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Abstract

The structure of the search space explains the behavior of multiobjective search algorithms, and helps to design well-performing
approaches. In this work, we analyze the properties of multiobjective combinatorial search spaces, and we pay a particular attention
to the correlation between the objective functions. To do so, we extend the multiobjectiveNK-landscapes in order to take the
objective correlation into account. We study the co-influence of the problem dimension, the degree of non-linearity, the number of
objectives, and the objective correlation on the structureof the Pareto optimal set, in terms of cardinality and numberof supported
solutions, as well as on the number of Pareto local optima. This work concludes with guidelines for the design of multiobjective
local search algorithms, based on the main fitness landscapefeatures.
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1. Introduction

In this paper, we study the structure of multiobjective com-
binatorial search spaces. The aim is to adapt and to enhance
the comprehensive design of multiobjective local search ap-
proaches, motivated by ana priori analysis of problem prop-
erties. The attempt of this work is to reduce the gap between
the fields of multiobjective combinatorial optimization and of
fitness landscape analysis. On the one hand,multiobjective
combinatorial optimization(MoCO) is one of the most chal-
lenging area from multicriteria decision making. Contraryto
the single-objective case, there does not exist a single optimal
solution, but a set of solutions forming thePareto optimal set.
A partial order is defined among feasible solutions, based on
the so-calledPareto dominance relation. A fundamental issue
is related to the identification of this set, or an approximation
of it for large-size and difficult MoCO problems. The decision
maker then has to select his/her most preferred solution among
this set. On the other hand,fitness landscape analysisaims to
understand the geometry of a combinatorial optimization prob-
lem in order to design more efficient search algorithms. How-
ever, there is a very little knowledge on the landscape of MoCO
problems, where an additional difficulty relies on the structure
of the Pareto optimal set. The impact of the main problem-
related properties on the behavior and the performance of mul-
tiobjective approaches is still far from being well understood.
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We here try to give a first step towards understanding the struc-
tural properties of MoCO problems.

1.1. Motivations

There exists two main classes of approximate multiobjective
search algorithms (Ehrgott and Gandibleux, 2004; Paquete and
Stützle, 2007). Their individual dynamics is directly related to
the structure of the problem under consideration, itself affected
by the problem properties. First, scalar approaches are based
on multiple scalarized aggregations of the objective functions,
but they are only able to find a subset of Pareto optimal so-
lutions, known assupported solutions. Second, Pareto-based
approaches are based on the Pareto dominance relation. How-
ever, when the size of the Pareto optimal set gets too large, an
algorithm should manipulate a limited-size solution set only.

In single-objective optimization, one of the main feature of
fitness landscape analysis is related to the number of local op-
tima, to their distribution over the search space and to the shape
of their basins of attraction. It has become clear that localop-
tima have a strong impact on the performance of search al-
gorithms. For instance, it has been shown that local optima
tend to be clustered in a ‘central massif’ for numerous com-
binatorial optimization problems, including the family ofNK-
landscapes (Kauffman, 1993). Like in single-objective opti-
mization, local optima clearly have a strong impact on the
landscape of a MoCO problem, and then on the behavior and
the efficiency of multiobjective approaches. Pareto-based lo-
cal search algorithms are designed in order to take them into
account (Paquete et al., 2007). In general, the aim of such ap-
proaches is to find a set of mutually non-dominated local op-
tima. Surprisingly, up to now, there is a lack of study on the
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number and on the distribution of local optima in MoCO. In
this work, one of our attempt is to analyze the structure of the
search space, based on a notion of local optimum. However,
local optima do not explain all the properties related to MoCO
problems. The Pareto optimal set structure by itself also affects
the behavior of multiobjective approaches. For the design of
multiobjective local search algorithms, the following questions,
related to the Pareto optimal set structure and to the numberof
local optima, are of our interest in this paper:

(i) What is the cardinality of the Pareto optimal set? Can we
intend to identify or approximate the whole set of Pareto
optimal solutions, or should we consider a mechanism to
bound the size of the approximation set?

(ii ) How many Pareto optimal solutions are supported? Is a
scalar approach able to identify or approximate “enough”
Pareto optimal solutions?

(iii ) How many local optima, in terms of Pareto dominance, are
there in the search space? Can this number be estimated?
Is a Pareto-based approach efficient according to such a
number of local optima?

A particular attention is paid to the correlation between the
objective functions. Indeed, this problem-related property is
known to largely affect the solutions of a MoCO problem (Mote
and Olson, 1991), and the behavior of search algorithms (Pa-
quete and Stützle, 2006, 2010). To this end, a set of properly-
defined problem instances, where all problem-properties can be
tuned precisely, is strongly required. Unfortunately, there is a
clear lack ofbenchmarkMoCO problems. Most existing bench-
mark instances generally neglect objective correlation, or con-
sist of two-objective problems. To the best of our knowledge,
there does not exist any reliable way to set the objective cor-
relation where more than two objective functions are involved.
The single exception should be the multiobjective quadratic as-
signment problem (Knowles and Corne, 2002), where a corre-
lation parameter allows to tune the correlation between differ-
ent pairs of objective functions, but not for all the objectives
at the same time. The remaining properties of problem size,
non-linearity and objective space dimension have been recently
considered in the family of multiobjectiveNK-landscapes, pro-
posed by Aguirre and Tanaka (2007), but the objective correla-
tion is null.

1.2. Contributions

In this paper, we conduct a fitness landscape analysis for
MoCO, based on the multiobjective NK-landscapes with objec-
tive correlation. We study the structure of a MoCO search space
according to the following problem properties: its size, its de-
gree of non-linearity, its objective space dimension (up tofive
objective functions), and its objective correlation. We measure
different features of the search space, related to the cardinality
of the Pareto optimal set, the proportion of supported solutions,
and the number of local optima. Our results show the impor-
tance of taking the objective correlation degree into account on

the design of local search approaches. This paper extends re-
cent works on the multiobjectiveNK-landscapes with objective
correlation (Verel et al., 2011a,b). The main contributions of
this work can be stated as follows.

• First, we propose a new approach allowing to precisely
tune the correlation between multiple objective functions.
Benchmark instances are proposed for correlated multi-
objectiveNK-landscapes, and we make them available at
the following URL: http://mocobench.sf.net. Note
that our proposal can be generalized to other MoCO prob-
lems. We conduct a theoretical analysis and an experimen-
tal study to show the sharpness of the objective correlation,
between every pair of objective functions.

