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Abstract:  The first objective of this paper is to highlight some new Product Driven Systems (PDS) 
issues. Effectively, several possibilities have been proposed to give to products or objects capacities to 
react to environment modifications (especially in manufacturing and logistics context here). In particular, 
bio-inspired approaches are now promising. All these new perspectives lead putting products in action 
according to collected information. That’s why all technics leading to exploit and organize data are 
necessary. The main objective of the paper is addressed in a second part, where we highlight why 
learning machines could be seen as a new way to do that. 
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1. INTRODUCTION 

After the second industrial revolution the main companies’ 
objective has been productivity. Ford Motor Company has 
introduced the concept of mass production. Since then, many 
techniques have been introduced leading to process 
automation and optimization of planning and production 
control activities. Among Manufacturing Planning and 
Control Systems, MRP Systems emerged during the seventies 
in order to solve problems such as those related to delays of 
orders, to intermittent stock consumption or to forecasting of 
raw materials consumption. However, inertia facing 
unexpected events occurring on the shop-floor has been seen 
as a residual issue. In order to compensate for this drawback, 
a new MRP² generation has been proposed with a closed loop 
approach (Vollman et al., 1997). The main characteristic of 
these systems is the multi decision level horizons 
structuration. These horizons may be classified into long, 
medium, short and very short term. Considering them, four 
decision levels have been identified: strategic, tactical, 
operational and execution one. At the beginning of eighties, 
new management philosophies appeared which implied 
drastic changes in production management area. The main 
goals of these changes have been to improve the system 
reactivity and flexibility, on the one hand, and the service 
quality, on the other. These challenges are still valid today 
and have been mainly implemented by Just in Time (JiT) and 
Theory of Constraints (ToC) philosophies.  

The main idea of JiT philosophy is based on the efficient use 
of productive resources. Various approaches have been 
proposed such as Lean manufacturing, Demand Flow 
Technology or Six Sigma. On production workshops, the 
main used tool to implement this philosophy to control 
physical/material flows is the kanban system. Lean 
manufacturing and, in particular, kanban system have implied 
a great revolution in production system management. The 

management functions, which is in MRP2 systems 
centralized and hierarchical, become, in lean philosophy, 
completely or partialy distributed. In spite of the results 
obtained with these decentralized approaches, Theory of 
Constraints (ToC) introduces a new point of view, different 
and complementary, based on a global optimum attainment 
which brings back to a centralized approach (Goldratt et Cox, 
1992). ToC induces that organization has to be evaluated and 
controlled by using three indicators: profits generated by 
sales, operating costs and inventories. In ToC, a good 
bottleneck management is the key of the success. Finally, the 
existence of these three concurrent philosophies of 
production management have led to the proposition of many 
hybrid systems using techniques coming from MRP², JiT or 
ToC which were implemented in software such as ERP 
(Enterprise Resources Planning), APS (Advanced Planning 
Systems), SCM (Supply Chain Management Systems)... 

In the next section, a brief overview of intelligent 
manufacturing systems is recalled with their advantages and 
weaknesses. Section 3 presents a viable system model for 
product driven system. Section 4 focuses on the need of 
knowledge of these systems and the learning approaches used 
to design knowledge. An illustration of this approach is 
presented in section 5 before to conclude.  

2. INTELLIGENT MANUFACTURING SYSTEMS 

The development of production management systems has led 
to the “Computer Integrated Manufacturing” concept. The 
main goal of these systems is to interconnect all the 
information systems included in the production system. CIM 
systems have to supervise and control all company 
operations. At that time, the paradigm generally accepted was 
that the CIM system would be able to have a great flexibility 
when changes occur and would give the best solution to the 
problems encountered in production system. Nevertheless, 
implementations led to centralized and rigid structures unable 



 
 

     

 

to adapt quickly to changes. However, some flexible 
manufacturing systems were very productive. So, at the 
beginning of nineties, CIM systems were no longer 
considered as the solution of all problems of production 
companies (Babiceanu and Chen, 2006). 

