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Abstract

Developmental patterns of yolk-sac larvae are well captured by the standard deb

model: (i) when feeding is delayed post birth the size at which post-feeding growth begins
is reduced but the rate of growth post-feeding is unaffected and (ii) maternal effects
(initial energy in egg) show up as differences in condition at birth and maximum length
of non fed individuals. We extended the standard deb model in two ways to account for
starvation. (I): if somatic maintenance can no longer be paid structure is also mobilized to
cover the costs, but at an extra cost- conversion efficiency of structure to energy. Death
occurs if structure reaches a fraction of the maximum at the onset of shrinking. (II):
if maturity maintenance can no longer be paid then maturity level decays exponentially
(rejuvenation). Hazard due to rejuvenation is proportional to the difference between
maturity and the maximum maturity at the onset of rejuvenation.

We performed Monte Carlo simulation studies which treat feeding as a random pro-
cess to evaluate the contribution of the metabolic handling of starvation to early teleost
life history. The simulations suggest that food density strongly impacts growth, energy
reserves, mineral fluxes, hazard and mortality from shrinking. Environmental factors
can soon override maternal induced differences between individuals. Moreover in the low
food density, simulated individuals from eggs of lower caloric content experience mortality
from shrinking earlier than their counterparts issued from higher energy eggs. Empirically
observed patterns of real data, i.e. high scatter in respiration in combination with low
scatter in lengths, can be expected when the metabolism is treated as a deterministic
system while behaviourally controlled input is stochastic. At low food densities where
mortality from shrinking reaches 10% almost all individuals experience hazard due to re-
juvenation. This hazard is difficult to access experimentally but represents moments of
heightened susceptibility to pathogens and toxicants and could be ecologically significant.

Key words: deb, starvation, stochastic feeding, rejuvenation, respiration, fish
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1 Introduction

The ecology of teleost larvae has generated much interest in marine fisheries research. Survival
through the early life history stages is thought to regulate recruitment and subsequent year-
class strength (Hjort, 1914; May, 1974; Cushing, 1975; Bailey and Houde, 1989, among others).
Starvation (Hjort, 1914) and predation (Bailey and Houde, 1989) have been hypothesized as
major factors controlling. Predation has been considered to be the primary agent of mortality
during the yolk-sac stage (Blaxter and Fuiman, 1990; Paradis et al., 1996) while starvation may
only become important after the transition to exogenous feeding (Leggett and Deblois, 1994) as
there are potential interactions of larval size (Miller et al., 1988), developmental rate (Houde,
1987), environmental effects (Shepherd et al., 2000), predation and starvation. To date, with
much of the emphasis focused on how growth and survival relate to environmental conditions,
few studies consider how larval metabolism handles starvation.

The focus of our paper is (i) to formalise starvation rules which operate at the individual
level and (ii) further investigate the importance of metabolism on starvation during teleost early
life history stages. The study is conducted within the conceptual framework of Dynamic Energy
Budget (deb) theory (Sousa et al., 2008; Kooijman, 2010; Sousa et al., 2010): a well-tested
theory on the uptake and use of substrate by all organisms. Parameters for the standard deb

model (see Kooijman, 2010, Chap.2) have been estimated for a number of animal species and
can be found in the Add My Pet collection http://www.bio.vu.nl/thb/deb/deblab/add_my_

pet/ (Lika et al., 2011, this special issue). The standard deb model is extended in this paper
to deal with starvation in more detail. The question we ask is how does the metabolic handling
of starvation contribute to growth, survival, dioxygen consumption, and carbon dioxide, water
and ammonia production (hereafter referred to as mineral fluxes) during the early life history
of the individual when resources are fluctuating. It is practical to conduct this study using
a deb model where the parameters of a teleost have already been estimated as well as with
data which relate egg size to growth and survival. A full life cycle model for zebrafish, Danio
rerio was previously developed (Augustine et al., 2011) and Jardine and Litvak (2003) have
unique results where initial egg size was controlled by microinjection technique and lengths,
yolk volumes and survival were observed for each individual. This makes zebrafish an ideal
candidate for conducting theoretical studies on starvation.