• Second, we study the co-influence of objective correlation,
objective space dimension and non-linearity on the prop-
erties of the Pareto optimal set by complete enumeration:
its cardinality, the proportion of supported Pareto optimal
solutions.

• Third, we show the co-influence of objective correlation,
objective space dimension and non-linearity on the num-
ber of local optima. We propose a method based on the
length of an adaptive walk to estimate this number, and
we study the number of local optima for large-size prob-
lem instances. Hence, we can give better insights on the
structure of the search space for large-size instances.

• At last, the consequences of these properties are discussed
for the design of local search algorithms. Guidelines
are provided in order to make proper choices for several
methodological classes.

The remainder of the paper is organized as follows. Section 2
deals with MoCO, fitness landscapes and multiobjective local
search. Section 3 presents a new approach for the design of
multiobjectiveNK-landscapes with objective correlation. Sec-
tion 4 deeply analyzes the Pareto optimal set structure accord-
ing to objective space dimension, degree of non-linearity,and
objective correlation. In Section 5, we study the number of
local optima for enumerable instances, we propose a method
to estimate this measure, and we put this method in applica-
tion for large-size instances. At last, the consequences ofthe
co-influence of problem size, objective space dimension, ob-
jective correlation and non-linearity on the main properties of
the search space are summarized in the last section. This dis-
cussion is completed with multiple insights and guidelineson
the design of multiobjective local search algorithms, together
with open research directions.

2. Local search and fitness landscapes for multiobjective
combinatorial optimization

This section introduces definitions for multiobjective combi-
natorial optimization (MoCO), and discusses fitness landscapes
as well as the design of local search algorithms in such a con-
text. Table 1 summarizes the main notations used in the paper.

2



Table 1: Main notations used in the paper.

Notation Meaning
X set of feasible solutions in the decision space
Z set of feasible outcome vectors in the objective space
XPO set of Pareto optimal solutions
PLO a Pareto local optimum solution
XPLO set of Pareto local optima
XS PO set of supported Pareto optimal solutions

2.1. Multiobjective combinatorial optimization

A MoCO problem can be defined by a set ofM ≥ 2 ob-
jective functionsf = ( f1, f2, . . . , fM), and a (discrete) setX of
feasible solutions in thedecision space. LetZ = f (X) ⊆ IRM

be the set of feasible outcome vectors in theobjective space.
In a maximization context, a solutionx′ ∈ X is dominated by
a solutionx ∈ X, denoted byx′ ≺ x, iff ∀i ∈ {1, 2, . . . ,M},
fi(x′) ≤ fi(x) and∃ j ∈ {1, 2, . . . ,M} such thatf j(x′) < f j(x). A
solutionx⋆ ∈ X is said to bePareto optimal(or efficient, non-
dominated), if there does not exist any other solutionx ∈ X
such thatx⋆ ≺ x. The set of all Pareto optimal solutions is
called thePareto optimal set(or theefficient set). Its mapping
in the objective space is called thePareto front. A possible ap-
proach in MoCO is to identify a minimal complete Pareto opti-
mal set, here denoted byXPO, i.e. for each point from the Pareto
front, a single Pareto optimal solution in the decision space is
considered, even if there could be more than one.

Generating the entire Pareto optimal set is often infeasible for
two main reasons. First, for most MoCO problems, the number
of Pareto optimal solutions is typically exponential in thesize
of the problem instance (Ehrgott, 2005). In that sense, most
MoCO problems are said to beintractable. Second, deciding
if a feasible solution belongs to the Pareto optimal set is NP-
complete for numerous MoCO problems (Serafini, 1987), even
if none of its single-objective counterpart is NP-hard. There-
fore, the overall goal is often to identify a good Pareto set ap-
proximation. To this end, heuristics in general, and evolution-
ary algorithms in particular, have received a growing interest
since the late eighties. Multiobjective heuristics still constitute
an active research area (Deb, 2001; Ehrgott and Gandibleux,
2004).

2.2. Multiobjective fitness landscapes

A neighborhood operatoris a functionN : X → 2X that
assigns a set of solutionsN(x) ⊂ X to any solutionx ∈ X.
The setN(x) is called theneighborhoodof x, and a solution
x′ ∈ N(x) is called aneighborof x. In single-objective com-
binatorial optimization, a fitness landscape can be defined by
the triplet (X,N , h), whereh : X −→ IR represents the fitness
function, that can be pictured as theheightof the corresponding
solutions. Each peak of the landscape corresponds to a localop-
timum. In a single-objective maximization context, alocal op-
timumis a solutionx⋆ ∈ X such that∀x ∈ N(x⋆), h(x) ≤ h(x⋆).
The efficiency of local search algorithms has been shown to be

related to the number of local optima for the problem under
study, and to their distribution over the landscape (Merz, 2004).

In MoCO, given that Pareto optimal solutions are to be found,
the notion of local optimum has to be defined in terms of Pareto
optimality. Let us define the concepts of Pareto local optimum
and of Pareto local optimum set. For more details, refer to Pa-
quete et al. (2007). A solutionx ∈ X is a Pareto local opti-
mum(PLO) with respect to a neighborhood structureN if there
does not exist any neighboring solutionx′ ∈ N(x) such that
x ≺ x′. The Pareto local optimum setXPLO ∈ X is the set
of whole PLO. A Locally non-dominated set A∈ X with re-
spect to a neighborhood structureN is a set of mutually non-
dominated solutions such that∀x ∈ A, ∀x′ ∈ (N(x) \ A), there
exists x′′ ∈ A such thatx′ ≺ x′′. In other words, a locally
non-dominated set cannot be improved, in terms of Pareto op-
timality, by adding neighboring solutions. As a consequence, a
locally non-dominated set is a subset ofXPLO. Let us note that
a Pareto optimal solution is aPLO, and thatXPO is a locally
non-dominated set.

