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Abstract

The structure of the search space explains the behavior tibimjective search algorithms, and helps to design wetfgrming
approaches. In this work, we analyze the properties of ohjiictive combinatorial search spaces, and we pay a partigiiention
to the correlation between the objective functions. To dove® extend the multiobjectivlK-landscapes in order to take the
objective correlation into account. We study the co-infleeaf the problem dimension, the degree of non-linearitythmber of
objectives, and the objective correlation on the struotditbe Pareto optimal set, in terms of cardinality and nundieupported
solutions, as well as on the number of Pareto local optimas Wbrk concludes with guidelines for the design of multexijve
local search algorithms, based on the main fitness land$eapges.

Key words: multiple objective programming, combinatorial optimipat, local search, fitness landscape analysis, Pareto aptim
set, Pareto local optima

1. Introduction We here try to give a first step towards understanding the-stru
tural properties of MoCO problems.
In this paper, we study the structure of multiobjective com-
binatorial search spaces. The aim is to adapt and to enhang€l. Motivations

the comprehensive design of multiobjective local search ap There exists two main classes of approximate multiobjectiv
proaches, motivated by anpriori analysis of problem prop-  search algorithms (Ehrgott and Gandibleux, 2004; Paquete a
erties. The attempt of this work is to reduce the gap betweeRiiitzle, 2007). Their individual dynamics is directlyateld to
the fields of multiobjective combinatorial Optimizationdiﬂf the structure of the problem under Consideration’ itsedfched
fitness landscape analysis. On the one handltiobjective by the problem properties. First, scalar approaches amdbas
combinatorial 0pt|m|zat|0r(MOCO) is one of the most chal- on muitipie scalarized aggregations of the Objective m
lenging area from multicriteria decision making. Contrémy byt they are only able to find a subset of Pareto optimal so-
the single-objective case, there does not exist a singienapt  |ytions, known assupported solutions Second, Pareto-based
solution, but a set of solutions forming tRareto optimal set  approaches are based on the Pareto dominance relation. How-
A partial order is defined among feasible solutions, based ogyer, when the size of the Pareto optimal set gets too large, a
the so-calledPareto dominance relationA fundamental issue algorithm should manipulate a limited-size solution seyon
is related to the identification of this set, or an approxiorat In single-objective optimization, one of the main featufe o
of it for large-size and diicult MOCO problems. The decision fitness landscape analysis is related to the number of Igsal o
maker then has to select fiier most preferred solution among tima, to their distribution over the search space and toliaps
this set. On the other hanfitness landscape analysi¥ms to  of their basins of attraction. It has become clear that logal
understand the geometry of a combinatorial optimizati@bpr tima have a strong impact on the performance of search al-
lem in order to design morefiecient search algorithms. How- gorithms. For instance, it has been shown that local optima
ever, there is a very little knowledge on the landscape of MoC tend to be clustered in a ‘central massif’ for numerous com-
problems, where an additionalfficulty relies on the structure pjnatorial optimization problems, including the family NK-
of the Pareto optimal set. The impact of the main pr0b|em1andscapes (Kdtman, 1993). Like in single-objective opti-
related properties on the behavior and the performance bf mumijzation, local optima clearly have a strong impact on the
tiobjective approaches is still far from being well undecst.  |andscape of a MoCO problem, and then on the behavior and
the dficiency of multiobjective approaches. Pareto-based lo-
- . ' o cal search algorithms are designed in order to take them into
ami’:f‘fizdf‘ifgsf:gzzj}f;i’;‘;f‘;;e(frzéﬁs?_?:ftg%”gxge')' account (Paquete et al., 2007). In general, the aim of such ap
laetitia.jourdan@inria.fr (Laetitia Jourdan), ’ proaches is to find a set of mutually non-dominated local op-
clarisse.dhaenens@lifl.fr (Clarisse Dhaenens) tima. Surprisingly, up to now, there is a lack of study on the
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number and on the distribution of local optima in MoCO. In the design of local search approaches. This paper extends re
this work, one of our attempt is to analyze the structure ef th cent works on the multiobjectivd K-landscapes with objective
search space, based on a notion of local optimum. Howevecprrelation (Verel et al., 2011a,b). The main contribusiarf
local optima do not explain all the properties related to MoC this work can be stated as follows.

problems. The Pareto optimal set structure by itself afects _ _ )

the behavior of multiobjective approaches. For the design o ® First, we propose a new approach allowing to precisely

multiobjective local search algorithms, the following gtiens, tune the correlation between multiple objective functions
related to the Pareto optimal set structure and to the nuofber Benchmark instances are proposed for correlated multi-
local optima, are of our interest in this paper: objectiveNK-landscapes, and we make them available at

the following URL: http://mocobench.sf.net. Note
(i) What is the cardinality of the Pareto optimal set? Can we  that our proposal can be generalized to other MoCO prob-
intend to identify or approximate the whole set of Pareto lems. We conduct a theoretical analysis and an experimen-
optimal solutions, or should we consider a mechanismto  tal study to show the sharpness of the objective correlation
bound the size of the approximation set? between every pair of objective functions.

(i) How many Pareto optimal solutions are supported? Is a ® Second, we study the co-influence of objective correlation,

scalar approach able to identify or approximate “enough”  objective space dimension and non-linearity on the prop-
Pareto optimal solutions? erties of the Pareto optimal set by complete enumeration:
its cardinality, the proportion of supported Pareto optima
(iiil) How many local optima, in terms of Pareto dominance, are  solutions.
there in the search space? Can this number be estimated? ) ) o )
Is a Pareto-based approadhi@ent according to such a  ® Third, we show the co-influence of objective correlation,

number of local optima? objective space dimension and non-linearity on the num-

ber of local optima. We propose a method based on the

A particular attention is paid to the correlation betweea th length of an adaptive walk to estimate this number, and
objective functions. Indeed, this problem-related propées we study the number of local optima for large-size prob-

known to largely &ect the solutions of a MoCO problem (Mote lem instances. Hence, we can give better insights on the

and Olson, 1991), and the behavior of search algorithms (Pa-  structure of the search space for large-size instances.
quete and Stitzle, 2006, 2010). To this end, a set of prgperl
defined problem instances, where all problem-propertie®ea
tuned precisely, is strongly required. Unfortunatelyréhis a
clear lack obenchmartvoCO problems. Most existing bench-
mark instances generally neglect objective correlatiorcom-

