Influence of temperature on the hydration products of low pH cements
Résumé
The chemical evolution of two hydrated "low pH" binders prepared from binary (60% Portland cement + 40% silica fume) or ternary (37.5% Portland cement +32.5% silica fume + 30% fly-ash) mixtures was characterized over one year at 20 degrees C. 50 degrees C, and 80 degrees C. The main hydrates were Al-substituted C-S-H. Raising the temperature from 20 to 80 degrees C caused a lengthening and cross-linking of their silicate chains. Ettringite that formed in pastes stored at 20 degrees C was destabilized. Only traces of calcium sulfate (gypsum and/or anhydrite) reprecipitated after one year in some materials cured at 50 degrees C and 80 degrees C. The sulfates released were therefore partially adsorbed on the C-A-S-H and dissolved in the pore solution. The pore solution pH dropped by about 2 units as the temperature increased. Conversely, the soluble alkali fractions did not change significantly. Only the ternary binder resulted in a pore solution pH below 11 at the three temperatures studied.