A multi-objective fitness landscape can be defined by the
triplet (X,N , f ), where f : X −→ IRM represents the multi-
dimensional objective function. There exists a small amount
of literature related to fitness landscape for MoCO. Borges and
Hansen (1998) study the distribution of local optima, in terms
of scalarized functions, for the multiobjective travelingsales-
man problem (TSP). Another analysis of neighborhood-related
properties for biobjective TSP instances of different structures
is given by Paquete and Stützle (2009). Knowles and Corne
(2002) lead a landscape analysis on the multiobjective quadratic
assignment problem with a rough objective correlation. Gar-
rett and Dasgupta (2007) discuss standard tools from fitness
landscape analysis to MoCO, and an experimental study is con-
ducted with fitness distance correlation. But this measure re-
quires the true Pareto optimal set to be known. Afterwards,
Garrett and Dasgupta (2009) consider the fitness landscape of
a MoCO problem as a neutral landscape, where many solutions
are incomparable. At last, in previous works on multiobjective
NK landscapes (Aguirre and Tanaka, 2007), enumerable fitness
landscapes are divided into different fronts,i.e. layers of mu-
tually non-dominated solutions, following the dominance prin-
ciples of NSGA-II (Deb, 2001). These landscapes are studied
according to the number of fronts, the number of solutions on
each front, the probability to move from one front to another,
and the hypervolume of the Pareto front. However, this study
allows to analyze only small search spaces from the single point
of view of dominance rank.

2.3. Multiobjective local search

Initial approaches dealing with MoCO were based on suc-
cessive transformations of the original multiobjective problem
into single-objective ones by means of a scalarization strategy.
Scalar approaches are generally based on a weighted-sum ag-
gregation of the objective functions, that can be defined as fol-
lows.∀x ∈ X:

fλ(x) =
M∑

i=1

λi fi(x) (1)
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whereλi > 0 for all i ∈ {1, . . . ,M}. The problem is now to
identify a (single) solution that maximizesfλ. For any given
weighting coefficient vectorλ, if x⋆ = argmaxx∈X fλ(x), then
x⋆ is a supported Pareto optimal solution (Ehrgott, 2005). Mul-
tiple weighting coefficient vectors can be iteratively defined so
that several non-dominated solutions are identified (or approx-
imated). For each scalarization, the corresponding solution is
incorporated into an approximation set, whose dominated solu-
tions are then discarded. However, in the combinatorial case,
a number of Pareto optimal solutions, known as non-supported
solutions, are not optimal for any definition offλ. A solution
x ∈ X is anon-supported Pareto optimal solutionif ( i) x ∈ XPO

(i.e. x is a Pareto optimal solution), (ii ) ∀λ ∈ IRM such that
λi > 0, i ∈ {1, . . . ,M}, x , argmaxx′∈X fλ(x′). On the contrary,
there existsupported (Pareto optimal) solutions, that are solu-
tions whose corresponding objective vectors are located onthe
convex hull of the Pareto front. The set of all supported Pareto
optimal solutions will be denoted byXS PO. As a consequence,
the proportion of non-supported solutions over the Pareto opti-
mal set has a direct impact on the ability of scalar approaches
to find a proper Pareto set approximation.

Over the years, other types of approaches were proposed.
Their internal search mechanisms are based on the explicit or
implicit use of the Pareto dominance relation, that allows to de-
fine a partial order between feasible solutions. The basic idea
is to maintain a set of solutions (typically an archive of mutu-
ally non-dominated solutions). The content of this set is then
iteratively updated with new solutions built by means of neigh-
borhood operators. The update of this set is based on a decision
that specifies which solutions to accept or to choose for the next
iteration. This process is iterated until no further improvement
is possible or another stopping condition is fulfilled. In the end,
this set corresponds to the approximation outputted by the al-
gorithm. A whole family of such local search algorithms fol-
lows this general scheme (Liefooghe et al., 2012). One of them
is the Pareto Local Search (PLS), proposed by Paquete et al.
(2007). PLS combines the use of a neighborhood structure with
the management of an archive of mutually non-dominated so-
lutions found so far. The basic idea is to iteratively improve
this archive by exploring the neighborhood of its own content
until no further improvement is possible,i.e. the archive falls in
a Pareto local optimum set. Hence, the behavior of a PLS-like
algorithm clearly depends on the number and the distribution of
PLO found along the search process. Indeed, when an approx-
imation set contains no PLO, improving solutions can be iden-
tified by exploring the neighborhood of solutions from the set.
On the contrary, when an approximation set contains a large
proportion of PLO, it becomes harder to find additional non-
dominated solutions. In general, the implicit goal of Pareto-
based approaches is to identify an approximation whose image
in the objective space is (i) close to and (ii ) well-spread along
the Pareto front. However, as the number of Pareto optimal so-
lutions is generally intractable, we often have to design specific
strategies to limit the size of the approximation set for large-
size problem instances (Knowles and Corne, 2004). As a con-
sequence, thecardinality of the Pareto optimal set also plays
a major role on the design of multiobjective local search algo-

rithms.

3. Multiobjective NK-landscapes with objective correlation

In single-objective optimization, the family ofNK-
landscapes forms an interesting model to study the influenceof
non-linearity (epistasis) on the number of local optima (Kauff-
man, 1993). In this section, we define the class ofρMNK-
landscapes, which extend the multiobjectiveNK-landscapes re-
cently proposed by Aguirre and Tanaka (2007). In our mul-
tiobjective model, the correlation between objective functions
can be precisely tuned by a correlation coefficient value. It al-
lows to study the simultaneous influence of problem size, non-
linearity, objective space dimension and objective correlation
on the main properties of multiobjective fitness landscapes. We
first introduce existing single-objective and multiobjective NK-
landscapes. Then, the construction ofρMNK-landscapes is de-
fined and the analytic proof of the correlation between objec-
tives, completed with an experimental study, are given.

