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IRISA Participation in JRS 2012 Data-Mining
Challenge: Lazy-Learning with Vectorization
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vincent.claveauQirisa.fr

Abstract. In this article, we report on our participation in the JRS
Data-Mining Challenge. The approach used by our system is a lazy-
learning one, based on a simple k-nearest-neighbors technique. We more
specifically addressed this challenge as an opportunity to test Informa-
tion Retrieval (IR) inspired techniques in such a data-mining framework.
In particular, we tested different similarity measures, including one called
vectorization that we have proposed and tested in IR and Natural Lan-
guage Processing frameworks. The resulting system is simple and efficient
while offering good performance.

Keywords: Vector space, Vectorization, LSI, k-Nearest Neighbors, In-
formation Retrieval

1 Introduction

This article describes the IRISA participation in the JRS Data-Mining Chal-
lenge. The team was composed of Vincent Claveau, IRISA-CNRS, and was
identified as vclaveau. The approach used by our system is a lazy-learning one,
relying on a k-nearest-neighbors technique (kNN). In this standard data-mining
technique, the object to classify is compared with those from the training set.
The closest ones then vote for the classes and the final class(es) are attributed
to the new object based on these votes.

Such a technique necessitates to define at least two components: how to com-
pute the similarity between a new object and the training set ones, and how to
combine the votes to assign the classes to the new objects. For these two compo-
nents, we used techniques initially developed in the Information Retrieval (IR)
domain. In particular, we show that the similarity measure that we have devel-
oped, called vectorization, yields better results than usual similarity measures.
It implements a second-order distance based on the use of pivots to build a new
vector space representation.

The resulting system does not need any learning step per se and is very fast:
the full processing (from the processing of the training set to the generation of
the results for the test set) takes approximately 5s on a laptop computer. The
best score that was obtained during the official evaluation is 0.500. It is ranked
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17th on the leaderboard, with score only 0.02947 points worse than the best
score.

The paper is organized as follows: the next section gives some background on
how usual techniques from IR can be used to implement kNN. Section 3 presents
our vectorization approach to compute second-order similarities. Section 4 details
how the classes are predicted from the nearest-neighbors found. The results
obtained by our approach and different variants are presented in Section 5, and
some conclusive remarks are given in the last section.

2 First order similarity for nearest neighbors

As we previously said, our whole approach is based on techniques initially de-
veloped for Information Retrieval (IR). Thus, we make an analogy between the
JRS Challenge data and IR, and more precisely with the vector space model
classically used in IR: a vector represents a document (noted d hereafter), and
each dimension represents a word. As in IR, instead of computing a distance or
similarity directly from the initial vectors, we apply a weighting scheme to the
data. This common approach is explained in the two following subsections and
is what we call a first order similarity.

2.1 Weighting schemes

Several weighting schemes have been proposed in IR. Their goal is to give more
importance to representative attributes/words of an object/document. The TF-
IDF is certainly the most well known of these weighting schemes. It is based on
considerations developed in several seminal papers [13, 14] and is usually defined
as:

wTF_IDF(t, d) = TF’()f7 d) * IDF(t) = tf(t, d) * 10g(N/df(t))

where t f(t, d) represents the value of the dimension/word ¢ for the vector /document
d, N is the total number of vectors and df (¢) is the number of vectors having a
non-zero dimension ¢.

Another weighting scheme has been proved much more efficient than the
standard TF-IDF for most IR problems. This scheme, called Okapi-BM25, can
be seen as a variant of TF-IDF. Its definition is given in Equation 1; it indicates
that the weight of word/dimension ¢ in the document/vector d (k; = 2 and
b = 0.75 are constants, dl is the length of document, dl.v, the average document
length).

wpmas(t,d) = TFpmos(t,d) * IDFparas(t)

] £, d) * (ky 4 1) b
T ) + ke x (Dbt b dl(d)/dlaeg) O

N —df(t) + 0.5
df(t)+0.5
(1)
The T Fgpros part was initially derived from a probabilistic model of the fre-
quency of terms (dimensions) in the documents (vectors), namely the 2-Poisson
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model of Harter [15]. This model represents the distribution of terms in the doc-
uments as a mixture of two Poisson distributions: one represents the frequency
of terms relevant to describe the document, while the other represents the fre-
quency of non relevant ones [9]. In practice in IR, this TF formula is considered
as better than the original one because it includes a normalization based on
the size of the document. The I D Fpgjpr95 part is also derived from probabilistic
considerations [15] and is quite similar to the empirically set up standard IDF
formula.

Note that these weighting schemes do not change the sparsity of the vectors.
Every 0-component of the vectors keeps its value to 0. This property is generally
exploited to perform very efficient similarity computations (see below).

2.2 Similarity

The data were provided in a vector representation. Each object is thus described
as a vector of 25000 dimensions which is very sparse. This sparse vector repre-
sentation is very often used in IR, and measures like Minkowsky Lp distances are
commonly used to compute similarity between two such vectors. For two vectors
x and y, Minkowsky distances are defined by equation 2; p is usually chosen as
1 (Manhattan distance), 2 (Euclidean distance) or oo (Chebyshev distance), if
p < 1, Lp is no longer a distance.

