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ABSTRACT

A new diagnostic (the ‘‘Lyapunov diffusivity’’) is presented that has the ability to quantify isentropic mixing

in diffusion units and detects local mixing events by describing latitude–longitude variability. It is a hybrid

diagnostic, combining the tracer-based effective diffusivity with the particle-based Lyapunov exponent cal-

culation. Isentropic mixing on the 350-K surface shows that there is significant longitudinal variation to the

strength of mixing at the northern subtropical jet, with a strong mixing barrier over Asia and the western

Pacific, a weaker mixing barrier over the western Atlantic, and active mixing regions at the jet exits over the

eastern Pacific and Atlantic.

1. Introduction

It is now well established that the distribution of tracers

in the upper troposphere and the lower stratosphere

(UTLS) strongly depends on the transport and mixing

properties of the flow. It is also well established that

the dominant isentropic motion induces a chaotic type

of tracer advection, giving rise to strongly inhomo-

geneous stirring (and thus, in the presence of diffusion,

inhomogeneous mixing).1 This segregates tracers into

distinct well-mixed reservoirs separated by regions of

relatively weaker isentropic mixing. For simplicity, in the

following we drop the term ‘‘isentropic,’’ and we will use

the term ‘‘mixing barrier’’ to denote a coherent region

across which the isentropic mixing strength presents

a local minimum. It should be noted, however, that some

irreversible mixing does occur across such regions, which

is evident in the mixing lines seen in observed tracer–

tracer correlations (e.g., Hoor et al. 2002).

Motivated by the observation that the segregation into

distinct reservoirs is mainly zonal, several diagnostics

based on zonal averages have been developed and ap-

plied to large wind datasets provided by analysis and

reanalysis from operational weather centers. Calculation

of the stretching rates of potential vorticity (PV) contours

have been used to show that the edge of the stratospheric

polar vortex corresponds to a minimum of this quantity

(e.g., Pierce and Fairlie 1993), and this technique has

been applied to the UTLS (Bithell and Gray 1997; Scott

et al. 2003), providing some evidence of a minimum at the

subtropical jet (at least in winter). Effective diffusivity,

a diagnostic introduced by Nakamura (1996) and applied

to the UTLS by Haynes and Shuckburgh (2000b) and

Scott et al. (2003), goes one step further by considering

the evolution of a passive tracer in the wind field. This

diagnostic reduces the advection and diffusion of a tracer

on an isentropic surface to a pure (enhanced) diffusion in
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the enhanced effect of background diffusion by stirring.
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a new coordinate system that follows the contours of

the tracer. A key advantage of this latter approach is that

it provides a parameterization of isentropic mixing in

terms of a contour-averaged diffusion coefficient that

measures quantitatively the enhancement of small-scale

diffusion by the stirring process.

For the large-scale atmospheric circulation, which is

characterized by a dominant zonal component, the con-

tours of advected tracers are close to latitude circles.

Therefore, diagnostics based on either PV or tracer

contour averages only vary with latitude and do not

provide any information about the longitudinal variabil-

ity of mixing. However, in the UTLS, mixing does

not occur uniformly over latitudinal circles but can be

induced by localized events like synoptic-scale sys-

tems (Polvani and Esler 2007). As noted by Bithell and

Gray (1997), in this case there are frequently strong PV

gradients near the edges of the synoptic systems, but

there are not generally strong gradients close to a single

PV contour value at all longitudes (unlike in the winter

stratosphere). The investigation of such longitudinal

variability is clearly not amenable to methods where

a single value represents all mixing events along an en-

tire PV or tracer contour. This problem is especially rel-

evant in the interpretation of mixing barriers for which

the contour-based diagnostics are not able to distinguish

whether the barrier is continuous over the latitude circle;

is modulated in longitude; or even breaks at some loca-

tions, giving way to latitudinal exchanges.

An appropriate way to represent stretching in fluid

mechanics is the local Lyapunov exponent (Pierre-

humbert 1991), which measures the dispersion of fluid

particles along a Lagrangian trajectory. It pinpoints

transport properties accurately in space and time and is

not limited to contour averages. Therefore, unlike the

contour-based diagnostics already mentioned, it is able to

detect mixing events in both latitude and longitude. Ex-

trema of Lyapunov exponents have been used to map

coherent structures (Haller and Yuan 2000; Haller 2002;

Lapeyre 2002) or identify mixing regions (d’Ovidio et al.