3.1. NK- and MNK-landscapes

The family of NK-landscapes is a problem-independent
model used for constructing multimodal landscapes (Kauffman,
1993).N refers to the number of bits in the decision space (i.e.
the bit string length) andK to the number of bits that influ-
ence a particular bit from the string (the epistatic interactions or
degree). By increasing the value ofK from 0 to (N − 1), NK-
landscapes can be gradually tuned from smooth to rugged. The
set of feasible solutions is made of binary stringsX = {0, 1}N.
The fitness function (to be maximized)fNK : X → [0, 1) asso-
ciates to each solution a real number between 0 and 1. It can
be computed as follows: An ‘atom’ with a fixed epistasis level
is represented by a fitness componentfi : {0, 1}K+1 → [0, 1)
associated to each biti ∈ {1, . . . ,N}. Its value depends on the
value of biti and also on the values ofK other bit positions (K
must fall between 0 andN−1). In other words, there areK bits
interacting with biti. The fitnessfNK(x) of a solutionx ∈ X
corresponds to the mean value of itsN fitness componentsfi :

fNK(x) =
1
N

N∑

i=1

fi(xi , xi1, . . . , xiK ) (2)

where{i1, . . . , iK} ⊂ {1, . . . , i − 1, i + 1, . . . ,N}, and xi is the
value of biti in solutionx. According to Eq. (2), the parameter
K tunes the degree of non-linearity (epistasis). Several ways
have been proposed to set theK bits from the bit strings. Two
possibilities are mainly used: adjacent and random positions.
With an adjacent position, the nearestK bits to bit i ∈ N are
chosen (the bit string is chosen to have periodic boundaries). In
this work, we set theK bits randomly on the bit string of sizeN
in order to avoid the exploitation of adjacent positions in order
to improve the performance of algorithms (Weinberger, 1996).
Indeed, such particular interactions can introduce some bias in
the structure of the problem, which is beyond the scope of our
study.

Each fitness componentfi is specified by extension,i.e. a
numberyi

xi ,xi1 ,...,xiK
from [0, 1) is associated with each element
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(xi , xi1, . . . , xiK ) from {0, 1}K+1. Those numbers are uniformly
distributed in the range [0, 1). As a consequence, it is very un-
likely that the same fitness value is assigned to two different
solutions.

More recently, a multiobjective variant ofNK-landscapes
(namelyMNK-landscapes) has been defined with a set ofM
fitness functions (Aguirre and Tanaka, 2007).∀m ∈ {1, . . . ,M}
∀x ∈ X:

f m
NKm

(x) =
1
N

N∑

i=1

f m
i (xi , xim1

, . . . , ximKm
) (3)

The number of interactions between bitsKm (also known
asepistasis degree) can theoretically be different for each fit-
ness functionf m

NKm
with m ∈ {1, . . . ,M}. But, in their analysis,

Aguirre and Tanaka (2007) only looked at landscapes with the
same epistasis degreeKm = K for all the objective functions.
Similarly, we here analyze landscapes with the same epista-
sis degreeKm = K for all the objective functions. Each fit-
ness componentf m

i is specified by extension with the numbers
ym,i

xi ,xim1
,...,ximK

. In the originalMNK-landscapes, these numbers are
randomly and independently drawn from [0, 1). We here pro-
pose an approach to designMNK- landscapes with correlated
objective functions.

3.2. ρMNK-landscapes

First, let us defineCMNK-landscapes, where the epistasis
structure is identical for all the objectives:∀m ∈ {1, . . . ,M},
Km = K and∀m ∈ {1, . . . ,M}, ∀ j ∈ {1, . . . ,K}, imj = i j . The
fitness components are not defined independently. Indeed, the
M numbers (y1,i

xi ,xi1 ,...,xiK
, . . . , yM,i

xi ,xi1,...,xiK
), associated with each el-

ement (xi , xi1, . . . , xiK ), follow a multivariate uniform distribu-
tion of dimensionM, defined by a correlation matrixC. Thus,
the y’s follow a multidimensional distribution with uniform
marginals and the correlations betweenym,i

... s are defined by the
matrixC.

The matrixC is a correlation matrix. As a consequence, it
is a symmetric positive-definite matrix whereM(M−1)

2 numbers
can be defined. In order to limit the number of parameters,
that tune the problem instance, we define the matrixCρ = (cnp)
with the same correlation between all the objective functions:
cnn = 1 for all n, andcnp = ρ for all n , p. In this case,
we denoteCMNK-landscapes byρMNK-landscapes. Let us
note that, whenρ = 0, our model is not exactly equivalent to
the classicalMNK-landscapes proposed by Aguirre and Tanaka
(2007). Indeed fitness values are drawn independently, but the
two models are different in the epistasis structure.

For obvious reasons, it is not possible, for any MoCO prob-
lem, to have a high negative correlation between all pairs of
objective functions. Then, for theρMNK-landscapes, we can-
not construct the matrixCρ for all ρ values between [−1, 1].
Indeed,Cρ must be positive-definite:∀u ∈ IRM, utCρu ≥ 0.
So, ρ must be greater than−1

M−1 . For two-objective problems,
all the correlation coefficients in [−1, 1] are possible. How-
ever, for three-objective problems, the correlationρmust fall in
[−0.5, 1]. Of course, if one wants to study very negative correla-
tions between some pairs of objectives, it is possible to design a

matrixC that holds the condition thatC is positive-definite. To
generate random variables with uniform marginals and a speci-
fied correlation matrixC, we follow the work of Hotelling and
Pabst (1936). We first generate a (Z1, . . . ,ZM) vector following
a multi-normal distribution of means 0 and correlation matrix
R = 2 sin(π6C). Then, the valueszi = Φ(Zi) are uniformly dis-
tributed with a correlation matrixC, whereΦ is the univariate
normal cumulative density function. Note that this is not the
only way to generate a multivariate uniform distribution.

3.3. Objective correlation

The objective correlation is the correlation between solutions
in the objective space. The construction ofCMNK-landscapes
defines correlations between they’s but not directly between
the objectives. In this section, we prove by algebra that the
correlation between objectives is exactly tuned by the matrix C.
This proof is completed by a short experimental study.

3.3.1. Theoretical analysis
This section gives the relation between the matrixC which

defines theCMNK-landscapes and the objective correlation.

Proposition 1. Let C= (cnp) ∈ IRM × IRM be a correlation ma-
trix. On the class of CMNK-landscapes, the expected value of
the correlation between the objective functions n and p is given
by the coefficient cnp of the matrix C.