Considering the bad results of integrated systems in terms of 
flexibility and reactivity, collaborations between research 
centers, universities and companies have been initiated in 
order to design and develop the production systems for the 
future. The most important of them was the “Intelligent 
Manufacturing Systems” Project (IMS) (Yoshikawa, 1995). 
The basic idea of IMS was the design and implementation of 
decentralized systems. Its main goal was system flexibility in 
order to deal quickly with disturbances inherent to the 
production processes. Before this function was allocated to 
men who monitored and changed the shop orders. The idea 
was to automate all or a part of this function by using new 
communications technologies (Auto-ID, Multi-Agent 
systems…). These new systems have to be robust, 
reconfigurable and reusable (Leitao, 2009).  

Considering the centralization criterion, the production 
systems have been divided into four types (Babiceanu and 
Chen, 2006): centralized systems, hierarchical ones, modified 
hierarchical ones and heterarchical systems. Around the 
design of decentralized systems appeared different types of 
systems and concepts. The main decentralized production 
systems are bionic, fractal and holonic ones (HMS). This 
paper focuses on the last one.  

HMS consortium has proposed holonic production systems 
based on the holon concept. A holon is an entity which may 
be included in other holons (Van Brussel et al., 1998) and are 
organized in holarchies. Holons have the abilities of 
autonomy and cooperation. Nevertheless, concepts of agent 
and holon are often confused. Although the holon may be 
viewed as an agent, the main difference is that the control 
part is associated to the physical part in a holon. In an agent 
(which is an abstract entity), a physical entity may be merged 
or modeled by an abstract entity. Product Driven Systems is 
an evolution of holonic system where interoperability and 
intelligence are improved. In PDS, products become the 
company resources controllers (Morel, et al. 2003). This 
leads to the intelligent product concept. It has been defined as 
an entity equipped with physical and informational 
representations, able to affect decisions which may affect the 
intelligent product itself (McFarlane et al., 2003). In practice, 
the Radio Frequency identification (RFID) is a technology 
able to link information and physical environment. The 
central idea is to move from a classical hierarchical and 
aggregated control to a distributed decision making where a 
part of the decision is made locally, all along the products life 
cycle. So, the needed information is reduced and locally 
processed. The PDS have been generally designed as a 
particular class of holonic systems. The main advantages of 
IMS approaches are feasibility, robustness, flexibility, 
reconfigurability and reusability. 

Up to now, many methodologies have been proposed in order 
to model distributed approaches (PROSA, ADACOR, 
METAMORPH…). Despite this, no standardized criterion 

exists allowing model design. The modeling step may be 
performed by focusing on functional, physical or abstract 
aspects (Creput 2008). And yet, the tools choice, the 
criterions choices and the models choices remain linked to 
the abilities and preferences of designer. This lack of 
uniformity makes the evaluation and the comparison of 
different applications in the literature, difficult. 

One of the most critical points for the heterarchical 
approaches (decentralized) comparatively to traditional ones 
(centralized) is the decision optimization. Heterarchical 
systems are not able to formally guarantee their performances 
in terms of quantifiable variables, and more particularly, of 
costs. Heterarchical systems are interested in classical 
criterions of cost, time or efficiency, but also to goals relating 
to flexibility, reconfigurability, reactivity, interoperability… 
These goals are not easily quantifiable, and so, the 
comparison and evaluation of benefits of such systems are 
difficult.  

In conclusion, it can be noticed that the two great approaches 
of production planning and control have strengths and 
weaknesses. Actually, the conventional approaches 
(centralized) insure the efficiency of the global system but at 
the expense of flexibility and reactivity. At the opposite, the 
IMS approaches (distributed) insure flexibility and reactivity, 
but are not able to insure performance and consistency 
between decisions taken to different levels. So the search of 
global consistency of a system working, through the 
comportment of sub systems and their own goal is essential 
(Thomas, 2004). 

