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ABSTRACT

In this paper, the emulation environment named Hardware
Discrete Channel Emulator (HDCE) has been developed
as a coherent framework to emulate on a hardware device
(FPGA as the implementation platform in the verification)
and simulate on a computer the effect of an Additive White
Gaussian Noise (AWGN) in a base band channel. The
HDCE is able to generate more than 180 M samples per
second for a very low hardware cost, which has been
achieved in an efficient architecture. Using the HDCE, the
performance evaluation of a coding scheme for a BER of
10-9 requires only one minute of emulation time.

KEYWORDS: Channel emulation, Additive White
Gaussian Noise, BER/FER performance evaluation,
Monte-Carlo simulation, Synthesis, VHDL.

1. INTRODUCTION

Advanced digital wireless communication systems often
require an appropriate trade-off between complexity and
performance of an efficient iterative decoder design. In
practice, from the floating point to the fixed-point
hardware description, many parameters (reliability
message length, digital wordsize, rounding and
quantization operations, etc.) should be jointly optimized.
However, these parameters interact in a non-linear way and
the selection of the optimal algorithm is a very high time-
consuming task. Usually, the formal expression of Bit
Error Rate (BER) or the Frame Error Rate (FER)
expressed in [1] has been used to predict the performance
of the system. The conventional solution is the Monte-
Carlo simulation that evaluates the BER, which gives an
estimation of the error correcting capability of the decoder.

The Monte-Carlo simulation method is traditionally
performed by software programs. With this approach, a
FER around 10-8 requires one or two weeks of simulation.
To speed up these very long simulations, some software

approaches are proposed, such as, a reduced Monte-Carlo
simulation method [2] that re-runs only erroneous
codewords obtained from an initial “classical” Monte-
Carlo simulation. We then propose a technique called the
distance-based method which is based on the direct
evaluation of a distance between the soft output of the sub-
optimal decoder and the soft output of a reference decoder
[3]. Although these methods reduce the simulation time,
the software based execution (for instance, executing
applications on a conventional CPU cluster) is still
infeasible due to the high power consumption and physical
space cost. Consequently, we have turned our attention to
the hardware accelerator based simulation.

In our previous works [4, 5, 6], as well as in the works of
Dong-U Lee et al. [7, 8], the hardware emulation leads to a
significant speed-up factor (from a few hundreds to a few
ten-thousands) in terms of simulation time. Those designs
are based on the realization of a normal random variable
by using the Box Muller method [9], the Wallace method
[10], or Box Muller and Centre-Limit theorem. The
normalized variable is then multiplied by the variance and
quantified. In this paper, the proposed approach is to
directly generate the quantified Gaussian variable by the
application of the alias method [11]. We denote the
conception of a hardware channel emulator, called HDCE
for Hardware Discrete Channel Emulator. The HDCE aims
at emulating the effect of a base band discrete channel and
has several properties: high accuracy, high speed (more
than 180 M samples per second) and also the capacity of
seamless switching from hardware emulation to software
simulation and vice-versa. The last feature will allow us to
combine a reduced Monte-Carlo simulation method [3]
and hardware emulation, thus giving a set of very efficient
and complementary methods to perform the optimization
of decoders. Since the Gaussian channel is widely
employed as the universal discrete channel, the proposed
HDCE has been dedicated for an Additive White Gaussian
Noise (AWGN) channel. Even though, the HDCE still
satisfies different discrete channel models. It only requires
its user to focus on the adaptation of distributions for the
channel specification.



This paper is divided into seven sections. First, the discrete
Gaussian channel model is depicted in Section 2. Then, the
method of Gaussian random variable generation is
presented in Section 3. Section 4 presents the architecture
of the HDCE. The applications of the HDCE are showed
in Section 5. In Section 6 we demonstrate the experimental
result of the HDCE and give the conclusion in the final
section.