Within the context of deb theory the life cycle is divided in three stages: embryo (no
assimilation), juvenile (assimilation) and adult (allocation to reproduction but no longer to
maturation). Two important events bound the embryonic stage: (i) age zero where reserve
is maximal and starts to reduce and structure and maturity are close to zero and start to
increase and (ii) age at birth where external feeding is initiated and the embryo switches to a
juvenile. Hatch precedes birth for many teleost species since the mouth is not yet formed and
the individual is still reabsorbing the yolk sac inherited from the mother. Birth is initiated
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the moment the oesophagus opens and the digestive tract is open to the environment. Birth
corresponds to a specific developmental milestone and so it makes sense to compare ages and
lengths at this point in development between different individuals to understand maternal
effects. Age and length at hatch is a more commonly found endpoint, but has the drawback of
preceding birth and not occurring at strictly the same stage of development for all individuals
(e.g. Kimmel et al., 1995, for zebrafish). Furthermore, age at hatch can be influenced by
rearing protocol: sterilisation procedures such as bleaching can delay hatching by hardening
the chorion (e.g. Zhang et al., 2009). Yolk consists of lipo-proteins, and during embryonic
development it is rapidly converted into proteins, lipids and carbohydrates while hardly loosing
energy or building blocks. These three products are stored in different places in the body, a
process known as internalisation of yolk. These ’details’ are not included in the standard model
explicitly, and the yolk-sac is treated as a temporary organ with specialised functions, similar
to adipose tissue of juveniles and adults in many taxa.

We first examine to what extent the deb model is representative of impacts of maternal
effects (initial egg caloric content) and delays in initial feeding on early juvenile development.
Predictions are compared to actual observations of length against age of individuals born of
eggs with initial yolk volumes ranging from 126 to 628 nl (see Jardine and Litvak, 2003, for
detailed protocol).

It has already been shown that stochastic food availability can explain the large variance
in size of individuals in a same aquarium from a same brood due to amplification of difference
by social interaction (Kooijman, 2009a). Large variation in larval zebrafish lengths (and high
mortalities) were demonstrated to be a consequence of low food density, which was amplified by
changes in food types, from small to larger food particles (Eaton and Farley, 1974). To emulate
a random encounter rate between food items and juveniles we consider a natural stochastic
version of the feeding module and perform Monte Carlo simulation studies to generate lengths,
mass, reserve, mineral fluxes and survival for 5000 individuals. We perform the studies at low
and high food densities and with populations born of different initial egg energy content. The
importance of including the metabolic handling of starvation when studying the ecology of
juvenile teleosts is discussed.

2 Model and methods

2.1 Formulation of starvation rules

We use embryo parameter values for zebrafish provided in Augustine et al. (2011) while sim-
plifying their model by neglecting deviations from isomorphy and effects of ageing. We also
ignore any surface-area linked maintenance costs. As mentioned before, we focus on the early
juvenile that follow the standard deb model (Kooijman, 2010) and have two life stages (embryo
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and juvenile) using 3 state variables: energy in reserve E (J), structural length L (cm) and
maturity EH (quantified in J) (see table 1) and 7 parameters (see table 2). L = V 1/3 where V
(cm3) is the structural biovolume.

The assimilation flux ṗA (J day−1) is

ṗA = 0 for embryos and ṗA = f{ṗAm}L
2 for juveniles

with {ṗAm} the maximum (surface-area) specific assimilation rate, and f the scaled functional
response, defined as the feeding rate on a particular food type as a fraction of the maximum
possible one for an individual of that size. It can be specific for a particular diet. The standard
model uses the Holling type II function response, f = x/(1+x), with x the scaled food density.

A fraction κ of the flux ṗC (J d−1) that is mobilized from reserve is invested in somatic
maintenance ṗM = [ṗM ]V and growth ṗG = κṗC− ṗM . A fraction κG (the conversion efficiency)
of the flux allocated to growth is fixed in new structure. κG = µV dV ([EG]wV )

−1 (Lika et al.,
2011, this special issue), with [EG] the cost per unit of structure and µV , dV , wV the chemical
potential, density and molar weight of structure (see table 2).

A fraction (1 − κ) ṗC is invested in maturity maintenance ṗJ = k̇J EH and maturation
ṗR = (1 − κ) ṗC − ṗJ . Maturity does not have mass or energy itself, but is quantified as the
cumulative energy investment in maturation. Maturity maintenance can be conceived as all
processes responsible for maintaining the current state of maturity, i.e. immune, hormonal and
cellular defence systems. An analogy would be that considerable energy is invested in learning
and if the knowledge level is not maintained it is forgotten.