Proof. Let Fm = ( f m
NK(x)) be the fitness vector values of the 2N

solutions with respect to objectivem. The correlation between
the objectivesn and p is: cor(Fn, Fp) = cov(Fn,Fp)

σnσp
whereσn

andσp are the standard deviations of fitness values over the
landscape of thenth andpth objective functions.Fn (resp.Fp)
corresponds to the average value of theN vectorsFn

i (resp.Fp
j )

of fitness component values:

cov(Fn, Fp) =
1

N2

N∑

i, j=1

cov(Fn
i , F

p
j ) (4)

By definition, wheni , j, cov(Fn
i , F

p
j ) = 0 andcov(Fn

i , F
p
i ) =

cnp · σni · σpi, wherecnp is the correlation defined in the matrix
C, andσni (resp.σpi) is the standard deviation of fitness com-
ponenti. The correlation between objectivesn andp becomes:

cor(Fn, Fp) = cnp

∑N
i=1σniσpi

N2σnσp
(5)

By construction of the fitness functions, the following relation
between standard deviations standsσ2

n =
1
N

∑N
i=1σ

2
ni (resp. for

σ2
p). On average, theσni are equal to the standard deviation of

the uniform distribution on [0, 1).

E(cor(Fn, Fp)) = cnp (6)

�

Then, the expected value of the correlations between ob-
jective functions are given by the matrixC. In the ρMNK-
landscapes, the parameterρ allows to tune very precisely the
correlation between all pairs of objectives.
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3.3.2. Experimental study
In order to validate the behavior of the correlation coefficient

given by Eq. (6) experimentally, we conduct an empirical study
for N = 18 in order to enumerate the search space exhaustively.
To minimize the influence of the random creation of landscapes,
we considered 30 different and independent landscapes for each
parameter combinations:ρ, M, andK. Measures reported are
the average over these 30 landscapes. The remaining set of pa-
rameters are given in Table 2. Figure 1 gives the average value1

of the Spearman correlation coefficient according to parameters
ρ, M andK. This confirms the result of Eq. (6). Within 30 in-
stances, the correlation coefficient is very close to the expected
valueρ between all pairs of objective functions.

3.4. Discussion

To summarize, the four parameters of the family ofρMNK-
landscapes are: (i) the length of bit stringsN, (ii ) the num-
ber of epistatic linksK, (iii ) the number of objective func-
tions M, and (iv) the correlation coefficientρ. The parameter
ρ allows to tune the objective correlation very precisely. Note
that the approach proposed to tune the objective correlation can
also be applied to other MoCO problems where the objective
functions are summing objectives, share the same definition,
but are computed with different cost or profit matrices. This
is the case, for instance, of most MoCO problems presented
by Ehrgott (2005), including the multiobjective versions of the
shortest path problem, minimum spanning tree problem, knap-
sack problem and traveling salesman problem, among others.
Our approach can also be generalized to the previous attempt
made in that direction for the multiobjective quadratic assign-
ment problem (Knowles and Corne, 2002). However, here the
objective correlation can be tuned between every pair of ob-
jective functions, and note only between one arbitrary objec-
tive function with each remaining one, which is not reliablefor
problems with more than two objective functions. The source
code of the instance generator and the set of benchmark in-
stances used in the paper can be retrieved at the following URL:
http://mocobench.sf.net.

In the following, we study the influence of the problem di-
mension, the non-linearity (epistasis), the number of objective
functions and the objective correlation on the properties of the
Pareto optimal set and of Pareto local optima for theρMNK-
landscapes.

4. Analysis of the Pareto optimal set

In this section, we conduct an experimental analysis on the
ρMNK-landscapes in order to study different properties of the
Pareto optimal set (XPO): its cardinality and the proportion of
extreme supported solutions. We conduct an empirical studyfor
N = 18 so that we can identify the (exact) Pareto optimal set
by a complete enumeration of the decision space. Measures re-
ported are the average values over 30 different and independent

1For M > 2, there are several correlation coefficients. We report here the
average correlation coefficients over all the objectives.

landscapes. The parameters under investigation in this study
are given in Table 2.

4.1. Cardinality of the Pareto optimal set

Figure 2 shows the proportion of Pareto optimal solutions in
the search space according to parametersK, ρ andM of ρMNK-
landscapes. First of all, the epistatic parameterK has a low in-
fluence on the results. This is in accordance with the results
reported by Aguirre and Tanaka (2007), where it was shown
that the number of epistatic interactions is a weaker factorcom-
pared to the number of objectives. At the opposite, the objective
correlation coefficientρ modifies the number of Pareto optimal
solutions to several orders of magnitude. Indeed, the propor-
tion decreases from 10−4 for ρ = −0.9 to 10−5 for ρ = 0.9 for
two-objective problems, and from 10−1 for ρ = −0.2 to 10−5 for
ρ = 0.9 for five-objective problems. With respect to the number
of objective functions (M = 2, 3, and 5), the size increases of
several orders of magnitude withM. For a negative objective
correlation (ρ = −0.2), the proportion of Pareto optimal solu-
tions goes from 10−4 up to 10−1 , whereas it goes from 10−5 up
to 10−4 for a positive correlation (ρ = 0.9).

The influence of objective correlation on the size ofXPO is
at least as important as the objective space dimension. A lot
of solutions are Pareto optimal when the correlation is highly
negative. Now, let us suppose that we want to set, or to bound,
the size of an approximation set by 100 solutions,i.e. a pro-
portion of 4 · 10−4 solutions with respect to the search space
size forN = 18. Such a parameter setting is often used while
handling an archive of non-dominated solutions in any search
approach. For any correlation valueρ, a 100−solution approxi-
mation set always allows to store the whole Pareto optimal set
for two-objective problems. However, this is not the case for
a higher objective space dimension. For instance, forM = 5,
100 solutions suffice to store the whole Pareto optimal set for
a high objective correlation only (ρ > 0.5). In other words, for
ρ < 0.5, we cannot intend to identify all the Pareto optimal so-
lutions exhaustively by handling a 100−solution approximation
set.

To summarize, when the number of objectives increases, and
even more when the objective correlation becomes negative,the
size of the Pareto optimal set is very large, and then quicklybe-
comes intractable. In such a case, it is not reasonable to identify
the whole Pareto optimal set, and a limited-size approximation
should be considered. This first result shows the importance
to design a benchmark where the objective correlation can be
tuned precisely, even whenM > 2. Such a property should
be taken into consideration for the development of local search
methods, when the number of objectives becomes too large, and
when there is a very negative correlation between the objective
functions. A special attention should be paid to the bounding-
size mechanism of the approximation set maintained by the al-
gorithm.