sist of two-objective problems. To the best of our knowledge e remainder of the paper is organized as follows. Section 2
there does not exist any reliable way to set the objective COfye )5 yith MoCO, fitness landscapes and multiobjectivel loca
relation where more than two objective functions are inedlv search. Section 3 presents a new approach for the design of
T_he single exception should be the multiobjective quadest multiobjectiveNK-landscapes with objective correlation. Sec-
S|g_nment problem (Knowles and Corne, 2092)’ where a COM&on 4 deeply analyzes the Pareto optimal set structurerdeco
lation parameter allows to tune the correlation betwediedi ing to objective space dimension, degree of non-lineadi

ent pairs of objective functions, but not for all the objees e tive correlation. In Section 5, we study the number of

at the same time. The remaining properties of problem sizqq5) ontima for enumerable instances, we propose a method
non-linearity and objective space dimension have beemtiyce to estimate this measure, and we put this method in applica-

consideredin _the family of muItiobjecti\mK-Iands_cap_es, PrO- tion for large-size instances. At last, the consequencéiseof
posed by Aguirre and Tanaka (2007), but the objective atel g infiyence of problem size, objective space dimension, ob

tion is null. jective correlation and non-linearity on the main propestof
the search space are summarized in the last section. This dis
1.2. Contributions cussion is completed with multiple insights and guidelioas

In this paper, we conduct a fithess landscape analysis fc}P_e design of multiobjective local search algorithms, thge

MoCO, based on the multiobjective NK-landscapes with objecWlth open research directions.

tive correlation. We study the structure of a MoCO searckspa

according to the following problem properties: its size,de- 2. Local search and fitness landscapes for multiobjective
gree of non-linearity, its objective space dimension (ufive combinatorial optimization

objective functions), and its objective correlation. Weasigre

different features of the search space, related to the catglinali This section introduces definitions for multiobjective dzim

of the Pareto optimal set, the proportion of supported &mist  natorial optimization (MoCO), and discusses fithess laapss

and the number of local optima. Our results show the imporas well as the design of local search algorithms in such a con-
tance of taking the objective correlation degree into anton  text. Table 1 summarizes the main notations used in the paper

e Atlast, the consequences of these properties are discussed
for the design of local search algorithms. Guidelines
are provided in order to make proper choices for several
methodological classes.



related to the number of local optima for the problem under

Table 1: Main notati din th : R
able & Main notafions tsed in e paper study, and to their distribution over the landscape (Meb94).

Notation | Meaning In MoCO, given that Pareto optimal solutions are to be found,
X set of feasible solutions in the decision space the notion of local optimum has to be defined in terms of Pareto
Z set of feasible outcome vectors in the objective space optimality. Let us define the concepts of Pareto local optmu
Xpo set of Pareto optimal solutions and of Pareto local optimum set. For more details, refer to Pa
PLO a Pareto local optimum solution quete et al. (2007). A solutior € X is a Pareto local opti-
XpLo set of Pareto local optima mum(PLO) with respect to a neighborhood structuef there
Xspo set of supported Pareto optimal solutions does not exist any neighboring solutiah € A(x) such that

X < X. The Pareto local optimum seXp o € X is the set
of whole PLO. A Locally non-dominated set A X with re-
spect to a neighborhood structukeis a set of mutually non-
dominated solutions such thék € A, YX' € (N(X) \ A), there
A MoCO problem can be defined by a setMdf > 2 ob- existsx” € A such thatx’ < x”. In other words, a locally
jective functionsf = (f1, f2,..., fu), and a (discrete) seX of non-dominated set cannot be improved, in terms of Pareto op-
feasible solutions in thdecision spacelLet Z = f(X) ¢ RM timality, by adding neighboring solutions. As a conseqe@sac
be the set of feasible outcome vectors in tigective space locally non-dominated set is a subset . Let us note that
In a maximization context, a solutiosi € X is dominated by a Pareto optimal solution is BLO, and thatXpo is a locally
a solutionx € X, denoted byx' < x, iff Vi € {1,2,..., M}, non-dominated set.
fi(x) < fi(x) and3j € {1,2,..., M} such thatf;(x') < fj(x). A A multi-objective fitness landscape can be defined by the
solutionx* € X is said to bePareto optimal(or eficient non-  triplet (X, N, f), wheref : X — RM represents the multi-
dominated, if there does not exist any other solutiesne X  dimensional objective function. There exists a small amoun
such thatx* < x. The set of all Pareto optimal solutions is of literature related to fitness landscape for MoCO. Borgek a
called thePareto optimal sefor theefficient se). Its mapping Hansen (1998) study the distribution of local optima, inrtsr
in the objective space is called tRareto front A possible ap-  of scalarized functions, for the multiobjective travelisgles-
proach in MoCO is to identify a minimal complete Pareto opti-man problem (TSP). Another analysis of neighborhood-eellat
mal set, here denoted Kp0, i.€. for each point from the Pareto properties for biobjective TSP instances oftelient structures
front, a single Pareto optimal solution in the decision spiac  is given by Paquete and Stiitzle (2009). Knowles and Corne
considered, even if there could be more than one. (2002) lead a landscape analysis on the multiobjectivergtiad
Generating the entire Pareto optimal set is often infeagdsl ~ assignment problem with a rough objective correlation. -Gar
two main reasons. First, for most MoCO problems, the numberett and Dasgupta (2007) discuss standard tools from fitness
of Pareto optimal solutions is typically exponential in #ize  landscape analysis to MoCO, and an experimental study is con
of the problem instance (Ehrgott, 2005). In that sense, mosiucted with fitness distance correlation. But this measexe r
MoCO problems are said to betractable Second, deciding quires the true Pareto optimal set to be known. Afterwards,
if a feasible solution belongs to the Pareto optimal set is NPGarrett and Dasgupta (2009) consider the fitness landsdape o
complete for numerous MoCO problems (Serafini, 1987), eved MoCO problem as a neutral landscape, where many solutions
if none of its single-objective counterpart is NP-hard. /e are incomparable. At last, in previous works on multiobiject
fore, the overall goal is often to identify a good Pareto get a NK landscapes (Aguirre and Tanaka, 2007), enumerable fitness
proximation. To this end, heuristics in general, and evolst  landscapes are divided intofidirent frontsj.e. layers of mu-
ary algorithms in particular, have received a growing ies¢r tually non-dominated solutions, following the dominanciap
since the late eighties. Multiobjective heuristics stihstitute  ciples of NSGA-II (Deb, 2001). These landscapes are studied
an active research area (Deb, 2001; Ehrgott and Gandibleuggcording to the number of fronts, the number of solutions on
2004). each front, the probability to move from one front to another
and the hypervolume of the Pareto front. However, this study
allows to analyze only small search spaces from the singig po
of view of dominance rank.