The mobilization flux is given by ṗC = E (v̇/L− ṙ), with v̇ (cm d−1) the energy conductance
and ṙ (d−1) the specific growth rate. Reserve dynamics are specified as follows: d

dt
E = ṗA− ṗC .

Maintenance always has priority over investment in growth or maturation. Starvation occurs
when energy mobilised no longer suffices to cover (I) the somatic maintenance cost, i.e. κ ṗC <
[ṗM ]V , with shrinking as result and (II) the maturity maintenance costs, i.e. (1−κ) ṗC < k̇J EH ,
with rejuvenation as result. It seems reasonable to assume that shrinking has a maximum and
death occurs instantaneously when it exceeds a fixed fraction δX . This construct comes with
the need to introduce a new state variable maxL, i.e. the maximum length the individual once
had. It seems likely that maturity maintenance is more optional than somatic maintenance in
the sense that paying for the immune or the cellular defence systems might not be obligatory.
Yet there is a penalty in the form of an increased hazard proportional to the fraction of maturity
maintenance that is not paid (assuming implicitly that there is a constant need for defence).
Also this construct comes with a need to introduce a new state variable maxEH , i.e. the
maximum maturity level the individual once had.

Both shrinking and rejuvenation have an extra parameter in the specification of their dy-
namics. On the assumption that the somatic maintenance costs expressed as energy flux is
the same for growth and shrinking, the change in structural length is d

dt
L = Lṙ/3 with specific
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growth rate

ṙ = k̇Mg
e/l − 1

e+ g
if positive, else ṙ = k̇Mg

e/l − 1

e+ κGg

where l = L/Lm is scaled length and e = E v̇
L3 {ṗAm}

is scaled reserve density. The somatic

maintenance rate coefficient k̇M = [ṗM ]/[EG], the ultimate structural length Lm = κ{ṗAm}
[ṗM ]

and

the energy investment ratio g = [EG]v̇
κ{ṗAm}

are compound parameters of the standard deb model.
Somatic maintenance might have a ‘building block’ aspect that might cause growth efficiency
κG to deviate from the value mentioned above.

Following the previous analogy we can imagine that forgetting follows a first order process
with rate parameter k̇′

J , say:

dEH

dt
= (1− κ)ṗC − k̇J EH if positive, else

dEH

dt
= −k̇′

J

(

EH −
(1− κ) ṗC

k̇J

)

Hazard due to rejuvenation ḣJ is considered proportional to the difference between actual
maturity level and maximum maturity level at the onset of rejuvenation maxEH :

ḣJ = k̇M
maxEH − EH

Eh
H

and

Eh
H =

(1− κ) [EG]L
3
m

κ sH

where sH is the rejuvenation stress coefficient. The result is that ḣJ contributes to survival as:

dS

dt
= −S(ḣJ + ḣa + ḣacc + ḣsh)

In this study we consider that hazard from ageing ḣa and from accidents ḣacc is negligible. We
consider that hazard from shrinking of structure ḣsh is infinite with instantaneous death as a
result when the shrinking threshold is passed.

The starvation module has, in summary, two new state variables, maxL and maxEH , and
four new parameters κG, δX , k̇

′
J and sH . Growth efficiency also occurs under non-starvation

conditions, but there it does not play a role in the dynamics of the state variables.
Embryo and juvenile mineral fluxes are specified in the Appendix. For a full discussion we

refer to Kooijman (2010, Chap.4).
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Table 1: State variables of the deb model.

Variable Unit Name

Standard deb model
E J reserve
L cm structural length
EH J cumulated energy invested in maturity

Forcing variable
x - scaled food density

Additional state variables
maxL cm maximum structural length before shrinking
maxEH J maximum EH before rejuvenation

2.2 Linking state variables to measurements

Structural length L is taken proportional to some well-chosen physical (observed) length Lf :
L = δM Lf , with δM the (constant) shape correction factor. Augustine et al. (2011) show that
the shape of early juvenile zebrafish changes during the first month of development. This is
most likely the case for many teleost species who undergo metamorphosis after early juvenile
development. We exclude this detail from our study by considering that δM is constant.

