the
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scaling relation on h = t instead of − ln |y − x|, and the Girsanov transform again:

I2(t)

=

∫

|y−x| 6 e−t

E

[e2q
√
2dΩt−q22dteq

√
2dX0(0)+q

√
2dX0(et(y−x))−q22dE[(X0(0))2]

(
eq

√
2dΩt−q2dt

√
tM0

(
B(0, et(y − x))

))q

]
γ(dx)γ(dy)

=

∫

|y−x| 6 e−t

E

[
eq

√
2dΩt−2(q2−q)dt

]
E

[eq
√
2dX0(0)+q

√
2dX0(et(y−x))−q22dE[(X0(0))2]

(√
tM0

(
B(0, et(y − x))

))q

]
γ(dx)γ(dy)

=

∫

|y−x|6e−t

etξ(q)

tq/2
E

[ eq
22dK0

(
et(y−x)

)

(∫
B(0,et(y−x))

e
√
2dX0(u)−dE[(X1(0))2]+q2dK0(et(y−x)−u)+q2dK0(u) du

)q

]
γ(dx)γ(dy).

By using the fact that K0 is positive and bounded by ln 2, we have (for some positive
constant C independent of t)

I2(t) 6 C

∫

|y−x| 6 e−t

etξ(q)

tq/2
E

[ 1( ∫
B(0,et(y−x))

e
√
2dX0(u)−dE[(X1(0))2] du

)q

]
γ(dx)γ(dy).

Since E[X0(u)X0(0)] 6 E[(X0(0))
2], we can use Kahane’s convexity inequalities to the

convex mapping x 7→ 1
xq . We deduce (for some positive constant C independent of t,

which may change from line to line)

I2(t) 6 C

∫

|y−x| 6 e−t

etξ(q)t−q/2E

[ 1( ∫
B(0,et(y−x))

e
√
2dX0(0)−dE[(X1(0))2] du

)q

]
γ(dx)γ(dy)

6 C

∫

|y−x| 6 e−t

etξ(q)
1

edqt|y − x|dq γ(dx)γ(dy)

6 Ct−q/2

∫

|y−x| 6 e−t

1

(y − x)ξ(q)
γ(dx)γ(dy).

Hence

lim
t
I2(t) 6 C lim sup

t→∞
t−q/2

∫

|y−x| 6 e−t

1

(y − x)ξ(q)
γ(dx)γ(dy) = 0.

The KPZ formula is proved.

Proof of Lemma 20. Let us denote by Kt the ⋆-scale invariant kernel given by (6) associ-
ated to the process (Xt(x))t,x. We will use the superscript p to denote the corresponding
quantities associated to the “perfect” kernel of [51]: we denote by Kp

t the kernel de-

scribed in Lemma 20, by (Xp
t (x))t,x (resp. Mp,

√
2d

t ) the associated Gaussian field (resp.
approximate multiplicative chaos). It is plain to see there is a constant C > 0 such that

∀t > 0, ∀x ∈ Rd, Kt(x)− C 6 Kp
t (x) 6 Kt(x) + C.
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Now we prove the Lemma. By using the Girsanov transform, we have:

∫

B(0,1)2
E

[eq
√
2dXt(x)+q

√
2dXt(y)−2q2dE[(Xt(x))2]

(√
tM

√
2d

t (B(x, |y − x|))
)q

]
γ(dx)γ(dy)

=

∫

B(0,1)2
E

[ 1
(√

t
∫
B(x,|y−x|) e

q2dKt(u−x)+q2dKt(u−y)M
√
2d

t (du)
)q
]
eq

22dKt(x−y)γ(dx)γ(dy)

6 e(2dq
2+4dq)C

∫

B(0,1)2
E

[ 1
(√

t
∫
B(x,|y−x|) e

q2dKp
t (u−x)+q2dKp

t (u−y)M
√
2d

t (du)
)q
]
eq

22dKp
t (x−y)γ(dx)γ(dy).

By the Girsanov transform again, we have

∫

B(0,1)2
E

[ 1
(√

t
∫
B(x,|y−x|) e

q2dKp
t (u−x)+q2dKp

t (u−y)M
√
2d

t (du)
)q
]
eq

22dKp
t (x−y)γ(dx)γ(dy)

=

∫

B(0,1)2
E

[eq
√
2dXp

t (x)+q
√
2dXp

t (y)−2q2dE[(Xp
t (x))

2]

(√
tMp,

√
2d

t (B(x, |y − x|))
)q

]
γ(dx)γ(dy).

The lemma follows.

Remark 22. To sum up, we have proved that establishing the KPZ formula for the perfect
kernel is equivalent to establishing the KPZ formula for all ⋆-scale invariant kernels.
Furthermore the above argument is obviously valid for any log-correlated Gaussian field
(as it only involves the Girsanov transform) and for other values of γ: for γ2 < 2d with
the techniques developed in [52] or for γ2 > 2d with the techniques developed in [6]. In
particular, the KPZ formula established in [6, 52] in terms of Hausdorff dimensions

are valid for the GFF. The reader may compare with [19] where the KPZ formula is stated
in terms of expected box counting dimensions. At criticality, things are a bit more
subtle: the KPZ formula established in this paper is valid for all the derivative martingale
for which you can establish the renormalization theorem 5. This theorem is necessary to
be in position to apply Kahane’s convexity inequalities.
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