2.1. Multiobjective combinatorial optimization

2.2. Multiobjective fitness landscapes

A neighborhood operatois a functionN : X — 2X that
assigns a set of solution¥(x) c X to any solutionx € X. 2.3. Multiobjective local search
The setN(x) is called theneighborhoodof X, and a solution Initial approaches dealing with MoCO were based on suc-
X' € N(x) is called aneighborof x. In single-objective com- cessive transformations of the original multiobjectivelgem
binatorial optimization, a fitness landscape can be defiryed binto single-objective ones by means of a scalarizatioriessa
the triplet (X, N, h), whereh : X — R represents the fitness Scalar approaches are generally based on a weighted-sum ag-

function, that can be pictured as theightof the corresponding  gregation of the objective functions, that can be definedhbs f
solutions. Each peak of the landscape corresponds to adpeal |ows. Vx € X:

timum. In a single-objective maximization contexipaal op- M
timumis a solutionx* € X such that'x € N(x*), h(x) < h(x*). £00=S" 1 f(x 1
The dficiency of local search algorithms has been shown to be 1) ; Y @)
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whered; > O foralli € {1,...,M}. The problem is now to rithms.
identify a (single) solution that maximizeg. For any given
weighting codficient vectord, if x* = argmaxcy fi1(X), then
x* is a supported Pareto optimal solution (Ehrgott, 2005).-Mul
tiple weighting coéicient vectors can be iteratively defined so  |n single-objective optimization, the family ofNK-
that several non-dominated solutions are identified (or@pp |andscapes forms an interesting model to study the influehce
imated). For each scalarization, the corresponding soiU§  non-linearity (epistasis) on the number of local optimayfa
incorporated into an approximation set, whose dominates SO man, 1993). In this section, we define the classBNK-
tions are then discarded. However, in the combinatoriag,cas |andscapes, which extend the multiobjectii-landscapes re-
a number of Pareto optimal solutions, known as non-supg@ortecently proposed by Aguirre and Tanaka (2007). In our mul-
solutions, are not optimal for any definition 6f. A solution  tiobjective model, the correlation between objective tiors
x € X is anon-supported Pareto optimal solutidi(i) X € Xpo  can be precisely tuned by a correlation fiméent value. It al-
(i.e. xis a Pareto optimal solution)iiY VA € RM such that  |ows to study the simultaneous influence of problem size; non
Ai > 0,i€f{l,...,M}, x # argmaxeex f1(x). On the contrary, Jinearity, objective space dimension and objective catieh
there existsupported (Pareto optimal) solutionthat are solu-  on the main properties of multiobjective fitness landscaypés
tions whose corresponding objective vectors are locateti®n first introduce existing single-objective and multiobjeetN K-
convex hull of the Pareto front. The set of all supported are |andscapes. Then, the constructiop®NK-landscapes is de-
optimal solutions will be denoted b¥spo As a consequence, fined and the analytic proof of the correlation between objec
the proportion of non-supported solutions over the Parptb 0  tives, completed with an experimental study, are given.
mal set has a direct impact on the ability of scalar appraache
to find a proper Pareto set approximation. 3.1. NK-and MNK-landscapes

Over the years, other types of approaches were proposed.the family of NK-landscapes is a problem-independent

Their internal search mechanisms are based on the explicit 9, 4el used for constructing multimodal landscapes (Faan
implicit use of the Pareto dominance relation, that allcovde- 1993).N refers to the number of bits in the decision space (
fine a partial order between feasible solutions. The basia id he pit string length) an& to the number of bits that influ-

is to maintain a set of solutions (typically an archive of mut - gce 4 particular bit from the string (the epistatic intéicas or
ally non-dominated solutions). The content of this set &nth degree). By increasing the value Kffrom 0 to (N — 1), NK-

iteratively updated with new solutions built by means ofgfiei  |5n4scapes can be gradually tuned from smooth to rugged. The
borhood operators. The update of this set is based on adeCisigat of feasible solutions is made of binary strings: {0, 1}N.

f[hat s_pecifie; which soll_Jtipns toacceptorto choo_se foréxé n The fitness function (to be maximize®)x : X — [0, 1) asso-
iteration. This process is iterated until no further imprment  .istes to each solution a real number between 0 and 1. It can
is possible or another stopping condition is fulfilled. Ie#nd, e computed as follows: An ‘atom’ with a fixed epistasis level
thls_ set corresponds to the approximation outputteq by fthe ajg represented by a fitness componént {0, 1+ — [0, 1)
gorlthm. A whole family of _such local search algorithms fol- joqociated to each bite {1,...,N}. Its value depends on the
lows this general scheme (Liefooghe et al., 2012). One afthe \5¢ of biti and also on the values & other bit positionsk

is the Pareto Local Search (PLS), proposed by Paquete et gt fall between 0 anll — 1). In other words, there ai€ bits
(2007). PLS combines the use of a neighborhood structure W'tinteracting with biti. The fitnessfuk(X) of a solutionx € X

the management of an archive of mutually non-dominated sog,regponds to the mean value oflitditness components:
lutions found so far. The basic idea is to iteratively improv

this archive by exploring the neighborhood of its own cohten

3. Multiobjective NK-landscapes with objective correlation

N

until no further improvementis possibieg. the archive falls in k() = 5 Z fi(Xis Xigs -+ Xii) 2)
a Pareto local optimum set. Hence, the behavior of a PLS-like =1
algorithm clearly depends on the number and the distribuidfo ~ where{is, ..., ik} c {1,...,i—=1,i+1,...,N}, andx is the