Verstraete et al. (2008) have proposed to associate a HMS to 
a hierarchical planning system. The function of HMS is to 
determine an alternative planning when disturbance occurs. 
Another way would be to design hybrid systems 
(centralized/distributed). Herrera (Herrera et al., 2011) 
highlights that to allow acceptable efficiency and consistency 
between different decision levels and to improve the 
flexibility and reactivity capabilities of the systems; “Viable 
Model” could be a good way to structure their architecture. 
Moreover these systems have to include a data acquisition 
system in order to collect data from the physical system to be 
controlled. These data must be filtered, analyzed, possibly 
aggregated… in order to become exploitable. This paper 
focuses now on this point. 

3. VIABLE SYSTEM MODEL FOR PDS 

3.1. Viable System Model (VSM) 

The origins of VSM arise from the works of Beer (Beer, 
1984) applied to the steel industry in the fifties. This research 
can be placed in the line of works of Norbert Wiener, Warran 
McCulloch and Ross Ashby. The main objective of the model 
was to identify and to explain how systems are viable. 
Although, VSM is a general model for the study of any viable 
system, the most concerned application areas has been human 
activity organizations, i.e., corporations, firms or 
governments. In this domain, VSM changes the view of the 
traditional management model based on command and 
control, in which a control system is designed as a pyramid 



 
 

     

 

and such decisions are disaggregated in a top-down manner at 
different structural levels. The main difference, inspired by 
the biological organization, consists in mapping this 
hierarchy into a structural recursion (Herrera et al., 2011). 
The premise of this change of perspective was inspired from 
the living beings composition (cells, organs, systems, etc.). 
Indeed, they have properties of autonomy, self-organization 
and self-regulation, allowing them to have an independent 
existence. The differentiation of their functions and the 
relationships between these elementary components produce 
more complex systems, without that subsystem essential 
properties would be lost. However, one of the most important 
properties of a viable system is their intrinsic recursion. In 
fact, any viable system contains and is contained by another 
viable system. Every subsystem maintains its autonomy 
towards its environment, but it also contributes to generate 
the viable system in which it is included. In that way, a viable 
system and its different subsystems have the same structural 
requirements. A viable system supports its objectives thanks 
to an overall cohesion and adapts itself by the autonomy of its 
subsystems. VSM was developed looking for invariances in 
organic systems. These invariances allow defining a 
homomorphism of their functions, organization and structure. 
Beer defines five elementary functions that any viable system 
must have: implementation, coordination, control, 
intelligence and policy.  

3.2. VSM model of Manufacturing Planning and Control 
system 

The model describes here (Fig. 1) has been proposed by 
Herrera et al. (2011). It is consistent with the five functions 
of the Manufacturing Planning and Control Systems which 
can be described as: Strategic Planning, Sales and Operations 
Planning (S&OP), Master Production Planning (MPS), 
scheduling and execution. Each of these functions 
corresponds to a level in the decision making process 
regarding to different horizons going from a longer to shorter 
one. In practice, these decisions are taken using a rolling 
horizon to take into account the frequent changes that occur 
in the data (demand, capacity, etc.). Thus, the strategic 
planning is revised once a year, the S&OP is computed 
monthly, the MPS is get per week, and the schedules are 
performed daily or more frequently depending on 
disturbances. Each function deals with a corresponding 
aggregation level of products respectively families, finished 
products and items (components). In this context, one of the 
major issues is to adapt decisions at each level when 
disturbances (internal or external) happen. The frequently 
resulting modifications in the decision making process lead to 
the so-called nervousness system which deteriorates the 
system performance (productivity and efficiency). One 
should notice that the shorter the horizon is, the more 
frequent are the changes. Thus, the performance is more 
deteriorated at the lower level (scheduling level). More 
precisely, this model is a generic model based on VSM 
dealing with production planning considering both MPS level 
and scheduling (lot-streaming). 

In a PDS, the basic unit is the intelligent product, which is 
capable of i) acquiring and archiving data, ii) communicating 

with its environment and iii) interacting with and on it. So, 
intelligent products have autonomy, auto-organization and 
auto-regulation properties necessary to become the basic 
subsystem of a VSM model which is able to model all levels 
of a MRP2 system.  
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Fig. 1. VSM based product driven control system. 