4.2. Proportion of supported Pareto optimal solutions

The number of extreme supported solutions in the search
space roughly follows the number of Pareto optimal solutions.
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Table 2: Parameter setting used in the paper for the experimental analysis (30 random landscapes are created for each parameter combination:ρ, M, N andK).

Description Parameter Set of values
problem size N (see text for details)

epistasis K {2,4, 6, 8, 10}
number of objectives M {2,3, 5}
objective correlation ρ { − 0.9,−0.7,−0.4,−0.2, 0.0, 0.2,0.4, 0.7, 0.9}

such thatρ ≥ −1
M−1
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Figure 1: Average values of the objective correlation according to the parameterρ. The number of objectives isM = 2 (left) andM = 5 (right).
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Figure 2: Average ratio of the number of Pareto optimal solutions compared to the size of the search space (2N) according to parameterρ for differentK-values
(top left M = 2, right M = 5), and according to parameterK for differentM-values (bottom leftρ = −0.2, right ρ = 0.9). Notice the log y-scale and the different
y-ranges.
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The epistatic parameterK has low influence on the size. When
the objective space dimension increases, or the objective corre-
lation decreases, the number of supported solution gets higher.
The proportion of supported solutions in the Pareto optimalset
is given in Figure 3. This proportion is nearly independent
of the epistasis degree (K). But note that it may change with
a landscape using a different epistasis structure on every ob-
jective function. However, when the objective correlationin-
creases, this proportion increases. For high objective correla-
tion (ρ = 0.9), nearly all solutions become supported (this is
even the case for some instances). The same observation can
be made with respect to the number of objectives: the propor-
tion of supported solutions increases with the cardinalityof the
Pareto optimal set, but the former increases faster than thelatter.

While putting this property in relation with the design of lo-
cal search algorithms, we can conclude that scalar approaches
should become more appropriate when the number of objec-
tives is low, and when the objective correlation is high. Indeed,
in such a case, most Pareto optimal solutions are supported,so
that they correspond to optimal solutions for a weighted-sum
aggregation problem and a given setting of the weighting coef-
ficient vector.

4.3. Discussion

In this section, we analyzed the consequence of the objective
space dimension, the non-linearity, and the objective correla-

tion on the structure of the Pareto optimal set. Figure 4 shows
three examples ofρMNK-landscapes represented in the objec-
tive space. The number of objectives isM = 2, the epistasis
parameter isK = 4 and the bit string length isN = 18. The
figure gives a summary of the results in a more intuitive way.
When the objective correlation is negative, the objective func-
tions are in conflict with each other (feasible solutions arein
green). The Pareto optimal set (in red) is large. In such a case,
a local search has to find a limited-size Pareto set approximation
only, and not the whole Pareto optimal set. When the objective
correlation is null, the image of the search space in the objective
space can be represented as a multidimensional “ball”. The ob-
jective functions are independent, as previous studies based on
the MNK-landscapes (Aguirre and Tanaka, 2007). When the
objective correlation is positive, there exist few solutions in the
Pareto optimal set. Nearly all Pareto optimal solutions become
supported. Indeed, when the number of objectives is low, and
when the objective correlation is high, Pareto optimal solutions
are supported. We can conclude that scalar approaches should
become more appropriate.

Bringing those properties with the design of local search
algorithms helps to take proper decisions for several method-
ological issues. Moreover, while keeping the intensificationvs.
diversification trade-off in mind, it seems that neighboring or
variation operators promoting exploitation should be moreap-
propriate when the objective correlation is high. On the con-
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(ρ = −0.9) (ρ = 0.0) (ρ = 0.9)

Figure 4: The objective space (maximization problem) for three landscapes. The number of objectives isM = 2, the length of bit strings isN = 18, the epistasis
parameter isK = 4. From left to right, the correlation increases from negative correlation to positive correlation (ρ = −0.9, 0.0 and 0.9). Green points are random
solutions from the search space (10% of the size), red pointsare Pareto optimal solutions, and blue points are supportedPareto optimal solutions.

trary, exploration has more importance for conflicting objec-
tives, since many Pareto optimal solutions are to be found.
However, the Pareto optimal set does not cover all the search
space properties. In the next section, we focus on the properties
related to Pareto local optima.

5. Analysis of Pareto local optima

In this section, we first study the number of Pareto local op-
tima according to the objective correlation, the number of ob-
jectives and the epistasis ofρMNK-landscapes. Next, we ana-
lyze its relation with the size of the Pareto optimal set. Then, we
propose an adaptive walk that is able to estimate the number of
Pareto local optima. At last, we estimate the number of Pareto
local optima for large-size problems. The instances under study
are defined by the parameter setting given in Table 2.

5.1. Number of Pareto local optima
First, let us remind that a Pareto Local Optimum (PLO)

is a solution with no neighbor that dominates it (see Section
2.2). Figure 5 shows the average number of PLO to the size
of the search space for differentρMNK-landscapes parame-
ter settings. PLO are enumerated exhaustively forN = 18.
As the well-known result from single-objectiveNK-landscapes
(Kauffman, 1993), the number of PLO increases with the epis-
tasis degree. For instance, with an objective space dimension
M = 2 and an objective correlationρ = 0.9, the average num-
ber of PLO increases more than 30 times: from 192 forK = 2 to
6048 forK = 10. However, the range of PLO is larger with re-
spect to objective correlation. For the same epistatic degree and
number of objectives, the number of PLO decreases exponen-
tially (Figure 5, top). Indeed, for an objective space dimension
M = 2 and an epistasis degreeK = 4, the average number of
PLO decreases more than 120 times: from 82, 093 for a neg-
ative correlation (ρ = −0.9) to 672 for a positive correlation
(ρ = 0.9).

This result can be interpreted as follows. Let us consider an
arbitrary solutionx ∈ X, and two different objective functions

fn, fp such thatn , p. When the objective correlation is highly
positive, there is a high probability forfn(x) to be close tofp(x).
In the same way, the fitness valuesfn(x′) and fp(x′) of a given
neighborx′ ∈ N(x) are probably close. So, for a given solution
x such that it exists a neighborx′ ∈ N(x) with a betterfn-value,
the probability is high thatfp(x′) is better thanfp(x). More for-
mally, the probability IP(fp(x′) > fp(x) | fn(x′) > fn(x)), with
x ∈ X andx′ ∈ N(x), increases with the objective correlation.
Then, a solution has a higher probability of being dominated
when the objective correlation is high. Moreover, the probabil-
ity that a solution dominates all its neighbors decreases with the
number of objectives. Figure 5 (bottom) corroborates this hy-
pothesis. When the objective correlation is negative (ρ = −0.2),
the number of PLO changes in an order of magnitude from
M = 2 to M = 3, and fromM = 3 to M = 5. This range
is smaller when the correlation is positive. When the number
of objectives is large and the objective correlation is negative,
almost all solutions are PLO.