PLO found along the search process. Indeed, when an approxalue of biti in solutionx. According to Eq. (2), the parameter
imation set contains no PLO, improving solutions can be-idenK tunes the degree of non-linearity (epistasis). Severakway
tified by exploring the neighborhood of solutions from thé se have been proposed to set tiebits from the bit strings. Two
On the contrary, when an approximation set contains a largpossibilities are mainly used: adjacent and random positio
proportion of PLO, it becomes harder to find additional non-With an adjacent position, the nearé&stits to biti € N are
dominated solutions. In general, the implicit goal of Paret chosen (the bit string is chosen to have periodic boundaties
based approaches is to identify an approximation whoseemaghis work, we set th& bits randomly on the bit string of siZ¢

in the objective space is)(close to andi{) well-spread along in order to avoid the exploitation of adjacent positions idey
the Pareto front. However, as the number of Pareto optimal sdo improve the performance of algorithms (Weinberger, 3996
lutions is generally intractable, we often have to desigetdit ~ Indeed, such particular interactions can introduce somag ibi
strategies to limit the size of the approximation set fogéar the structure of the problem, which is beyond the scope of our
size problem instances (Knowles and Corne, 2004). As a corstudy.

sequence, theardinality of the Pareto optimal set also plays Each fitness componeiiit is specified by extension.e. a

a major role on the design of multiobjective local searcloalg number)/';(ml . from [0, 1) is associated with each element
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(%> X5 - - - X%, ) from {0, 1})¥*1. Those numbers are uniformly matrix C that holds the condition th& is positive-definite. To
distributed in the range [Q). As a consequence, it is very un- generate random variables with uniform marginals and aispec
likely that the same fithess value is assigned to twitedént  fied correlation matrixC, we follow the work of Hotelling and
solutions. Pabst (1936). We first generateA (. . ., Zy) vector following

More recently, a multiobjective variant diK-landscapes a multi-normal distribution of means 0 and correlation rixatr
(namely MNK-landscapes) has been defined with a seMof R = 2sin(zC). Then, the valueg = ®(Z) are uniformly dis-
fitness functions (Aguirre and Tanaka, 2007 € {1,...,M}  tributed with a correlation matri€, where® is the univariate
Vxe X: normal cumulative density function. Note that this is na# th
only way to generate a multivariate uniform distribution.

3.3. Objective correlation

The objective correlation is the correlation between sohst
asepistasis degrgecan theoretically be tlierent for each fit- n the objective space. The cons,truct|0| IIEIEINK—Iandscapes
defines correlations between tifs but not directly between

ness functiorf(l with me {1,..., M}. But, in their analysis, L . :
Aguirre and Tanaka (2007) only looked at landscapes with th(tahe objectives. In this section, we prove by algebra that the

. ) N . correlation between objectives is exactly tuned by the im&tr
same epistasis degr&g, = K for all the objective functions. ) . .
i . .. This proof is completed by a short experimental study.
Similarly, we here analyze landscapes with the same epista-
sis degreK, = K for all the objective functions. Each fit-

ness componerfi” is specified by extension with the numbers 3.3.1. Theoretical analysis
i ponerf™is sp y This section gives the relation between the ma@iwhich

% Xim,....Xim * In th_e originaMNK-landscapes, these numbers ar€yefines the MN K-landscapes and the objective correlation.
randomly and independently drawn from 10). We here pro- N " " )
pose an approach to desigfNK- landscapes with correlated Proposition 1. Let C = (cyp) € R™ x R be a correlation ma-

1 N
i, (0 = 5 D 06 Xy g ) 3)
i=1

The number of interactions between bKs, (also known

objective functions. trix. On the class of CMNK-landscapes, the expected value of
the correlation between the objective functions n and pusigi
3.2. pMNK-landscapes by the cogicient G, of the matrix C.

First, let us defineC MNK-landscapes, where the epistasis
structure is identical for all the objectivesm € {1,...,M},  Proof. LetF™ = (f{} (x)) be the fitness vector values of th¥ 2
Km = Kand¥m e {1,...,M}, Vj € {1,...,K}, i = ij. The solutions with respect to objectiva. The corrnelaption between
fitness components are not defined independently. Indeed, tfihe objectivesh and p is: cor(F", FP) = %UPF) where oy,

,,,,, iK,...,y)'\(f';iqlmxm), associated with each el- ando, are the standard deviations of fitness values over the
ement &, ..., X), follow a multivariate uniform distribu- landscape of the™ and pi" objective functionsF" (resp.FP)

tion of dimensionM, defined by a correlation matr@. Thus, corresponds to the average value of kheectorsF" (resp.FJP)

the y's follow a multidimensional distribution with uniform of fithess component values:

marginals and the correlations betweéhs are defined by the ;N

matrix C. nEPRy = _— ngPp

The matrixC is a correlation matrix. As a consequence, it ML = e i;COV(F' F1) )
is a symmetric positive-definite matrix whel2=2 numbers o o
can be defined. In order to limit the number of parametersBY definition, wheni # |, co((F, F?) = 0 andco\(F, FP) = _
that tune the problem instance, we define the majix (c,,) ~ Cnp* i - Tpi, Wherecyy is the correlation defined in the matrix
with the same correlation between all the objective fumstio C, @ndomi (resp.oyp) is the standard deviation of fitness com-
Cn = 1foralln, andc,, = p for all n # p. In this case, ponenti. The correlation between objectivesind p becomes:
we denoteCMNK-landscapes byMNK-landscapes. Let us
note that, whemp = 0, our model is not exactly equivalent to cor(F", FP) = cnp
the classicaMNK-landscapes proposed by Aguirre and Tanaka
(2007). Indeed fitness values are drawn independentlyhleut t By construction of the fitness functions, the following tela
two models are dierent in the epistasis structure. between standard deviations stands= & >N, o2 (resp. for

For obvious reasons, it is not possible, for any MoCO probof,). On average, they; are equal to the standard deviation of
lem, to have a high negative correlation between all pairs ofhe uniform distribution on [QL).
objective functions. Then, for theMNK-landscapes, we can-

N
Zizl OniO pi
NZO'nO'p

(5)

n p _
not construct the matric, for all p values between-[1, 1]. E(cor(F™, F¥) = Cap ©)
Indeed,C, must be positive-definite¥u € R™, u'C,u > 0.
So, p must be greater thaﬁ%l. For two-objective problems, O
all the correlation cofcients in [1,1] are possible. How- Then, the expected value of the correlations between ob-

ever, for three-objective problems, the correlajanust fallin ~ jective functions are given by the matrix. In the o MNK-
[-0.5,1]. Of course, if one wants to study very negative correladandscapes, the parameteallows to tune very precisely the
tions between some pairs of objectives, it is possible tigdess  correlation between all pairs of objectives.
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3.3.2. Experimental study landscapes. The parameters under investigation in thiky stu