2. GAUSSIAN CHANNEL MODEL

According to the Noisy Channel Coding theorem
developed by C. E. Shannon in 1948 [12], a binary source
generates bits that are encoded, modulated and affected by
a noise in the channel. In our design, we directly consider
the AWGN channel combined with the Analog-to-Digital
Converter (ADC), as shown in Figure 1.
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Figure 1. Model of the Channel

A signal of amplitude O (Offset) is sent through a
Gaussian channel. The received signal is then x = O + w,
where w is a realization of a Gaussian random variable of
zero mean and variance o, derived from Normal
distribution theorem, the probability of an observation
received from a Gaussian channel is,
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Signal x is then quantized on ¢ bits according to the
following three equations:
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where sat(a, b) = a while a belongs to [-b, b], otherwise,
sat(a, b) = sign(a)*b. R is the interval dynamic range of
the quantization (data are quantized between [-R, R]).
According to (1), with —2/" +1<a<29" —1, if xp = a,
then:
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Thus, P(xQ = a) for =2 +1<a<2%"'~1 can be
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Similarly, for a = amax = 2qg-1-1, we obtain:
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We propose a component to directly generate the
quantized version of the Probability Density Function
(PDF). The Gaussian random variable generator is
presented in the following section.
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3. GAUSSIAN RANDOM VARIABLE
GENERATION

The main aspect of the Gaussian channel emulator is the
generation of Gaussian random variable. The method is
conventionally achieved by the transformation of a
uniformly distributed random variable in a non-uniformly
distributed random variable. In the literature, four well-
known methods are used: the Box-Muller method [9], the
Ziggurrat method [13], the Wallace method [10] and the
combination of Box-Muller method and Centre-Limit
theorem. Moreover, D. B. Thomas and W. Luk proposed a
non-uniform random number generator that performs
automatic customization of the distribution using a hybrid
of the piecewise linear approximations and the alias
method [14]. In our design, the alias method which is
detailed in following is also employed for the Gaussian
random variable generation.



3.1. The alias method

The alias method was initially proposed by A. J. Walker in
[14]. Briefly speaking, this method allows to transform a
uniform distribution Pu of natural numbers between [0,
2711 in a non uniform distribution Pn of natural numbers
between [0, 2-1], where for all elements i of [0, 29-1],
Pn(X = i) is a multiple of 2" It can be described in two
stages:

In the first stage, the uniform distribution Pu of integer
between [0, 2q+l—1] is split into two independent uniform
distributions Ps, and Prv, where Ps, belongs to [0, 27-1]
and Prv belongs to [0, 2'-1];

In the second stage, a test is performed on Prv. while Prv
< Threshold(Ps,), then the system output is Psy. Otherwise,
the system produces an alternative value given by Ps; =
alias(Psg). The output distribution is then defined by the
value of the two tables Threshold table (size 2%x [-bit
words) and alias_value (size 2% g-bit words). As the two
tables are always used at the same address Ps,, they can be
merged into a generic alias_table of 29 words of size [+q
bits.

In a more general case, we obtain,
29-1
threshold (a) + Z T (alias(p) = a).(2l —threshold(p))

— p=0
Pioa= i ©

where T(alias(p)=a) equals [ while alias value(p) = a, 0
otherwise. From the alias table, the PDF of the generated
random variables can be computed.

3.2. Generation of the alias table

The construction of the alias table to obtain a given PDF is
not a trivial problem and we have already tried several
methods to find an optimal solution. The proposed method
separates the problem of quantification of the initial PDF
and the problem of the construction of the alias table.

Let X be a random variable taking its values in the set [0,
29-1], X is characterized by its PDF {P(X=i), i = 1...2q-1}.
The first step is to quantize the PDF of X with ¢+/ bits of

precision to obtain an approximated random variable X .
The direct quantization gives:

PCE =i)=27D| Py = 1297 405

E

where LxJ represents the highest integer smaller than x.

Unfortunately, with this method, we have no guaranty of
29-1 .
ZP (X =i)=1. In fact, due to quantization effect, the
i=0

sum can have p quantums & = 2"’ below or above /. In
this case, a post-processing is performed to increase or
decrease O.in such a way that the summation of p
probability values remains at value /. The p values are
chosen to minimize the quantization error.