Freshly spawned eggs are taken to be composed uniquely of reserve inherited from the
mother. Maternal effects are expressed as differences in the initial energy content of the egg E0

(J). We relate observed egg volume to initial energy content as follows:

V Y
f =

E0

δ3Y

wE

µE dE

δY is an empirical shape correction factor. wE, dE and µE are the molar weight, density and
chemical potential of reserve (table 2). We assume an Arrhenius relationship between metabolic
rates and temperature (Eqn. 1.2 Kooijman, 2010). Computations are made at reference tem-
perature of 20◦C. Predictions which are compared to observations by Jardine and Litvak (2003)
are temperature corrected to 28◦C.

Dry biomass Wd has contributions from both reserve and structure and is expressed as:

Wd = dV L3 +
wE

µE

E

with dV the density of structure (table 2). We make the simplified assumption that wet biomass
Ww is equal to 6Wd on the basis of observations by Craig and Fletcher (1984); Bagatto et al.
(2001).
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Table 2: Model parameters (affecting state variables at 20◦C)

.

Parameter Value Unit Name

deb model parameters (values taken from Augustine et al., 2011)
{ṗAm} 246.3 J day−1 cm−2 maximum surface-area assimilation
v̇ 0.0287 cm day−1 energy conductance
[ṗM ] 500.9 J day−1 cm−3 volume-linked somatic maintenance costs
[EG] 4652 J cm−3 cost of a unit of structure

k̇J 0.0166 day−1 maturity maintenance rate
κ 0.44 - allocation fraction to soma
Eb

H 0.54 J cumulated energy invested in maturity at birth

Temperature correction module (values taken from Augustine et al., 2011)
TA 3000 K Arrhenius temperature

Auxiliary parameters (values taken from Lika et al., 2011, this special issue)
wE 23.9 g C-mol−1 molar weight of reserve
wV 23.9 g C-mol−1 molar weight of structure
dE 0.15 g cm−3 density of reserve
dV 0.15 g cm−3 density of structure
µE 555 kJ C-mol−1 chemical potential of reserve
µV 500 kJ C-mol−1 chemical potential of structure

Parameters linked to starvation (this study)

k̇′J depends on study day−1 specific maturity decay
sH depends on study - rejuvenation stress coefficient
δX 0.75 - maximum shrinking fraction

Parameters linked to respiration(this study)
yXE 1.25 C-mol X/ C-mol E yield of food on reserve
yPX 0.1 C-mol P/ C-mol X yield of faeces on food

Shape coefficients used for comparing model output to data from Jardine and Litvak (2003)
δY 1.2521 - yolk shape coefficient
δM 0.1245 - shape coefficient

Stochastic feeding module
MX 0.06 µmol Mass of food particle
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2.3 Stochastic feeding module

Suppose that food density, in terms of particles per volume, is constant, such as in a polyculture
(e.g. Best et al., 2010). We simplify the system by considering all food items to be of constant
chemical composition with mass MX (µmol). Each fish is either searching for food (i.e. f = 0)
or handling food (i.e. f = 1). Time interval spent handling food th is inversely proportional
to squared length (of the individual), so larger individuals take less time to handle a food
item. {J̇XAm} is the surface-area specific maximum intake rate (in C-mol food per day per
surface area) and relates to surface-area maximum assimilation rate {ṗAm} as: {J̇XAm} =
{ṗAm}yXE/µE. yXE is the yield of food on reserve (see table 2).

th =
MX

{J̇XAm}L2

Food searching intervals ts are considered as an exponentially distributed random variable with
mean th/x. Mean feeding rate is defined as ḣX = (ts + th)

−1 = f/th. This natural introduction
of stochasticity does not come with any new parameters.

Two populations are created from two pools of initial energy contents: E1
0 = 1.18 J and

E2
0 = 1.68 J. Populations E1

0 and E2
0 both develop in two different environments: x1 = 0.3 and

x2 = 0.75. This makes 4 experimental conditions: (i) E1
0 , x1, (ii) E

1
0 , x2, (iii) E

2
0 , x1, and (iv)

E2
0 , x2 . We run 5000 Monte Carlo simulation for each condition and represent results as the

distributions of lengths, mass, scaled reserve density e, and respiration at 30 days since birth.
In addition, we look at the distribution of age at death from shrinking for the entire study
and the number of live individuals at 30 days since birth who have experienced rejuvenation
hazard. Stochastic simulation routines (traject.m and traject m.m) are part of the DEBtool
software (Kooijman et al., 2008) and are freely downloadable at http://www.bio.vu.nl/thb/
research/.