In order to validate the behavior of the correlationffiagent ~ are given in Table 2.
given by Eq. (6) experimentally, we conduct an empiricatigtu
for N = 18 in order to enumerate the search space exhaustively.1. Cardinality of the Pareto optimal set
To minimize the influence of the random creation of landssape Figure 2 shows the proportion of Pareto optimal solutions in
we considered 3Q ﬁ'e_rent and independent landscapes for eaclghe search space according to parametepsandM of pMNK-
parameter combinationg, M, andK. Measures re.pgrted are landscapes. First of all, the epistatic paramétéras a low in-
the average over th_ese 30 Iands_capes. The remaining set of Ritience on the results. This is in accordance with the results
rameters are given in Tab_le 2. Flgure 1 gives the averagevalu reported by Aguirre and Tanaka (2007), where it was shown
ofthe Spearmap corrglatlon dteient according to Parameters yat the number of epistatic interactions is a weaker famiar-

p, M andK. This con_ﬂrms the re;ult of Eg. (6). Within 30 in- pared to the number of objectives. At the opposite, the dibgec
stances, the correlano_n dﬁe'ef“ IS Very clqse to the expected correlation cofficientp modifies the number of Pareto optimal
valuep between all pairs of objective functions. solutions to several orders of magnitude. Indeed, the propo
tion decreases from 1Hfor p = —0.9 to 10°° for p = 0.9 for
two-objective problems, and from 1bfor p = —0.2 to 10°° for

To summarize, the four parameters of the family™MNK-  , = 0.9 for five-objective problems. With respect to the number
landscapes are:i)(the length of bit stringsN, (ii) the num-  of objective functionsi§1 = 2, 3, and 5), the size increases of
ber of epistatic linksK, (iii) the number of objective func- several orders of magnitude witfl. For a negative objective
tions M, and (v) the correlation coécientp. The parameter correlation p = —0.2), the proportion of Pareto optimal solu-
p allows to tune the objective correlation very precisely.t?No tjons goes from 16" up to 10, whereas it goes from 1B up
that the approach proposed to tune the objective correlaéio  to 104 for a positive correlationd = 0.9).
also be applied to other MoCO problems where the objective The influence of objective correlation on the sizeXa is
functions are summing objectives, share the same definitiont |east as important as the objective space dimension. A Iot
but are computed with ffierent cost or profit matrices. This of solutions are Pareto optimal when the correlation is lyigh
is the case, for instance, of most MoCO problems presentegegative. Now, let us suppose that we want to set, or to bound,
by Ehrgott (2005), including the multiobjective versiorfstte  the size of an approximation set by 100 solutioins, a pro-
shortest path problem, minimum spanning tree problem, knamortion of 4- 10 solutions with respect to the search space
sack problem and traveling salesman problem, among othersize forN = 18. Such a parameter setting is often used while
Our approach can also be generalized to the previous attemphndling an archive of non-dominated solutions in any $earc
made in that direction for the multiobjective qUadratiCi@B'S approach_ For any correlation Va|pea 100G-solution approxi_
ment problem (Knowles and Corne, 2002). However, here thenation set always allows to store the whole Pareto optintal se
objective correlation can be tuned between every pair of obfor two-objective problems. However, this is not the case fo
jective functions, and note only between one arbitrary ©bje z higher objective space dimension. For instanceMot 5,
tive function with each remaining one, which is not reliafle 100 solutions sfice to store the whole Pareto optimal set for
problems with more than two objective functions. The sourcey high objective correlation only (> 0.5). In other words, for
code of the instance generator and the set of benchmark il’;b-< 0.5, we cannot intend to identify all the Pareto optimal so-
stances used in the paper can be retrieved at the followirg UR |ytions exhaustively by handling a 168olution approximation
http://mocobench.sf .net. set.

In the following, we study the influence of the problem di- 1o summarize, when the number of objectives increases, and
mension, the non-linearity (epistasis), the number ofcibje  even more when the objective correlation becomes negttive,
functions and the objective correlation on the propertiegh®  gjze of the Pareto optimal set is very large, and then quintly
Pareto optimal set and of Pareto local optima for (NK-  comes intractable. In such a case, it is not reasonablertifigle

3.4. Discussion

landscapes. the whole Pareto optimal set, and a limited-size approxonat
should be considered. This first result shows the importance
4. Analysis of the Pareto optimal set to design a benchmark where the objective correlation can be

tuned precisely, even whed > 2. Such a property should

In this section, we conduct an experimental analysis on thée taken into consideration for the development of localdea
pMNK-landscapes in order to studyfidirent properties of the methods, when the number of objectives becomes too larde, an
Pareto optimal set\(po): its cardinality and the proportion of when there is a very negative correlation between the diagect
extreme supported solutions. We conduct an empirical sturdy functions. A special attention should be paid to the bougdin
N = 18 so that we can identify the (exact) Pareto optimal sesize mechanism of the approximation set maintained by the al
by a complete enumeration of the decision space. Measures rgorithm.
ported are the average values over 3Bedént and independent

4.2. Proportion of supported Pareto optimal solutions

1For M > 2, there are several correlation gents. We report here the The number of extreme supported 30|Ut|0n3_ in the S?arCh
average correlation céicients over all the objectives. space roughly follows the number of Pareto optimal solion



Table 2: Parameter setting used in the paper for the expetain@nalysis (30 random landscapes are created for eaainptar combinationp, M, N andK).
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Figure 1: Average values of the objective correlation adicy to the parametegr. The number of objectives M = 2 (left) andM = 5 (right).
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Figure 2: Average ratio of the number of Pareto optimal $mhst compared to the size of the search spal¥ §2cording to parameter for differentkK-values
(top leftM = 2, right M = 5), and according to parametérfor differentM-values (bottom lefp = —0.2, rightp = 0.9). Notice the log y-scale and thefldirent

y-ranges.
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The epistatic parameté&t has low influence on the size. When tion on the structure of the Pareto optimal set. Figure 4 show

the objective space dimension increases, or the objeativec  three examples giMNK-landscapes represented in the objec-

lation decreases, the number of supported solution getehig tive space. The number of objectiveshk = 2, the epistasis