Assuming that the difficulty for Pareto-based search ap-
proaches gets higher when the number of PLO is large, the
difficulty of ρMNK-landscapes increases when: (i) the epis-
tasis increases, (ii ) the number of objective functions increases,
(iii ) the objective correlation is negative, and its absolute value
increases. Section 5.4 will precise the relative difficulty related
to those parameters for large-size problem instances.

5.2. Estimating the cardinality of the Pareto optimal set?

When the number of Pareto optimal solutions is too large, it
becomes impossible to enumerate them all. A search approach
should then manipulate a limited-size solution set only during
the search. The cardinality of the Pareto optimal set has been
shown to play a major role in the design of multiobjective local
search in Section 4.1. It would then be convenient to approx-
imate the size of the Pareto optimal set from the number of
PLO. Figure 6 shows the scatter plot of the average size of the
Pareto optimal setvs. the average number of PLO in log-scales.
Points are scattered over the regression line with the Spearson
correlation coefficient of 0.82, and the regression line equation
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Figure 5: Average number of PLO to the size of the search spaceaccording to parameterρ for differentK-values (top leftM = 2, right M = 5), and to parameterK
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is log(y) = a log(x) + b with a = 1.059 andb = −6.536. For
such a log-log scale, the correlation is low. It is only possible to
estimate the cardinality of the Pareto optimal set from the num-
ber of PLO with an order of magnitude. Nevertheless, there isa
high positive correlation between the number of Pareto optimal
solutions and the number of PLO.
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Figure 7: Scatter plot of the average density of PLO (to the size of the search
space)vs. the average length of the Pareto adaptive walk for multipleN-values.

5.3. Adaptive walk

In single-objective optimization, the length of adaptive
walks, computed by means of a hill-climber, allows to estimate
the average diameter of the local optima basins of attraction.
That is, the number of local optima can be estimated when the
whole search space cannot be enumerated exhaustively. Here,
we define a multiobjective hill-climber, and we show that the
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length of the corresponding adaptive walk is correlated with
the number of PLO. However, a word of caution regarding the
estimation by means of adaptive walks is the following: The
height of the highest peak increases with the ruggedness (K),
i.e. it decreases with the length of adaptive walks (Aguirre and
Tanaka, 2004; Mathias et al., 2000; Skellett et al., 2005; Smith
and Smith, 2000).

We define a very basic single solution-basedPareto Hill-
Climbing (PHC). At each iteration of the PHC algorithm, the
current solution is replaced by one dominating random neigh-
boring solution. As a consequence, PHC stops on a PLO. The
number of iterations, or steps, of the PHC algorithm is the
length of the Pareto adaptive walk. For theρMNK-landscapes
investigated here, we consider the1-bit-flip neighborhood op-
erator, which is directly related to a Hamming distance 1 over a
bit string solution space.

We performed 103 independent PHC executions for each
problem instance andN ∈ {8, 10, 12, 14, 16, 18}. The varia-
tion of the average length follows the opposite variation ofthe
number of PLO. In order to show the link with the number of
PLO, Figure 7 gives the scatter-plot of the average Pareto adap-
tive lengthvs. the logarithm of the average density of PLO for
difference instance sizes, as given in Table 2. The correla-
tion is strong (r = 0.997), and the regression curve equation
is: |XPLO|/|X| = C · 2aL, whereL is the average length of the
adaptive walks,C = 0.97 anda = −1.60. For anyρMNK-
landscapes parameter setting with a problem sizeN ≤ 18, the
average length of the Pareto adaptive walks can then give a
precise estimation of the average number of PLO. When the
adaptive length is short, the diameter of the basin of attraction
associated with a PLO is short. This means that the distance be-
tween PLO decreases. Moreover, assuming that the volume of
this basin is proportional to a power of its diameter, the number
of PLO increases exponentially when the adaptive length de-
creases. This corroborates known results from single-objective
NK-landscapes (Ochoa et al., 2008).

5.4. Properties vs. multi-modality for large-size problems

In this section, we study the number of PLO for large-size
ρMNK-landscapes using the length of the adaptive walk as de-
fined in the previous section. First, we analyze this number
according to the problem dimension (N ∈ {18, 32, 64, 128}).
Then, we give more insights on the problem difficulty, in terms
of PLO, with respect to objective space dimension (M) and ob-
jective correlation (ρ).

We performed 103 independent PHC executions for each
problem instance withN ≥ 18. Figure 8 shows the average
length of the Pareto adaptive walks for different landscapes ac-
cording to the parameters given in Table 2. Whatever the objec-
tive space dimension and the objective correlation, the length
of the adaptive walks increases linearly with the search space
dimensionN: L = α · N, with a slopeα < 0.33. The equation
given in Section 5.3 allows to estimate the PLO density from
the average length of the adaptive walk for small-size problems.
Let us remind that|X| = 2N. Following this estimation for large-
size instances, the density of PLO decreases exponentially:

|XPLO|/|X| = C · 2aαN, such that−0.6 < aα < 0. The coeffi-
cientaα is higher than−1, so that the number of PLO increases
exponentially:|XPLO| = C.2(1+aα)N, with 0.4 < 1+ aα < 1. We
can then reasonably conclude that the size of the Pareto optimal
set grows exponentially as well (Section 5.2). The slope of the
Pareto adaptive length increase is related to the objectivespace
dimension (M) and to the objective correlation (ρ). The higher
the number of objective functions, the smaller the slope. As
well, the higher the objective correlation, the smaller theslope.