3 Results and Discussion

3.1 Constant food

Model simulations show that when initial feeding is delayed post birth, size at which post-
feeding growth begins is reduced but the rate of growth post-feeding is unaffected (figure 2A).
This is in line with general observations by Guillaume et al. (1999). Individuals from the lower
E0 die from shrinking if feeding is delayed beyond 4 days. The initial caloric content of the egg
influences post-birth lifespan when feeding is never initiated which is again in agreement with
general patterns noted by Kamler (2005). Rejuvenation hazard contributes to reducing survival
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Information

Number of DEB auxiliary theory assumptions

Diameter Volume Wet 
mass

Dry 
mass

Energy
Content of a 

key 
substance

Figure 1: Modified from Kamler (2005). Egg size is measured in many different ways. Assumptions
of auxiliary theory link these measurements to amounts of reserve and structure (egg size to initial
amount of energy in reserve), which comes with some parameters (see table 2, auxiliary parameters).

probability (figure 2B and C). The time an individual can handle delays in initial feeding before
rejuvenation hazard starts contributing to survival relates to initial energy in the egg.

The model predicts that maternal effects (initial energy in egg) influence condition at birth
in terms of amount of reserve per unit structure and maximum length of non fed individuals.
Birth does not occur if E0 < 1.1 J because the cumulated energy invested in maturity never
attains the threshold value Eb

H (see table 2). Hence eggs are considered non viable when
E0 < 1.1 J. It would be interesting to verify experimentally the realism of this lower boundary
value of E0 for which an egg is viable. Should such a lower boundary exist then maternal effects
can also contribute to embryonic survival.

The maternal effect rule (Kooijman, 2009b), implemented by default into the standard
deb model, stipulates that the reserve density of the mother equals the reserve density of her
offspring at birth. E0 = 1.67 J for mothers at f = 1 (for this parameter combination). Between
the narrow caloric range of E0 = 1.1 to 1.67 J, the maximum structure for a non fed juvenile
increases by 10%, and the maximum maturity attained increases by 40%. This explains the
increased hazard experienced by lower E0 individuals during starvation (figure 2C). Caloric
values of egg dry mass for teleost species are generally very conserved ranging from 20 − 30
J mg−1 (Kamler, 2005). If we consider the dry mass of an egg as W0 = E0 wE/ µE, then the
caloric value of E0 = 1.6 J is 22.9 J mg−1 which falls within the boundaries suggested by Kamler
(2005).

We do not propose a maximum egg size in this study. Links between egg size and the
mother’s condition might be more complex and depending on the applications deviations from
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Figure 2: Impact of delays in first feed-
ing on growth at reference temperature
(20◦C). sH = 2; k̇′J = 2.4; f = 1 (see ta-
ble 2). (A) structural length (L) against
age for E0 = 1.7 (black lines) and E0 = 1.1
(grey lines); arrowheads: birth; dashed
lines: instantaneous death by shrinking.
E0 = 1.7: feeding is never initiated (neg-
ative growth till death by shrinking) and
feeding is delayed 0, 4 and 8 days after
birth. E0 = 1.1: feeding feeding is never
initiated and feeding is delayed 0 and 4
days after birth. Survival probability for
E0 = 1.67 (B) and E0 = 1.1 (C). Survival
for delays in initial feeding of 0 days after
birth (*), 4 days after birth (**), 8 days
after birth (***) and feeding is never initi-
ated (†). Dotted line: all organisms have
died from shrinking.

the maternal effect rule should be considered. The maximum surface-area specific assimilation
rate {ṗAm} is sensitive to the type of food. Consequently, maximum assimilation rate which
corresponds to f = 1 for one type of food might correspond to f < 1 for another. Since the
maternal effect rule implies that the e of the embryo at birth equals the value of f of the mother
at spawning and that diets differ between individuals, using E0 > 1.67 J as starting values to
calculate life history traits is coherent with model assumptions.