The proportion of supported solutions in the Pareto optgeal parameter i = 4 and the bit string length isl = 18. The

is given in Figure 3. This proportion is nearly independentfigure gives a summary of the results in a more intuitive way.

of the epistasis degre&]. But note that it may change with When the objective correlation is negative, the objectivect

a landscape using afti#rent epistasis structure on every ob-tions are in conflict with each other (feasible solutions iare

jective function. However, when the objective correlation  green). The Pareto optimal set (in red) is large. In such @,cas

creases, this proportion increases. For high objectiveetasr  alocal search hasto find a limited-size Pareto set apprdixima

tion (0 = 0.9), nearly all solutions become supported (this isonly, and not the whole Pareto optimal set. When the objectiv

even the case for some instances). The same observation caorrelation is null, the image of the search space in theotilig

be made with respect to the number of objectives: the propoispace can be represented as a multidimensional “ball”. Bhe o

tion of supported solutions increases with the cardinalitthe  jective functions are independent, as previous studiesdass

Pareto optimal set, butthe former increases faster thdattee ~ the MNK-landscapes (Aguirre and Tanaka, 2007). When the
While putting this property in relation with the design of lo objective correlation is positive, there exist few solagan the

cal search algorithms, we can conclude that scalar appesachPareto optimal set. Nearly all Pareto optimal solutionsobee

should become more appropriate when the number of objesupported. Indeed, when the number of objectives is low, and

tives is low, and when the objective correlation is high.ded,  when the objective correlation is high, Pareto optimal tohs

in such a case, most Pareto optimal solutions are suppaded, are supported. We can conclude that scalar approachesishoul

that they correspond to optimal solutions for a weightenfrsu become more appropriate.

aggregation problem and a given setting of the weightindg-coe

ficient vector. Bringing those properties with the design of local search

algorithms helps to take proper decisions for several ntetho
ological issues. Moreover, while keeping the intensifaatis.
diversification trade- in mind, it seems that neighboring or
In this section, we analyzed the consequence of the obgectiwariation operators promoting exploitation should be repe
space dimension, the non-linearity, and the objectiveetarr propriate when the objective correlation is high. On the-con
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Figure 4: The objective space (maximization problem) foe¢hlandscapes. The number of objectiveMis= 2, the length of bit strings idl = 18, the epistasis
parameter iX = 4. From left to right, the correlation increases from negatiorrelation to positive correlatiop & —0.9,0.0 and 09). Green points are random
solutions from the search space (10% of the size), red paiet®areto optimal solutions, and blue points are supp&aeeto optimal solutions.

trary, exploration has more importance for conflicting @bje f,, f, such than # p. When the objective correlation is highly
tives, since many Pareto optimal solutions are to be foundoositive, there is a high probability fdx(x) to be close td(x).
However, the Pareto optimal set does not cover all the seardh the same way, the fitness valuigéx’) and f,(x’) of a given
space properties. In the next section, we focus on the piieper neighborx’ € N(X) are probably close. So, for a given solution

related to Pareto local optima. x such that it exists a neighbgt € N(X) with a betterf,-value,
the probability is high that,(x’) is better tharfy(x). More for-
5. Analysis of Pareto local optima mally, the probability P{,(x) > fp(X) | fa(X) > fa(X)), with

x € X andx e N(X), increases with the objective correlation.

In this section, we first study the number of Pareto local op-Then, a solution has a higher probability of being dominated
tima according to the objective correlation, the numberksf o when the objective correlation is high. Moreover, the ptoba
jectives and the epistasis pMNK-landscapes. Next, we ana- ity that a solution dominates all its neighbors decreaststive
lyze its relation with the size of the Pareto optimal set. Mivee ~ number of objectives. Figure 5 (bottom) corroborates tlyis h
propose an adaptive walk that is able to estimate the nuniber pothesis. When the objective correlation is negajive (-0.2),
Pareto local optima. At last, we estimate the number of Baretthe number of PLO changes in an order of magnitude from
local optima for large-size problems. The instances urtiielys M = 2toM = 3, and fromM = 3to M = 5. This range

are defined by the parameter setting given in Table 2. is smaller when the correlation is positive. When the number
of objectives is large and the objective correlation is tigga
5.1. Number of Pareto local optima almost all solutions are PLO.

First, let us remind that a Pareto Local Optimum (PLO) Assuming that the diculty for Pareto-based search ap-
is a solution with no neighbor that dominates it (see Sectioproaches gets higher when the number of PLO is large, the
2.2). Figure 5 shows the average number of PLO to the sizdifficulty of pMNK-landscapes increases when) the epis-
of the search space for fthrentpMNK-landscapes parame- tasis increasesij} the number of objective functions increases,
ter settings. PLO are enumerated exhaustivelyNoe 18.  (iii) the objective correlation is negative, and its absolutee/a
As the well-known result from single-objectiiK-landscapes increases. Section 5.4 will precise the relativdilty related
(Kauffman, 1993), the number of PLO increases with the episto those parameters for large-size problem instances.
tasis degree. For instance, with an objective space dimensi
M = 2 and an objective correlatign= 0.9, the average num- 5.2. Estimating the cardinality of the Pareto optimal set?
ber of PLO increases more than 30 times: from 19Xfer 2 to When the number of Pareto optimal solutions is too large, it
6048 forK = 10. However, the range of PLO is larger with re- becomes impossible to enumerate them all. A search approach
spect to objective correlation. For the same epistaticategnd  should then manipulate a limited-size solution set onlyirdur
number of objectives, the number of PLO decreases exponethe search. The cardinality of the Pareto optimal set has bee
tially (Figure 5, top). Indeed, for an objective space disien  shown to play a major role in the design of multiobjectivedibc
M = 2 and an epistasis degr&e= 4, the average number of search in Section 4.1. It would then be convenient to approx-
PLO decreases more than 120 times: from(®3 for a neg- imate the size of the Pareto optimal set from the number of
ative correlationg4 = —0.9) to 672 for a positive correlation PLO. Figure 6 shows the scatter plot of the average size of the
(0 = 0.9). Pareto optimal sets.the average number of PLO in log-scales.