- s cos(x,y) = T 3

Lp(z,y) = zz':lxl vil? (2) (@.9) T (3)

The cosine similarity (eqn 3) is also very often used in IR and data-mining. Since

it is based on the scalar-product of the two vectors, it allows a very efficient

computation for sparse vectors since only the components which have non-zero

values in both vectors have to be considered. Note that the cosine is equivalent

to (i.e. yields the same ordering of neighbours as) the L2 distance if the vectors
are normalized: L2(z,y) = /2 — 2 % cos(z,y) .

In practice, such distances or similarity measures are computed between the
weigthed versions of the vectors (TF-IDF, Okapi or others). More precisely, one
vector serves as a query, and its nearest neighbors are the vectors having a mini-
mal distance (or maximal similarity) with it. In IR, it is usual to adopt different
weighting schemes for the query vector and the vectors from the collection (train-
ing vectors), since the query have some particularities one may want to take into
account (for instance, queries in a search engine are often composed of only 2 or
3 words and thus results in a vector much sparser than the text collection ones).

3 Vectorization: second-order similarity

3.1 Principle

However, we have developed a more effective similarity technique, based on a
transformation on the initial vector space into another. This transformation,
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called Vectorization, has been used in various IR and Text Mining tasks [3]
where it has shown to provide both a low complexity and accurate results. As any
embedding technique, Vectorization aims to project any similarity computation
between two objects in a vector space. Its principle is relatively simple. For each
document of the considered collection, it consists of computing using an initial
similarity measure (e.g., a standard similarity measure like the cosine), some
proximity scores to m pivot-objects. These m scores are then gathered into a
m-dimensional vector representing the object, as shown in Figure 1.

S
=31

-

)
-

N

o
3

— ) similarity similarity . similarity
= Okapi Okapi Okapi
Initial vector l l l

New vector [ score [ Score | aa [ Score |

Fig. 1. Vectorization embedding of an example

It is important to notice that the vectorization process changes the repre-
sentation space. It is not only a space reduction or an approximation of the
initial distance as proposed for instance by some authors [2]. It is not either an
othogonalization or a linear transform as in Latent semantic Indexing/Analysis
(LSI/LSA), probabilistic Latent Semantic analysis (pLSA) [10], Latent Dirichlet
Allocation (LDA) [7], principal component analysis (PCA) [1], LDA [6] and even
random linear transformations [17]. In these representations, a new vector space
is also built, but its dimensions are simply linear combinations of the initial ones.

Changing the representation space, based on the similarity to the pivots,
brings up two important properties. Firstly, this embedding helps to reduce the
complexity when the initial similarity measure is too expensive to be used in-
line [4]. Of course, this property is not really useful in the context of this JRS
Challenge but appears as important when vectorization is used for Information
Retrieval. Secondly, vectorization will consider two objects as close if they have
the same behaviour regarding the pivots, that they are close to same pivots and
far for the same pivots. As with LSI or LDA, this indirect comparison makes it
possible to pair two objects even if they do not bear common components in the
initial vector space.

3.2 Pivots

The pivots can be any objects provided that we are able to compute a similarity
between them and the initial vector. They may be artificially created or gen-
erated from existing data. In this JRS Challenge context, we have adopted the
latter solution: we have built 83 pivots, one per class. Each pivot is simply a sum
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of a random selection of the vectors belonging to the corresponding class. Each
training object is then represented in this 83-dimension space by computing its
distance (we used a cosine) to each of the 83 pivots. This embedding provides
a more robust representation than the initial 25000-dimension one; indeed, it
allows to consider two objects as close, because they are close from the same
pivots, even if they were not considered as close in the initial space. This prop-
erty may be important in the JRS Challenge context in which a topic could be
expressed by different MeSH term combinations.

3.3 Similarity

Comparing two ’vectorized’ objects can be performed in a very standard way
in the new vector space with a L2 distance for example. Yet, it is important
to note one property: as we previously underlined it, computing L2 or cosine
between two vectors can be very efficiently done when the vectors are sparse
since it needs to consider only the dimensions having a non-zero value in each
vector. When the vector space is not sparse and has high dimensionality, the
cost of computing the distance can be very important.

Yet, many algorithms are available to compute or approximate very efficiently
such distances. To save processing time, these techniques either address the
completeness of the search, or the accuracy of distance calculation. For instance,
the hashing-based techniques [16, 5] tackle the completeness: the space is divided
into portions, and the search is conducted on a subset of these portions. The
NV-tree [12] pushes this approach further as it also approximates L2 distances of
the portion chosen. Finally, it provides results in O(1) (ie, a constant time based
on a single disk access), whatever the number of vectors in the space. For the
experiments presented below and given the small number of pivots and training
vectors, such techniques were not necessary; a direct cosine (i.e. equivalent to a
direct L2) computation was performed.