4. ARCHITECTURE

The architecture of the HDCE is composed of two blocks,
one to generate the pseudo-random uniform variable using
Linear Feedback Shift Register (LFSR) [15], the other to
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Figure 2. Generation of a sample

translate the uniform random variable into a non uniform
random variable using the alias method. To obtain a
sample of a particular channel realization, as shown in
Figure 2, several parameters should be indicated to the
hardware,

- The number of quantization bits ¢ of the received signal.

- The internal precision / of the alias table.

- The number N of different PDF implemented.

- The index of the PDF required to generate the sample.

Architectures of these blocks are described in more details
in the following subsections.

4.1. LFSR

To simplify the design of the LFSR , we used a size-63
LFSR that has a Repetition Period (RP) of RP=263-1.
Using the HDCE at a frequency of /00 MHz, the time
before a repetition is then equal to:
2% -1 8.10"
108 10%
Note that g+/ 63-bit LFSR works simultaneously to
generate g+/ binary RV, the initial state of the g+/ LFSR
should be different, and ideally, uniformly spread among
the RP of the LFSR.
Let S(k) (62 DOWNTO 0) be the state of the LFSR at time
k, than, at time k+1, the state S(k+1) will be:
S(k +1)(0) =(S(k)(62) @ S(k)(61))
Sk +1)(621) =(S(k)(61:0)

=8.1010s =2400 years  (10)

(11)

For more information on LFSR, please refer to [16]. A
simplified architecture of the LFSR is given in Figure 3.



en *
FIFO 62 R rv_out
r l+q
read_seed
load_seed
input_seed
<

Figure 3. Architecture of the LFSR

The signal en allows enabling the use of the First In First
Out (FIFO) (62) and the final register. When en = 0, the
contents are frozen. The signal load seed allows entering a
new seed in the LFSR. The multiplexer controlled by
signal load_seed inputs (S(61) XOR S(62)) to the FIFO in
the normal mode (i.e. load seed = 0). In the load seed
mode (load seed=I), it inputs directly the input
input_seed. In this later mode, the LFSRs are then
reinitialized with the new seed in exactly 63 cycles.

Finally, the signal read seed allows to feedback directly
FIFO (62) to the input of the FIFO. Thus, in 63 cycles, the
63 values of the LFSR are sent to the output via rv_out.
Moreover, the final state after 63 cycles is equal to the
initial state: the data have only performed a cyclic rotation.

4.2. Direct computation of the LFSR seed

To replay the simulation, the rehabilitation of former
random variable is needed. Thus, here, we present an
algorithm for the direct computation of the LFSR seed.

The LFSR is a linear structure, i.e. if S(k) = A(k) + B(k),
then, for all p, S(k+p) = A(k+p) + B(k+p). The state of the
LFSR can be written as:

S(k)= ZS(k)(i)U,-(O) (12)

where S(k)(i) is the i™ component of binary vector S(k) and
U;(0) is an unitary vector of size 63 that contains a single
non zero value at position i considered at time k=0, i.e.,
Ui0)() = 0 if j=i and Uy(0)(i) = 1.

By using the linearity of the LFSR structure, for any p>0,
we can directly compute the state S(k+p) of the LFSR at
time k+p as a function of the vector Ujp). Then, the
computation of S(k+p) requires only the XOR of 63
vectors.

The question that now arises is how to compute U;(p) in a
simple way. Let us first assume that p is a power of 2, i.e.,
p=2k. For k=0, Uy(I) is computed using (13). Then, by

recursion, assuming that the U;(2k), j=0..62 are known for
a given k, then, for j=0 ... 62, U,(ZkH ) are computed using:

62
Ut = U +29 =3 U,25002%)  (13)
i=0

62
In the general case, pzzakzk . Let p(r) be the partial
k=0

-
SUm p(r) = Zak 2%, then Ujp(r+1)) can be computed
k=0
recursively from »=0to 61:
If 4y =0, then U(p(r+1)) = U(p(+))
62
If a1=1, then Uyp(r+1)) = YU ,(pr)(HU; (2
i=0
To sum up, it is possible, at a cost of 63> = 4048 63-bits
XOR, to compute the S(k+p) for any S(k) and any p. This
algorithm facilitates the computation of the LFSR seed
with a given number of cycles and an initial seed.