In figure 3A we computed lengths of non fed juvenile zebrafish for 1.1 ≤ E0 ≤ 2.5 J as
suggested by the large range of observed yolk volumes V Y

f . Predicted maximum length as
a function of V Y

f is compared with the actual observations from Jardine and Litvak (2003).
Maximum size attained seems to saturate for initial yolk volumes above 314 nl. This points to
an uneasy relationship between yolk volume and water content. Large eggs tend to have higher
caloric value than small eggs, but this is not always the case (Kamler, 2005). For Sardina

pilchardus, Riveiro et al. (2000) found that that time to yolk absorption was not a function
of egg size but a function of egg biochemical composition (protein content) which illustrates
the point we make in figure 1. We converted E0 to V Y

f with the implicit assumption that the
fraction of water per volume is constant. There is no solid evidence that this is the case. Still,
the data are overall supportive of a positive relationship between E0 and maximum length of a
non fed individual.
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We further compare predicted lengths of individuals issued from eggs with energy content
1.1 ≤ E0 ≤ 2.5 J to observed lengths against age for each V Y

f (figure 3B). We show two cases:

(i) paying maintenance from structure increases somatic maintenance costs by a factor κ−1
G and

(ii) there is no extra cost involved (κG = 1) which is not thermodynamically coherent. In both
cases predicted negative growth rate at the onset of maximum structure is overestimated. The
discrepancy might be explained by parameters values. On the other hand, does an organism
shrink isomorphically? Yin and Blaxter (1986) found that it was the ratios of morphometric
measurements which were sensitive to the state of starvation for larval Gadus morhua L. and
Platichthys flesus L.. A length measurement following the spinal cord, as is the case here, might
be relatively insensitive to shrinking. Nonetheless, the model reflects the observed relationships
between V Y

f and maximum lengths while lengths at starvation are underestimated.
The predicted effects of initial energy in egg on growth and metabolic handling of starvation

lends support to current views where maternal effects contribute to resistance to starvation.
Yet it remains difficult to assess the importance of this maternal effect in real life situations.
We tackle the question theoretically using Monte Carlo simulations with stochastic food input
in the following section.
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Figure 3: Points: data from Jardine and Litvak (2003) (28◦C). (A) maximum observed length attained
during development in the absence of feeding against yolk volume expressed in nanolitres (nl). Dashed
line: model predictions of this maximum length for 1.1 ≤ E0 ≤ 2.5 J. (B) observed length against age
(hours post fertilization hpf) for eggs with all yolk volumes shown on left. Solid dark grey: model
predictions supposing κG = 0.67, solid light grey: model predictions supposing κG = 1, dashed grey:
death from shrinking in both cases, i.e. the length reached a fraction δX = 0.75 of the maximum at
the onset of negative growth.
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3.2 Stochastic searching

All stochasticity that we propose is in food searching, not in food handling. This is natural
because we assume a fixed particle size for simplicity’s reasons, consistent with the idea that
the standard deb model pushes simplicity into the extreme. In many natural situations, food
particles will show a particle-size distribution, which introduces stochasticity in handling as
well, but also comes with new parameters and the results become dependent on the particle
size distribution, which itself will be affected by many factors.

The values of e, Lf , Ww, ḣJ and mineral fluxes against age since birth of an individual
experiencing a stochastic encounter with food particles in environment E1

0 , x1 is compared to
deterministic predictions for an individual at f = x1/(1 + x1) (expected mean) and a starved
individual (f = 0). See figure 4, first and second row.

Stochastic mineral fluxes show rapid small scale variation since f is fluctuating continuously
between 0 and 1. The distribution of daily mineral production (CO2, H2O, NH3 figure 4I, J
and L) or consumption (O2 figure 4K) of 5000 individuals at the end of the simulation time
shows considerable deviation from the mean. Future research however could include digestion
(see e.g. Kooijman, 2010, Chap.7) which would make assimilation a smoother process at small
time scales. Differences in prior food history will still accumulate however and contribute to
inter-individual differences in lengths, mass, reserve and mineral production and consumption.
The mineral flux curves all show the same morphology, but this is a result of choice of parameter
values and not a model property. The mineral fluxes are closely tied to energetics and go to
zero when the individual is starved. No individuals in the x = 0.75, E1

0 environment experience
rejuvenation hazard. Figure 4D shows rejuvenation hazard when f = 0 and the organism is
shrinking.