4 Vote

Based on the similarity measure described above, the nearest-neighbors of an
object can be efficiently retrieved. For each of them, we have a list of its classes
and its similarity score. To gain more robustness, we ran different runs. Since
the pivots are randomly generated, the results obtained varied from one run
to another. Here again, to combine the results, we made an analogy to the
IR process. More precisely, we made an analogy to meta-search whose goal is
to combine the ranked results of multiple systems. Thus we used one of the
most-know combination formula used for meta-search, namely CombMNZ [8, 11].
CombMNZ re-orders the classes of the neighbors retrieved by all the systems. Let
us note Sys, the set of systems (or runs in our case) proposing c as a possible class
(that is, with a non-zero score) for the considered test object; the CombMNZ
score is then defined as:

CombMNZ(c) = Z score(s, i) * |Sys,| (4)

s€Sys,,
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It is based on score (score(s,i)) associated with each class. In IR, this score is
the similarity between the query and the document considered. In our case, it is
the sum of similarities with close neighbors belonging to class ¢ as obtained by
vectorization. The full process is schematized in Figure 2 The resulting similarity
list was cut based on a fixed threshold on the CombMNZ score.

Vectonzatlon
Tralnlng => Pivot set 1
set
Vectorization kNN
Pivot set 1 D m=n (L2)

Test vector —> : ordered
o]
= (combMNZ|=> class

\ list
Vectorlzatlon
Tralnlng ﬁ m
set

Vectorization kNN
S |

Fig. 2. Complete voting process based on CombMNZ

5 Results

In Table 1, we present different results obtained with the system described in the
previous sections. We indicate the results obtained when using different similarity
measures instead of vectorization. We thus report the scores obtained by first-
order similarities like TF-IDF /L2 and Okapi, as well as the transformation-based
similarities LSI and LDA with several sizes of space. These results are expressed
in terms of f-measure, as defined by the organisers, and we also indicate the
optimal f-measure, that is, the best f-measure that could be obtained if the class
list produced by our systems (i.e. by CombMNZ) would have been cut at the
best place. In order to have a precise estimate of these measures, we use a 20-fold
cross-validation.

Several points are worth noting. Firstly, it seems that the weighting schemes
have almost no influence on the results. This result is surprising but difficult
to interpret given that no information was given on how the vector values were
computed and what they represent.

Another interesting fact is that systems based on a dimensionality reduction,
such as LSI, LDA or vectorization, perform better on average than those re-
lying on the initial highly dimensional vector space. Here again, given that no
information is given on which dimension represents which MeSH term and how
the hierarchical nature of the MeSH was taken into account, these results are
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H f-measure ‘ optimal f-measure
no weighting/L2 0.4305 0.5992
TF-IDF/L2 0.4464 0.6023
Okapi 0.4529 0.6142
LST 83 dims 0.4605 0.6253
LSI 150 dims 0.4795 0.6397
LSI 250 dims 0.4811 0.6435
LST 350 dims 0.4815 0.6497
LDA 83 dims 0.4087 0.5801
LDA 150 dims 0.4384 0.6057
LDA 250 dims 0.4514 0.6122
LDA 350 dims 0.4482 0.6101
Vectorization 83 pivots 0.5106 0.6915

Table 1. F-measure and optimal f-measure for different IR-inspired kNN systems

difficult to interpret. But, since the 25,000 MeSH index terms used to build the
vectors are not independent, it can be supposed that the space reduction helps
to match vectors belonging to the same categories even if they are described by
different (but dependent) terms.
Finally, among all tested similarity measures, Vectorization performs best. More-
over, the optimal results obtained needs less dimensions than the LSI or LDA
techniques, resulting more compact vectors. Several other experiments, not re-
ported here, have been conducted to assess the influence of other parameters.
They showed that the number k of neighbors has only a small effect on the re-
sults. There is almost no difference for k varying between 3 and 20. Also, different
aggregating techniques have been tested beside CombMNZ, such as CombSUM,
CombMAX, Condoret vote... All of them yielded lower results, as it has been
verified in many IR tasks.

Last, let us note that the official score obtained by our system, computed on
the final test data, is 0.50632. It is ranked 17*" on the leaderboard, with score
only 0.02947 points worse than the best performing system.

6 Conclusions

The approach that we proposed for this JRS Data-Mining Challenge is efficient
and yields good results. One of its main characteristics is that it does not rely
on a complex Machine Learning approach; it rather uses a lazy learning system
inspired by Information Retrieval techniques. In particular, this challenge offered
us an opportunity to emphasize the interest of using vectorization to build com-
pact yet precise vector representation of the data in this data-mining framework.
Thanks to this representation, the resulting system is very fast while yielding
good results.

Many improvements could be done in order to achieve better scores. In par-
ticular, one remaining problem was to decide where the list of potential classes
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provided by CombMNZ should be cut. As we have shown, this choice has a major
impact on the results; indeed, if the optimal cut-off value had been chosen for
each test object, the results obtained would have reached 0.69. The choice of the
evaluation measure (simple f-measure) has made this cut-off step somewhat ar-
tificially important regarding the task. Other evaluation measures like the mean
average precision (mAP) could have provided a more flexible and informative
framework.
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