Concerning the figure 1 above, we have made the hypothesis 
that products are instrumented with RFID technology which 
allows acquiring, archiving data and communicating and 
interacting with their environment. The products holarchy is 
designed in order to represent the decision levels of a MRP2 
system. This resulting metamodel uses the holon concept. 
This figure is subdivided into four quadrants (I, II, III, and 
IV) in order to simplify the explanations. The horizontal axis 
distinguishes the physical world to the virtual one. The 
vertical axis distinguishes the design which is a 
representation of the system to the implementation which 
performs the decision making and the knowledge 
management. Red arrows (dashed) represent the data flows 
from the shop floor to the quadrant IV (Data Management 
System – DMS), when the green (bold) arrows represent 
informational or knowledge flows into the DMS. To avoid 
overloading the figure, only some examples of these flows 
are shown.   

The quadrant I shows the planning system which may be 
centralized or distributed. Its decomposition is based on four 
levels of aggregation of product entities (weekly production, 
manufacturing orders, lots and products). To each level, 
entities are modeled as agents. The product entities are agents 
with a specific control/autonomy level which allow to 
represent all the hybridization levels of the system from a 
pure centralized system (product agents transmit information 
to upper level where decision is made) to a pure heterachical 
system (agents communicate among themselves in order to 
make decision). The quadrant II is a conceptual 
representation of the instantiation phase. It shows the 
physical implementation and corresponds to the instancing of 
products in the form of holons, which load intelligence and 
the functions allowing them to interact with environment and 



 
 

     

 

to acquire the desired level of autonomy. The quadrant III 
shows the physical control in which product holons are able 
to make decisions according to events concerning their own 
evolution. The quadrant IV shows the virtual implementation 
and corresponds to the transformation process of data 
(coming from the shopfloor) to information allowing 
knowledge to emerge. It is this knowledge which must be 
loaded by agents in quadrant I in order to improve their 
adaptation abilities to events with the principle of experience 
feedback. The question that needs to be answered is “How 
perform this experience feedback”? 

4. DATA MINING AND PDS 

As previously said, in the concept of product driven system 
(PDS), product must take decisions and interact with its 
environment thanks to acquired knowledge and information. 
The synchronization of physical and informational flows 
inherent to PDS implies that many data may be exploited in 
order to create this knowledge and this information. These 
data may be related to product himself, or to the production 
process. So, the question becomes: how to exploit these data? 

Considering figure 1, green arrows (thick) connect the 
elements of quadrant IV to elements of quadrant I. These 
connections represent the knowledge loaded in agents. So, 
the first task is to determine which knowledge is needed by 
different levels agents. Obviously, a product agent doesn’t 
need the same knowledge than a manufacturing order agent. 
So it is necessary to define precisely these needs in order to 
be able to answer them. When this is done, it remains to 
determine how to build this knowledge. For this, the 
recursion of the VSM model may be useful. A first level may 
be defined which includes the two physical quadrants (II and 
III) and the product layer of the two virtual quadrants (I and 
IV). This level is surrounded by dotted line. The second level 
(Lots) includes the first level and adds the lots layer of 
quadrants I and IV. It is surrounded by short dashed line. The 
third level (Manufacturing Order level) includes Lots level 
and adds the fabrication order layer of the quadrants I and IV. 
It is surrounded by long dashed line. At last, the fourth and 
last level (weekly production level) includes fabrication order 
level and adds the weekly production layer of the two virtual 
quadrants (I and IV). It is surrounded by solid line. This 
decomposition is comparable to the concepts of systems and 
sub-systems of the system engineering which may be used in 
order to define interfaces between levels. To each level, the 
knowledge manufacturing process is performed in several 
steps: 

1. Determination of witch knowledge must be loaded 
in agent. As explained previously, this need is 
different according to agent level.  

2. Determination and collect of information available 
in order to produce knowledge. This point will be 
detailed afterwards. 

3. The structure of the model (here multilayer 
perceptron) has to be determined.  

4. At last, learning and validation phase must be 
performed. The failure of the learning process 
implies a feedback on the second or third points. 