2004), and it can be shown that lines of extrema often act

as kinematic transport barriers (Shadden et al. 2005) over

a bounded range of times. However, the use of the local

Lyapunov exponent alone as a quantitative measure of

mixing presents a problem. As we shall see, its latitudinal

variations are significantly different from—and in same

cases may be even anticorrelated with—the Nakamura

effective diffusivity. Understanding the discrepancies be-

tween the variability of effective diffusivity and Lyapunov

exponent and the relation between stretching and mixing

will be the starting point of our work and will lead us

to the definition of a hybrid diagnostic that is able to

quantify mixing in diffusion units and to localize mixing

events geographically. This Lyapunov-based diffusivity

diagnostic combines information concerning the stretch-

ing intensity (from the Lyapunov exponents) and geom-

etry (from the Lyapunov vectors) with the Nakamura

effective diffusivity, and it can be used to map the local

properties of atmospheric mixing.

We focus here on a climatological study of two-

dimensional isentropic mixing at 350 K. This provides,

for the first time, a quantification of the variability of

mixing in latitude, longitude, and time. A more com-

prehensive analysis, including the relation to the major

climatic modes—El Niño–Southern Oscillation (ENSO)

and the North Atlantic Oscillation (NAO)—will be pre-

sented in Shuckburgh et al. (2009a, hereafter Part II).

This paper is organized in the following manner: in

section 2, we describe the data [a subset of the 40-yr

European Centre for Medium-Range Weather Forecasts

(ECMWF) Re-Analysis (ERA-40) winds] and recall the

definitions of effective diffusivity and finite-size Lyapunov

exponents (FSLEs) with some details. Readers familiar

with these concepts can skip section 2 and jump directly

to section 3, where we compare Lyapunov calculations

and effective diffusivity by looking at their correlation

in space and time and analyzing their advantages

and limitations as diagnostics of transport and mixing.

Theoretical arguments guide the construction of a hy-

brid diagnostic, the Lyapunov diffusivity. This novel

diagnostic is shown to be able to pinpoint and quantify

mixing events in both latitude and longitude. It is applied

to the UTLS region, and a climatology of 10 years is

presented for the 350-K isentropic level. Finally, section 4

briefly discusses possible theoretical developments and

further use of the Lyapunov diffusivity to more general

geophysical cases. Technical details of the theoretical

analysis are left for the appendix.

2. Data and method

The calculations of the effective diffusivity and of the

FSLEs are performed on the 350-K isentropic surface

using the ERA-40 winds provided by the European

Centre for Medium-Range Weather Forecasts (Uppala

et al. 2005) over the period 1981–2001. The choice

of this period is dictated by the relative homogeneity

of the assimilated data, notably the satellite data pro-

vided by Television and Infrared Observation Satellite

(TIROS) Operational Vertical Sounder (TOVS) in-

struments, cloud-wind products, and surface data from

buoys. The two diagnostics are computed every two days

for the entire period and aggregated in monthly means.

a. Effective diffusivity

Effective diffusivity has been introduced by Nakamura

(1996) and proceeds from a transformation of the
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advection–diffusion equation for a tracer with concen-

tration c,

_c [
›c

›t
1 u � $c 5 $ � (k$c), (1)

to tracer-based coordinates where the contour G(C) with

c(x, y) 5 C is used as a coordinate line. Embedded

contours are labeled by their area AC. When the tracer

has a mean pole to equator gradient, the area on the

sphere is related to the equivalent latitude fe by AC 5

2pR2(1 2 sinfe), where R is the radius of the earth.

Hence, C can be considered as a function of fe and t. The

minimum length Le(fe) of a tracer contour with area

AC(fe) is Le 5 2pR cosfe, corresponding to the case in

which the contour is aligned with a latitude circle.

It has been shown by Nakamura (1996) and Haynes

and Shuckburgh (2000b) that, when the velocity u is

nondivergent, (1) can be transformed to
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where

L2
eff 5

þ
G

j$cj dl

þ
G

dl

j$cj. (3)

It is assumed that $c does not vanish over the contour

(this is generic if there are no saddle points). The value

of Leff is larger than the length L of the contour, but in

practice the two quantities are fairly close (Shuckburgh

and Haynes 2003; Scott et al. 2003). Both are generally

much larger than Le, because the contour is folded many

times by chaotic advection, generating tracer filaments.

The actual length results from a balance between con-

tinuous generation of small-scale filamentary structures

and smoothing by dissipation. Here, dissipation k is

a simple uniform diffusion that is meant to represent

subgrid-scale three-dimensional turbulence (Legras et al.

2005). The effective diffusivity takes into account the

enhancement above the minimum length of the tracer

contour length by the effects of stirring and mixing, and it

is given from Eq. (2) by

k
eff

5 k
L2

eff

L2
e

. (4)

The effective diffusivity is obtained daily by analyz-

ing the contours of a chosen ‘‘probe’’ tracer evolving

according to an advection–diffusion equation where ad-

vection is by the ERA-40 winds (see Haynes and

Shuckburgh 2000a,b). The tracer evolution calcula-

tion is performed by a pseudospectral method using

a T159 spherical harmonics representation and associ-

ated collocation grid. The tracer is initialized with a

concentration proportional to the sine of the latitude.