Figure 8 (bottom) gives a qualitative comparison for given
problem sizes (N = 64 andN = 128). Let us consider an
arbitrary adaptive walk length of 10. ForρMNK-landscapes
with N = 64 andK = 4, this length corresponds approx-
imately to the following parameter tuples at the same time:
(ρ = −0.4,M = 2), (ρ = 0.3,M = 3), and (ρ = 0.7,M = 5).
As well, for N = 128 andK = 4, we have (ρ = −0.9,M = 2),
(ρ = −0.1,M = 3), and (ρ = 0.3,M = 5). Still assuming
that the efficiency of a Pareto-based local search algorithm is
closely related to the density of PLO, a problem with a small
objective space dimension but a negative objective correlation
can be more difficult to solve than another problem with many
positively correlated objectives.

5.5. Discussion
This section gives one of the first analysis related to the local

optima of a MoCO problem, based on the Pareto dominance re-
lation. We first focused on small-size problems with a study of
the number of PLO by complete enumeration. Like in single-
objective optimization, the number of PLO increases with the
degree of non-linearity of the problem (epistasis). However,
the number of objective functions and the objective correla-
tion have a stronger influence. Moreover, our results show that
the cardinality of the Pareto optimal set clearly increaseswith
the number of PLO. We proposed a Pareto adaptive walk, as-
sociated with a Pareto hill-climber, to estimate the numberof
PLO for small-size problems. Next, for large-size instances, the
length of such Pareto adaptive walk can give a measure related
to the difficulty of a MoCO problem. We show that this mea-
sure increases exponentially with the problem size. A problem
with a small number of negatively correlated objectives gives
the same degree of multi-modality, in terms of Pareto domi-
nance, than another problem with a high objective space dimen-
sion and a positive objective correlation. This feature should
be taken into account when dealing with large objective space
dimension inmany-objective optimizationproblems (Wagner
et al., 2007).

6. Summary and future works

A qualitative summary of the results from the paper is given
in Table 3. It provides a complementary view of the pre-
cise measures reported in the previous sections, and makes a
stronger link with the following local search design issues.

(i) Archiving. The approximation set manipulated by the al-
gorithm (i.e. the archive), is directly related to the cardi-
nality of the Pareto optimal set. The number of Pareto op-
timal solutions grows exponentially with the problem size,
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Figure 8: Average length of the Pareto adaptive walk according to problem size (N) for K = 4 andρ = −0.2 (top-left) and forK = 4 andM = 2 (top-right). Average
length of the Pareto adaptive walk according to objective correlation (ρ) for K = 4 andN = 64 (bottom-left) and forK = 4 andN = 128 (bottom-right).

the number of objectives and with the degree of conflict
between the objectives. Moreover, it decreases with the
non-linearity. As a consequence, the archive size should
be limited as soon as the problem under consideration is
large, and with many conflicting objectives. A review
of existing bounded archiving techniques are provided by
Knowles and Corne (2004), and more recently by López-
Ibáñez et al. (2011).

(ii ) Scalar approach. Scalar approaches are only able to
find a subset of Pareto optimal solutions, known as sup-
ported solutions. The proportion of supported solutions in
the Pareto optimal set decreases with the number of ob-
jectives, and their degree of conflict. Scalar approaches
should then be well-performing when there is few corre-
lated objectives. Of course, this always relies on the effi-
ciency of the single-objective algorithm used in the scalar
approach, and on the number of Pareto optimal solutions
that are likely to be found, or approximated.

(iii ) Pareto-based approach. The number of local optima,
measured in terms of Pareto optimality, grows exponen-
tially with the number of objectives, their degree of con-
flict, and also with the problem size. As opposed to its im-
pact on the cardinality of the Pareto optimal set, the degree
of non-linearity makes the number of Pareto local optima
grows. Therefore, if we assume that the algorithm effi-

ciency is largely influenced by local optima, as in single-
objective optimization, the performance of Pareto-based
search approaches is higher when the problem is large, and
aims at optimizing many conflicting objective functions.
However, the performance quality of such approaches is
with no doubt associated with an increase of the computa-
tional cost, particularly when a time-consuming archiving
technique is used to bound the approximation set. This
result supports previous conclusions from Paquete and
Stützle (2006), where an experimental analysis focused on
algorithmic components is conducted on the biobjective
QAP.

Of course, other transversal views of Table 3, basede.g.on the
problem properties, are also possible. The summary attempts to
give a “big picture” of the multi-dimensional features that make
local search algorithms efficient for the problem under study.
All these results show that no expectation on the performance
of multiobjective local search algorithms can be drawn without
taking the problem properties into account very precisely.In-
deed, it has now become clear that the number of objectives is
one of the key issue to explain a problem complexity (Wagner
et al., 2007), but we also pointed out that the objective corre-
lation is at least as important. Multiobjective fitness landscape
analysis plays a central role to explain the performance of local
search algorithms, and to design more efficient methods, that
suit better the problem features.
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Table 3: Guidelines for the design of multiobjective local search algorithms.

Landscape features Problem properties Suggestion for the
N K M ρ design of local search

Cardinality of the Pareto
optimal set

+ limited-size archive
− unbounded archive

Proportion of supported
solutions

+ high efficiency of scalar approach
− low efficiency of scalar approach

Number of Pareto local
optima

+ low efficiency of Pareto approach
− high efficiency of Pareto approach

A similar study, as the one leaded in the paper, would allow to
better understand the structure of the landscape for other multi-
objective combinatorial optimization problems. Moreover, ad-
ditional work is required in order to compute, or rather estimate,
the impact of the problem size on the proportion of supported
solutions. Another perspective is to study the influence of the
epistatic interactions, possibly defined with a different structure
on every objective function, on the number of Pareto optimal
solutions, and the proportion of supported solutions. Indeed,
as studied originally by Aguirre and Tanaka (2007), a differ-
ent epistasis structureper objective may change significantly
the features of the landscape. At last, we know that the Pareto
optimal set structure, as well as the number and the distribu-
tion of local optima have a strong impact on the performance
of multiobjective search algorithms, but it is not yet clearhow
they exactly affect the search. The next step is to more pre-
cisely classify the relationship between problem structure and
algorithm behavior. For sure, this open issue will constitute one
of the main challenge in the emerging field of fitness landscape
analysis for multiobjective combinatorial optimization.
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Paquete, L., Stützle, T., 2009. Clusters of non-dominatedsolutions in multiob-
jective combinatorial optimization: An experimental analysis. In: Multiob-
jective Programming and Goal Programming. Vol. 618 of Lecture Notes in
Economics and Mathematical Systems. Springer, pp. 69–77.
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