This result can be interpreted as follows. Let us consider aiRoints are scattered over the regression line with the Spear
arbitrary solutionx € X, and two diferent objective functions correlation co#ficient of 082, and the regression line equation
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Figure 5: Average number of PLO to the size of the search spez@ding to parameterfor differentK-values (top leftM = 2, right M = 5), and to parametef
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Figure 6: Scatter plot of the average size of the Pareto @ptset (to the size  Figure 7: Scatter plot of the average density of PLO (to the sf the search
of the search spacek. the average number of PLO (to the size of the searchspace)s.the average length of the Pareto adaptive walk for mulfipdealues.
space) for the 110 possible combinations of parameters. pidtdem size is

N = 18. The correlation cdBcient is 082. Notice the log-scales.

5.3. Adaptive walk

is log(y) = alog(x) + b with a = 1.059 andb = —-6.536. For
such a log-log scale, the correlation is low. It is only pbksto  walks, computed by means of a hill-climber, allows to estana
estimate the cardinality of the Pareto optimal set from ti@n  the average diameter of the local optima basins of attmactio
ber of PLO with an order of magnitude. Nevertheless, theae is That is, the number of local optima can be estimated when the
high positive correlation between the number of Paretawgdti whole search space cannot be enumerated exhaustively, Here
solutions and the number of PLO. we define a multiobjective hill-climber, and we show that the
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In single-objective optimization, the length of adaptive



length of the corresponding adaptive walk is correlatedwit [Xp o|/|X| = C - 22N, such that-0.6 < aa < 0. The coéi-
the number of PLO. However, a word of caution regarding thecientaa is higher than-1, so that the number of PLO increases
estimation by means of adaptive walks is the following: Theexponentially{Xp o = C.23+@N with 0.4 < 1+ aa < 1. We
height of the highest peak increases with the ruggedn€ss ( can then reasonably conclude that the size of the Paretoalpti
i.e. it decreases with the length of adaptive walks (Aguirre andset grows exponentially as well (Section 5.2). The slopdef t
Tanaka, 2004; Mathias et al., 2000; Skellett et al., 2005ffsm Pareto adaptive length increase is related to the objespisee
and Smith, 2000). dimension M) and to the objective correlatiop); The higher

We define a very basic single solution-badeateto Hill-  the number of objective functions, the smaller the slope. As
Climbing (PHC). At each iteration of the PHC algorithm, the well, the higher the objective correlation, the smallerslupe.
current solution is replaced by one dominating random neigh Figure 8 (bottom) gives a qualitative comparison for given
boring solution. As a consequence, PHC stops on a PLO. Theroblem sizes = 64 andN = 128). Let us consider an
number of iterations, or steps, of the PHC algorithm is thearbitrary adaptive walk length of 10. FpMNK-landscapes
length of the Pareto adaptive walk. For f@NK-landscapes with N = 64 andK = 4, this length corresponds approx-
investigated here, we consider thebit-flip neighborhood op- imately to the following parameter tuples at the same time:
erator, which is directly related to a Hamming distance rave (0 = -04,M = 2), (p = 0.3,M = 3),and p = 0.7,M = 5).
bit string solution space. As well, forN = 128 andK = 4, we have = —0.9,M = 2),

We performed 19 independent PHC executions for each(p = -0.1,M = 3), and p = 0.3,M = 5). Still assuming
problem instance an®l € {8,10,12 14,16,18}. The varia- that the dficiency of a Pareto-based local search algorithm is
tion of the average length follows the opposite variatiothef ~ closely related to the density of PLO, a problem with a small
number of PLO. In order to show the link with the number of objective space dimension but a negative objective cdivela
PLO, Figure 7 gives the scatter-plot of the average Paretp-ad can be more diicult to solve than another problem with many
tive lengthvs. the logarithm of the average density of PLO for positively correlated objectives.
difference instance sizes, as given in Table 2. The correla-

tion is strong = 0.997), and the regression curve equation®->: Discussion _ _
is: [XpLol/IX| = C - 22, whereL is the average length of the This section gives one of the first analysis related to thalloc

adaptive walksC = 0.97 anda = —1.60. For anypMNK- op_tima ofa_MoCO problem, based_on the Pareto <_:iominance re-
landscapes parameter setting with a problem ize 18, the  lation. We first focused on small-size problems with a stutly o
average length of the Pareto adaptive walks can then give € number of PLO by complete enumeration. Like in single-
precise estimation of the average number of PLO. When th@bjective optimization, the number of PLO increases with th
adaptive length is short, the diameter of the basin of atoac degree of non-linearity of the problem (epistasis). Howeve
associated with a PLO is short. This means that the distazce bth€ number of objective functions and the objective correla
tween PLO decreases. Moreover, assuming that the volume §Pn have a stronger influence. Moreover, our results shaw th
this basin is proportional to a power of its diameter, the hem ~ the cardinality of the Pareto optimal set clearly increasiis

of PLO increases exponentially when the adaptive length dehe number of PLO. We proposed a Pareto adaptive walk, as-

creases. This corroborates known results from singleetipge ~ Sociated with a Pareto hill-climber, to estimate the nuntder
NK-landscapes (Ochoa et al., 2008). PLO for small-size problems. Next, for large-size instantee

length of such Pareto adaptive walk can give a measure delate
to the dificulty of a MoCO problem. We show that this mea-
sure increases exponentially with the problem size. A mnobl

In this section, we study the number of PLO for large-sizewith a small number of negatively correlated objectivesegiv
pMNK-landscapes using the length of the adaptive walk as d¢he same degree of multi-modality, in terms of Pareto domi-
fined in the previous section. First, we analyze this numbepance, than another problem with a high objective spacerdime
according to the problem dimensioN (¢ {18 32 64,128). sion and a positive objective correlation. This featureustho
Then, we give more insights on the problerfidulty, in terms  be taken into account when dealing with large objective spac
of PLO, with respect to objective space dimensibt) @nd ob- ~ dimension inmany-objective optimizatioproblems (Wagner
jective correlationg). etal., 2007).