Let us focus on the product level. In quadrant IV, the 
knowledge to load in the agent has to be built. The main 
particularity of this level is that the entries of knowledge 
manufacturing process are only data collected on the 
workshop. This process is then a classical process of 
knowledge extraction from data. The main difficulty is to 
know which data is necessary. It can be noticed that these 
data may be of continuous or discrete nature, determinist or 
stochastic one, and the knowledge design process must take 
into account the hybrid nature of this data.  

When the next level is considered, the entries of knowledge 
manufacturing process may be data (aggregated or not) 
collected on the workshop, but also information and 
knowledge built at the product level. So the double challenge 
is: 

- To determine which data, but also which 
information and which knowledge at the product 
level are necessary in order to built the knowledge to 
be loaded in agent at the lot level,  

- To define a tool allowing to aggregate entities of 
different nature (data, information, knowledge) in 
order to built the desired knowledge.  

The desired knowledge to be loaded in agents of upper levels 
will be built with a recursive approach by using the preceding 
procedure. This paper highlights knowledge manufacturing 
process at the product level in order to point out the main 
difficulties encountered and to propose solutions.  

5. ILLUSTRATION 

Let us consider a simple production process constituted of 
sequential work centers presented by figure 2. One of these 
work centers is a bottleneck. The only knowledge which must 
be loaded in product agents is the lead time between the 
release of manufacturing order and the products arrival into 
input queue of bottleneck. 
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Fig. 2. Considered production system. 

The knowledge manufacturing process must be highly 
automated. So, the data loaded by holons (quadrants II and 
III) are collected and exploited by using multilayer 
perceptron which uses supervised learning. Its structure is 
given by: 
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where 0
hx  are the n0 inputs of the network, 1

ihw  are the 

weights connecting the input layer to the hidden layer, 1
ib  are 

the biases of the hidden neurons, g(.) is the activation 
function of the hidden neurons (here, the hyperbolic tangent), 



 
 

     

 

2
iw are the weights connecting the hidden neurons to the 

output one, b is the bias of the output neuron and z is the 
network output.  

The weights and biases are determined by using a supervised 
learning which can be performed in two steps (Thomas et al. 
2011): i) initialization step; this initialization may be 
randomly performed or by using more complex algorithms. 
This step is crucial in order to avoid local optimum trapping. 
ii) learning step; many learning algorithms exist. One of 
them is the Levenberg-Marquardt algorithm. It works as a 
hessian algorithm when solution is distant and as a gradient 
algorithm when solution is near.  

This neural network must model the lead time between the 
release of manufacturing order and the products arrival into 
input queue of bottleneck. This lead time is a continuous 
notion. A first step is to fetch the lead time and all the 
explanatory variables collected by each product holons. 
These explanatory variables will become the neural network 
inputs. They may be continuous, as utilization rates, queues 
size… or discrete, as routing choice, machine choice… The 
question that needs to be answered is “How to take into 
account this discrete data”? Previous works have shown that 
some discrete variables may be used without particular 
precautions but other variables may not (Thomas et al., 
2011). In order to solve this problem, two approaches may be 
used.  
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Fig. 3. Taken into account discrete variables – multi-model 
approach. 

The first approach is similar to the multi model philosophy. 
In fact, if learning cannot take into account some discrete 
variables, this is due to the system comportment changes 
when these variables change of state. So, these discrete 
variables define different operating areas of the system, and 
so, it is necessary to design one neural model for each 
operating area. As example, if two discrete variables X1 and 
X2 may take 3 and 2 states respectively, the considered 
system can be found into 2*3=6 operating areas and so, it 
needs 6 neural models to learn (figure 3). The advantages of 
this approach are that the neural networks have only 
continuous inputs and so, the learning is much simpler. 
Moreover, the structures of the networks include less input 
and hidden neurons and so the computational time decreases 
during the learning and exploitation steps. However, the main 
drawbacks are the number of neural networks to learn and the 
need to design a models selection system in function of states 
of discrete variables (Thomas et al., 2011). 