4.3. Alias method

With the generation of a pseudo-random uniform variable
thanks to the LFSR, the translation of the uniform into a
non uniform random variable will be accomplished with
the alias method. After the construction of the alias table as
explained in Section 3, the alias method is simple and can
be expressed in the following few pseudo-code words.

Input: two uniform random variables S; (on g
bits) and rv (on 1 bits).

Output: “alias(S0)”, while threshold(S0)< rv,
“S0”, otherwise.

To allow for a high clock frequency, even when / = 32 (i.e.
if a 32-bits comparator is required), we have defined a
pipelined structure which is shown in Figure 4.

I 49
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Figure 4. Architecture of the Alias Method



Firstly, the signal index denotes the index of the PDF
required to generate the sample, and the signal rv_out is
the uniform variable output of LFSR. The signal en
follows the pipeline in order to be synchronized with the
output of the HDCE. The pipeline structure consists of
three phases: the two variables, threshold fetched from
alias table and »v_out, are registered in the first phase; then,
the second phase executes the comparison in every &8 bits;
at last, the determination will be done. The reconfiguration
of the distributions in the hardware is carried out by re-
writing the alias table. It allows the system to play several
testing scenarios without the need of synthesis, place-route
and configuration of the FPGA. In our design, the alias
tables are stocked as RAM with size of ([+¢q)x 24,

5. Applications

In this section, we first present two practical applications
where the HDCE has been employed as a tool for the
design and the test of Low Density Parity Check (LDPC)
decoders. We then present other possible application
scenarios.

5.1. Test of an LDPC code architecture

Due to the linearity of the LDPC decoder, we first consider
an ‘all zero codeword” with a Binary Phase-Shift Keying
(BPSK) transmission on an AWGN channel. First, we pre-
compute an alias table for each required SNR value. These
alias tables are stored in a ROM and the index signal
addresses the alias table corresponding to the required
SNR values.

Index
HDCE

Channel
A\

Deserializer

Frame

1]
LDPC
Decoder

BER

\/

v Result

Compute

Errors FER

\ /

» SNR

Figure 5. All Zero Codeword Model

Figure 5 shows the all zero codeword model for the test of
FER or/and BER. In the compute errors block linked with
the decoder output, each non-zero value is counted as a bit
error. With the bit error, the frame error is easily deduced
and the index (SNR) is incremented when a maximum
number of frame errors is reached. This block is low cost
and easy to design. The test patch (the HDCE and the
compute errors block) can be included as a part of a
decoder chip or IP for built-in SNR estimation and testing
purposes at a low area cost. It would take less than 2 % of
the area of a DVB-S2 LDPC decoder [17].

In the second application, the goal is to test the
performance of the LDPC codes in a communication
model. In Figure 6, the codeword from the encoder is sent
serially to emulate a BPSK modulation on the AWGN
channel. This bit is concatenated with the SNR value to
address the correct alias table. One alias table is generated
for each signal value (-1 and +1) and for each SNR value,
e.g. SNR from 0 to 2dB by step of 0.1, with a BPSK
transmission requires 20<2 alias table. The FIFO stores
the source words until the codeword is decoded. Then the
compute errors block compares the two words and deduces
bit errors. The same test model can be used for a non
binary LDPC codes.

| Source |—>| LDPC Encoder |

Deserializer

v

LDPC decoder

Yy

Compute
Errors

» SNR

Y

" FER

» BER

Figure 6. Communication System Model
5.2. Other applications
The previously described models have been used to test

the LDPC encoder and decoder, but it also suits any other
error control codes.



Additionally, in terms of channel emulation, channels other
than AWGN can be also emulated. The Rayleigh fading
channel is a reasonable model to simulate the effect of
heavily built-up urban environments on terrestrial wireless
communication. Usually, the Rayleigh channel can be built
from two uncorrelated variables: Y= R.X + G where R is a
variable with Rayleigh distribution, G is a variable with
Gaussian distribution, X the transmitted signal and Y the
received signal.