We performed 19 independent PHC executions for each
problem instance witiN > 18. Figure 8 shows the average 6. Summary and future works
length of the Pareto adaptive walks foftdrent landscapes ac- o L
cording to the parameters given in Table 2. Whatever thecebje . A qualitative summary of the results from thg paper IS given
tive space dimension and the objective correlation, thgtten in Table 3. It provides a complementary view of the pre-
of the adaptive walks increases linearly with the searcleespa CIS€ measures reported m_the previous sect|0_ns, _and makes a
dimensionN: L = « - N, with a slopex < 0.33. The equation stronger link with the following local search design issues
given in Section 5.3 allows to estimate the PLO density from (i) Archiving. The approximation set manipulated by the al-
the average length of the adaptive walk for small-size pnaisl. gorithm (.e. the archive), is directly related to the cardi-
Let us remind thaX| = 2N. Following this estimation for large- nality of the Pareto optimal set. The number of Pareto op-
size instances, the density of PLO decreases exponentially timal solutions grows exponentially with the problem size,
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5.4. Properties vs. multi-modality for large-size probem



Figure 8: Average length of the Pareto adaptive walk acogrth problem sizeN) for K
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length of the Pareto adaptive walk according to objectiveetation p) for K = 4 andN = 64 (bottom-left) and foK = 4 andN = 128 (bottom-right).

(ii)

(iii)

the number of objectives and with the degree of conflict
between the objectives. Moreover, it decreases with the
non-linearity. As a consequence, the archive size should
be limited as soon as the problem under consideration is
large, and with many conflicting objectives. A review
of existing bounded archiving techniques are provided by
Knowles and Corne (2004), and more recently by Lopez-
Ibafez et al. (2011).

Scalar approach. Scalar approaches are only able to
find a subset of Pareto optimal solutions, known as sup-
ported solutions. The proportion of supported solutions in
the Pareto optimal set decreases with the number of ob-

ciency is largely influenced by local optima, as in single-
objective optimization, the performance of Pareto-based
search approaches is higher when the problem is large, and
aims at optimizing many conflicting objective functions.
However, the performance quality of such approaches is
with no doubt associated with an increase of the computa-
tional cost, particularly when a time-consuming archiving
technique is used to bound the approximation set. This
result supports previous conclusions from Paquete and
Stitzle (2006), where an experimental analysis focused on
algorithmic components is conducted on the biobjective
QAP.

jectives, and their degree of conflict. Scalar approache®f course, other transversal views of Table 3, basgcon the
should then be well-performing when there is few corre-Problem properties, are also possible. The summary atseimpt

lated objectives. Of course, this always relies on tfie e

give a ‘big picture’ of the multi-dimensional features that make

ciency of the single-objective algorithm used in the scaladocal search algorithmsfigcient for the problem under study.

approach, and on the number of Pareto optimal solutioné\l these results show that no expectation on the performanc
that are likely to be found, or approximated. of multiobjective local search algorithms can be drawn with
taking the problem properties into account very precisély.
Pareto-based approach. The number of local optima, deed, it has now become clear that the number of objectives is
measured in terms of Pareto optimality, grows exponenene of the key issue to explain a problem complexity (Wagner
tially with the number of objectives, their degree of con- et al., 2007), but we also pointed out that the objectiveezorr
flict, and also with the problem size. As opposed to its im-lation is at least as important. Multiobjective fitness lscabe
pact on the cardinality of the Pareto optimal set, the degreanalysis plays a central role to explain the performancecx#il
of non-linearity makes the number of Pareto local optimasearch algorithms, and to design mofBogent methods, that
grows. Therefore, if we assume that the algorithifir e suit better the problem features.
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Table 3: Guidelines for the design of multiobjective locahch algorithms.

Landscape features Problem properties Suggestion for the

N K M o design of local search
Cardinality of the Pareto !I !I + limited-size archive
optimal set — unbounded archive
Proportion of supported + high dficiency of scalar approach
solutions — low efficiency of scalar approach
Number of Pareto local + low efficiency of Pareto approach
optima n ! — high dficiency of Pareto approach

A similar study, as the one leaded in the paper, would allow ttHotelling, H., Pabst, M. R., 1936. Rank correlation andgtesitsignificance
better understand the structure of the |andscape for othli-m involving no assumptions of normality. Annals of MatherpatiStatistics 7,

At ; ; P 29-43.
o.bJectNe comblnatqual pptlmlzauon problems. MOI‘GQ\&#— Kauffman, S. A., 1993. The Origins of Order. Oxford University $areNew
ditional work is required in order to compute, or ratherrastie, York, USA.

the impact of the problem size on the proportion of supportecknowles, J., Corne, D., 2002. Towards landscape analyseotm the design
solutions. Another perspective is to study the influencenef t of a hybrid local search for the multiobjective quadratisigsment problem.

. .. . . . . ; In: Soft Computing Systems: Design, Management and Apics. Vol.
epistatic interactions, possibly defined with &elient structure 2002. 10S Press, Amsterdam, The Netherlands, pp. 271-279.

on every objective function, on the number of Pareto optimaknowles, J., Corne, D., 2004. Bounded Pareto archiving: ofjhend prac-
solutions, and the proportion of supported solutions. éualje tice. In: Metaheuristics for Multiobjective Optimisatiovol. 535 of Lecture

as studied originally by Aguirre and Tanaka (2007)’ Aedi Notes in Economics and Mathematical Systems. Springda/eCh. 2, pp.
39-64.

ent epistasis structunger objective may change significantly Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., TaibiG., 2012.
the features of the landscape. At last, we know that the ®aret on dominance-based multiobjective local search: desigplementation
optimal set structure, as well as the number and the distribu and experimental analysis on scheduling and travelingsswa problems.

tion of local optima have a strong impact on the performanc?fJ

of multiobjective search algorithms, but it is not yet clbam

Journal of Heuristics 18, 317-352.
pez-lbafiez, M., Knowles, J. D., Laumanns, M., 2011. sequential on-
line archiving of objective vectors. In: 6th Internatior@bnference on Evo-

they exactly &ect the search. The next step is to more pre- Iutionary Multi-Criterion Optimization (EMO 2011). Vol.576 of Lecture

cisely classify the relationship between problem struectamd
algorithm behavior. For sure, this open issue will congtittne

of the main challenge in the emerging field of fithess landscap

analysis for multiobjective combinatorial optimization.

Notes in Computer Science. Springer, pp. 46—60.

Mathias, K. E., Eshelman, L. J., Sdfex, J. D., 2000. Niches in NK-landscapes.
In: Proceedings of the Sixth Workshop on Foundations of Gemdgo-
rithms (FOGA 2000). pp. 27-46.

Merz, P., 2004. Advanced fitness landscape analysis andettiermance of
memetic algorithms. Evolutionary Computation 12 (3), 3835-

ote, J., Olson, I. M. D. L., 1991. A parametric approach tvisg bicriterion
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