The Monte Carlo simulation studies reveal the predicted scatter in lengths, weights, survival
and respiration at different time points when food availability fluctuates. Monte Carlo results
of simulations for each of the 500 individuals at day 30 since birth are presented in figure 5.
Interestingly the largest scatter is observed in the predicted mass and respiration data and
the lowest in the predicted length data: the coefficient of variation (CV) of mass and O2

consumption is almost four time times the CV of length in all cases. In the x2, E
1
0 environment

for example the CV is 9% for Lf , 34 % for Ww and 38% for O2 consumption. Monte Carlo
simulations of deb models with stochastic food input seem to inherently capture patterns of
scatter observed in real data sets where high scatter in measured mass or respiration combines
with much lower scatter in observed lengths.

The CV increases twofold between the high and the low food density environments for all
predicted observations regardless of the initial energy content of the egg. For example, the CV
of the Lf distribution for x1, E

1
0 is 4% wheareas it is 9% for x2, E

1
0 (figure 5A). This links up

beautifully with the results of Eaton and Farley (1974) where lengths of individuals sampled
after 16 days of development in containers with 2 free-swimming prey per mL had a CV of
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Figure 4: Model outputs computed at 20◦C. sH = 2 and k̇′J = 0.024 day−1. First row: an example of
scaled reserve density (e), observed length (Lf ), wet mass, rejuvenation hazard (ḣJ) for an individual
sampled randomly from the Monte Carlo simulation study. Second row: an example of fluxes of CO2,
H2O, O2 and NH3 against age since birth from the same individual sampled randomly from the Monte
Carlo simulation study. Black: stochastic mineral fluxes for that individual (x = 0.75, E0 = 1.67 J, f
alternates between 0 and 1) are compared to deterministic predictions (smooth lines) for f = x/(1+x)
and f = 0 (E0 = 1.67 J). When f = 0 the deterministic mineral fluxes go to 0 and the dotted line
is when structure reaches a fraction δX = 0.75 of the maximum structure (instantaneous death is
assumed at this point). Bottom row: distribution of each mineral flux at age 30 since birth for 5000
Monte Carlo trials (x = 0.75, E0 = 1.67 J, f alternates between 0 and 1). Please note that the x and
y axis of fluxes of NH3 differ.
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Figure 5: Output of 5000 Monte Carlo simulation studies at reference temperature (20◦C). sH = 2
and k̇′J = 0.024 day−1. Open symbols: x = 0.75, closed symbols x = 0.3, circles: E0 = 1.8 J, squares:
E0 = 1.2 J. (A) Distribution of lengths of live individuals after 30 days . (B) Distribution of wet
mass of live individuals after 30 days. (C) Distribution of scaled reserve density (e) of live individuals
after 30 days. (D) Distribution of respiration (nmol O2 day−1) for live individuals at day 30. (E) Age
at death by shrinking for each individual. Black: E1

0 , grey: E2
0 . Note that no deaths occurred for

x = 0.75. (F) Percentage of live individuals who experience hazard due to rejuvenation during the
simulation interval. Black: E1

0 , grey: E2
0 . No hazard is experienced for individuals in E1

0 , x = 0.75.
Percentage of population in E2

0 , x = 0.75 is barely perceptible on the graph.
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16.8% and lengths of individuals sampled after 15 days of development in containers holding
200-300 free-swimming prey per mL had a CV of 3.8%.

Populations E1
0 and E2

0 evolve in a very similar manner in terms of lengths, weights, respi-
ration and survival at both food densities (x = 0.3 and x = 0.75). Thus the present simulations
hint at a negligible contribution of maternal effects to measurable endpoints after a month of
development regardless of the food density. Maternal effects can be diluted by the individuals
(chance) encounter rate with food items.

The most sensitive difference between E1
0 and E2

0 at x = 0.3 is in the distribution of age
at death (figure 5E). Population E2

0 shows higher mortalities from age 8 to 20 since birth than
the population E1

0 . After 20 days, age at death distributions are quasi identical between both
populations. At x = 0.3 about 10% of both populations die from structure shrinking. At
x = 0.2 about 50% of both populations die from shrinking (not shown).