The HDCE can be used to emulate at high frequency a
Poisson distribution, exotic distribution, or any required
discrete distribution. It is also possible to manage on the
fly distribution evolution with the use of the index as
shown in the applications.

6. EXPERIMENTAL RESULT

6.1 Complexity & Performance of the HDCE

The synthesis of the HDCE has been completed for
different FPGA targets. Table 1 provides the result
obtained for two platforms of Xilinx kits. The LFSRs have
been assigned in dual port RAM in terms of Look Up
Tables (LUT) by the synthesis tool. Substantially, the
complexity is evaluated as the number of LUT.

Table 1. Complexity & Performance
of the HDCE for Several Sets of Parameters

Virtex2P LUTs as LUTs as Utilization Felock max
Xc2vp2 logic RAM Of LUTs (Mhz)
N=1, ¢g=3, 94 114 7% 300
=16
N=2, g=6, 130 440 20% 294
=16
N=2, g=6, 224 760 35% 284
=32
N=8, g=6, 344 2584 104% 232
=32
N=64, 1194 15500 592% 183
q=6, =24
Virtex5 LUTs as LUTs as Utilization Felock max
Xc5vIx30 logic RAM Of LUTs (Mhz)
N=1, ¢g=3, 49 57 1% 487
=16
N=2, g=6, 49 110 1% 441
=16
N=2, g=6, 82 190 1% 441
=32
N=8, g=6, 124 646 4% 441
=32
N=64, 398 3870 22% 441
q=6, =24

Basically, the maximum frequency of the HDCE is almost
independent of its configuration. The complexity of the

HDCE depends on the parameters. In this case, if the
parameters lead to a high value of LUT used as RAM, it is
possible to impose directly the embedded RAM of the
FPGA, or eventually, an external RAM.

7.2. Accuracy of the HDCE

The evaluation of the reliability of a Gaussian channel
emulator mainly stems from the trivial difference between
empirical PDF and standard PDF. Nevertheless, observing
from a novel standpoint, the precision of the tails of the
Gaussian distribution is a good indicator of accuracy. Thus,
we evaluate our emulator through the difference of the tails.
In table 2, we give the percentage of the difference to a
reference standard PDF of a Gaussian distribution (0, 1)
for x = 20, 30, 40 and 5c with various 1 value. The Ref.
PDF represents the percentage of standard probability in
vary X, also, the Diff. denotes the difference percentage to
the Ref. PDF.

Table 2. The Difference Percentage of the Tails

X 20 30 4o S50
Ref. PDF (%) 6 0.6 0.023 3e-4
Diff. | =10 | 0.02 | 0.06 7 100
%) [T=16 | 2e-4 | 0.006 0.25 12
=24 | le6 | 3e-5 3e-4 | 0.0044

7. CONCLUSION

In this paper, we have presented a tool called HDCE for
Hardware Discrete Channel Emulator which allows
emulating the effect of a base-band Gaussian channel
directly in hardware. The HDCE was presented in 4 steps.
First, we derived the theoretical model of the HDCE, i.e.,
we have mathematically defined the expression of the PDF
of the output of the channel. Secondly, we explained how
to transform a uniform distribution to a given non-uniform
distribution thanks to the alias method. Subsequently, the
architecture of the HDCE was exhibited by two blocks, the
LFSR and the alias method. After which, the applications
of the HDCE were demonstrated and it was explained that
the HDCE was also compatible with different channel
models, other than just the AWGN channel. Finally, we
gave the evaluation of the HDCE observed by the trade-off
between complexity and performance and the accuracy.

Overall, the proposed HDCE that has been achieved in an
efficient architecture is able to emulate the effect of a base
band Gaussian channel with several properties: high
accuracy, high speed (more than 180 M sample per
second) and also the capacity of seamless switching from
hardware emulation to software simulation and vice-versa.



This last feature allows for the combining of a Reduced
Monte-Carlo Simulation method and hardware emulation,
thus, providing a set of very efficient and complementary
methods to perform the optimization of decoders.
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