The second approach consists to transform the discrete 
variables into binary ones and to use these binary variables as 
inputs of the network. With the same example as above, five 
binary input variables must be created, each of them may take 
the states 0 and 1: “X2=1”; “X2=2”; “X1=1”; “X1=2”; 
“X1=3”. The main advantage of this approach is that only 
one neural network models the entire system. However, this 
model includes more inputs and hidden neurons and so the 
computational times increase during the learning and 
exploitation steps (Thomas and Thomas, 2009). These two 
approaches are not paradoxical. An optimal solution may be 
to mix these two approaches in order to limit both, the 
growing number of neural models to learn and the size of 
each of these models.  

Following the explicative variables are collected and defined. 
In a second step, the structure of the neural network must be 
designed. The works of Cybenko and Funahashi have proved 
that a multilayer perceptron with only one hidden layer (using 
a sigmoïdal activation function) and an output layer (using a 
linear activation function) can approximate all nonlinear 
function with any desired accuracy. However, nothing is said 
about the number of hidden neurons. 

The simplest approach would be to choose a very great 
number of hidden neurons which permits to obtain the best 
accuracy. However, we are not in front of a regular 
approximation problem but in front of a function adjustment 
to a finite number of points (Dreyfus, et al. 2002). The risk is 
to learn the noise and not the function. This risk is called 
overfitting. In order to avoid it, different techniques have 
been proposed as regularization methods, early stopping or 
penalty methods. However, the determination of the optimal 
structure of the network allows to avoid the overfitting and to 
optimize the calculation times. For this, two approaches exist. 
The first one is a constructive one where the hidden layer is 
iteratively built. Another way is to start from a structure 
including too many hidden neurons and to remove the 
spurious neurons. The main advantage of this approach is to 
allow to some algorithms to determine simultaneously the 
hidden neurons number and the feature selection 
(Engelbrecht, 2001; Hassibi et al., 1993; Setiono and Leow, 
2000). 

Three algorithms have been tested and compared on the lead 
time model in a sawmill (Thomas and Thomas, 2008). These 
three algorithms are OBS (Hassibi et al., 1993), N2PFA 
(Setiono and Leow, 2000) and the one proposed by 
Engelbrecht (Engelbrecht, 2001). The obtained results have 
shown that the association of two algorithms (an extension of 
Engelbrecht algorithm and N2PFA) gives the optimal 
structure of the network quickly. In fact, a first step of 
pruning with the fastest algorithm (extension of Engelbrecht) 
allows finding the number of hidden neurons. In a second 
step, the N2PFA algorithm works with a smaller structure 
than the initial one (less hidden neurons) allows to design the 
network structure by pruning the spurious inputs. 

5. CONCLUSIONS 

In this paper, in a first step, we have summarized the new 
advances in product driven system approach and a VSM 



 
 

     

 

model has been presented. In a second step, we have 
investigated the knowledge manufacturing process. In 
summary, we can say that data are essential sources of 
knowledge but they are often unclaimed treasure because 
their exploitation may become time consuming. However, 
some tools exist, as learning overall and neural network in 
particular, allowing automating this exploitation. 
Nevertheless, we need to be careful and to make sure to 
respond positively to the questions: i) all the necessary 
information is included in the data? ii) all the collected data is 
well necessary? iii) how associate data of different natures 
(continuous or discrete) in the same model?  

If the learning fails, this implies that the answer to the first 
question is negative. In this case, in order to supplement 
database, the product holons must collect other variables 
which may require improving the instrumentation. For the 
two other questions, some tools and methods have been 
presented succinctly here.  

The implementation of this approach has two sides. The 
learning phase of a neural model is a complex task which 
must be designed off line. However, the resulting model is a 
simple equation which may be loaded in an agent.  

However, one open question remains to be addressed: How to 
perform the knowledge manufacturing process for upper 
levels? This point represents a double challenge: i) how to 
determine which data, but also which information and which 
knowledge at the lower level are necessary in order to 
perform this knowledge manufacturing process? ii) which 
tool allows to aggregate entities of different natures (data, 
information, knowledge)? iii) These challenges will be 
addressed in our future works.  
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