Almost all individuals in both populations in the low food density environment (x = 0.3)
experience hazard due to rejuvenation. This is shown in figure 5F where 79% of live individuals
experienced hazard in E1

0 , x = 0.3 and 85% of live individuals experienced hazard in E2
0 ,

x = 0.3. Rejuvenation hazard hardly occurred for individuals in x1, E
1
0 and x2, E

1
0 . This

hazard (ḣJ) can be translated biologically as moments of increased susceptibility to pathogens
and stressors and contributes to survival probability. It is difficult to evaluate ḣJ experimentally,
but the present simulations suggest that it could be a relevant factor regulating survival should
additional environmental stressors and small periods of starvation occur simultaneously.

4 Concluding remarks

There exists strong empirical support for maternal effects as a general pattern but our simula-
tions show how environmental conditions soon override such effects. Inter-individual differences
in prior food history accumulate and can be responsible for the observed scatter in the data.

The problem of inherent variability in biological data must be addressed in all fields of biol-
ogy. The present study shows that empirically observed patterns of real data, i.e. high scatter
in respiration in combination with low scatter in lengths, can be expected when the metabolism
is treated as a deterministic system while behaviourally controlled input is stochastic. This is
consistent with general patterns in observations.

Monte Carlo simulation studies are powerful tools to understand how stochasticity of food
searching translates into variability in measured endpoints such as respiration, growth or repro-
ductive output. This insight can be useful for designing experiments: e.g. feeding protocols,
types and frequencies of measurements and sampling.

The concept of rejuvenation and rejuvenation hazard follows directly from the structure of
the DEB model but further theoretical work needs to be done to understand how to estimate
it from data. The concept links up neatly with empirical support that starved organism show
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a heightened susceptibility to disease and environmental stressors such as toxicants (Rougier
et al., 1996).

The extension we propose of the standard DEB model specifying shrinking and rejuvenation
is not species-specific and applies to the entire life-cycle. Further dedicated research will test
to what degree these rules are inherent to the functioning of all organisms and further our
understanding of which adaptations are species specific and/ or specific to a particular life
stage of the organism.
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5 Appendix

Computations of fluxes of dioxygen (J̇O), carbon dioxide (J̇C), water (J̇H) and ammonia (J̇N)
comes with the specification of the stoichiometry of elements ( matrix nM of chemical indices)
and the ratios of C, H, O, N to C in the generalized molecule which makes up the four organic
compartments: X (food) , V (structure), E (reserve), P (faeces) which are collected in matrix
nO.

Chemical indices nO and nM (see Lika et al., 2011, this special issue) are as follows:

nO =

(

1.00 1.00 1.00 1.00
1.80 1.80 1.80 1.80
0.50 0.50 0.50 0.50
0.10 0.10 0.10 0.10

)

nM =

(

1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1

)

Organic fluxes are a weighted sum of the three basic powers in deb theory: assimilation ṗA,
dissipation ṗD and growth ṗG. Assimilation and growth powers are defined in the main text
(section 2.1). Somatic maintenance, maturity maintenance and maturation all contribute to
the dissipation power such that ṗD = [ṗM ]L3 + (1 − κ)ṗC . Mineral fluxes are a weighted sum
of the organic fluxes. Faeces production is linked only to assimilation so is zero for embryos.

The four organic fluxes, J̇X flux of food (C-mol X day−1), J̇V structure flux (C-mol V
day−1), J̇E reserve flux (C-mol E day−1), and J̇P feces flux (C-mol P day−1) are specified as
follows :

J̇X = −
yXE

µE

f {ṗAm}L
2

J̇V =
[MV ]

[EG]

(

κ ṗC − [ṗM ]L3
)

J̇E =
1

µE

(

f{ṗAm}L
2 − ṗC

)

J̇P = −yPX J̇X

and f = 0 for embryos. The four mineral fluxes J̇C (mol C day−1), J̇H (mol H day−1), J̇O (mol
O day−1), and J̇N (mol N day−1) are a weighted sum of organic fluxes (see Eqn.4.37 Kooijman,
2010, pp.139):

J̇M = −n−1
M nO J̇O

with:

J̇M =

(

J̇C
J̇H
J̇O
J̇N

)

and J̇O =

(

J̇X
J̇V
J̇E
J̇P

)
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