The parameter k is a constant numerical diffusivity

(taken as 1.5 3 105 m2 s21) used to parameterize the

irreversible effect of small-scale turbulence. It has been

shown that the effective diffusivity is largely in-

dependent2 of the value of k. A repeat calculation with

a numerical diffusivity of 5 3 105 m2 s21 indicated little

difference in the results. The equivalent contour length

Leff is calculated from the tracer each day, after a spin-

up time of one month,3 as a function of the equivalent

latitude fe with spacing of approximately 18. From this,

keff is then obtained.

b. Finite-size Lyapunov exponents

In the absence of diffusion and sources, the evolution

of an infinitesimal line element dx and of a passive tracer

gradient $c follow very similar equations, because the

variation dc 5 dx � $c is preserved by the motion. We

have

D
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where D/Dt means the time derivation along a given

trajectory x(t), along which the motion is linearized.

Over a time interval [t0, t0 1 t], a linear application

M(x0jt0, t0 1 t) is defined that maps a line element or

a tracer from its initial value at x0 5 x(t0) to its final value

at x(t0 1 t):

dx(t
0

1 t) 5 M(x
0
jt

0
, t

0
1 t)dx(t

0
) and (6)

$c(t
0

1 t) 5�MT(x
0
jt

0
, t

0
1 t)$c(t

0
). (7)

When computing dx(t0 1 t) for finite time, one has the

choice of prescribing the integration time t or the ratio

dx(t0 1 t)/dx(t0) between the initial and final separation.

The first choice leads to the finite-time Lyapunov ex-

ponent calculation, whereas the second choice defines

the finite-size calculation.

More precisely, FSLE is defined as (Ott 1993; Aurell

et al. 1997)

2 See Shuckburgh and Haynes (2003) and Marshall et al. (2006)

for a sensitivity study of the effect of k on the effective diffusivity.
3 Haynes and Shuckburgh (2000b) showed that this spin-up time

gives results independent of the initial conditions.
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d
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t
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where t is the time at which the initial perturbation of size

d0 has grown to d, and the maximum is taken over the

initial orientation of the line element or the tracer gra-

dient. For small d0 and d but large d/d0 (or large t, for the

case of finite-time calculations) and if the flow is ergodic,

l[x(t0), d(t0), d] tends to a unique l as a result of the

Oseledec theorem (Oseledec 1968). In the other cases,

l exhibits large spatial and temporal variations, which

represent the variations of stretching properties of the

flow. In particular, the length of a contour G should grow

exponentially with time, on average, for a length of time

t (i.e., L 5 e l̂t, where l̂ is the most probable value of l in

the domain spanned by the contour).

The calculation of Lyapunov exponents is well-defined

forward and backward in time. As we shall see, both

calculations contain valuable and complementary infor-

mation on mixing.

The finite-size Lyapunov exponents are computed

on a quasi-regular latitude–longitude grid, with a 0.58

spacing in latitude. Winds from the ERA-40 spectral

T159 representation (as used for the effective diffusivity

calculation) are interpolated in time using cubic splines

and bilinearly in space from an intermediate projection

to a 480 3 242 Gaussian grid. Trajectories of Lagrangian

parcels are constructed both forward and backward in

time. At each grid point, the trajectories starting at the

four cardinal corners of a small square with a diagonal

d0 5 0.18 are followed until a prescribed relative sepa-

ration d 5 20d0 is reached for one of the diagonals. Other

ratios of d/d0 in the same order of magnitude (5, 10,

and 50) have been also tested and provide very similar

results. The finite-size Lyapunov exponents and vectors

(which, in the following, will be referred to as Lyapunov

exponents and Lyapunov vectors for simplicity; see

appendix A for more details) are obtained from the

singular values and directions of the matrix that trans-

forms the initial square into a parallelepiped (Ott 1993;

Koh and Legras 2002). Other details are in Mariotti

et al. (1997) and Joseph and Legras (2002).

3. Lyapunov diffusivity

Our aim is to develop a new diagnostic, based on

Lyapunov calculations and able to parameterize the ef-

fect of mixing as a diffusion process, to provide a quanti-

tative map of mixing events in both latitude and longitude.

Here, we will attempt to deduce such a diagnostic by

dynamical considerations, some analytical relations ob-

tained for the case of a shear-dominated flow, and the

direct comparison of independent calculations of effective

diffusivity and Lyapunov-derived quantities.

The construction of a Lyapunov diffusivity will pro-

ceed in three steps. Key to the success of the effective

diffusivity diagnostic as a parameterization of mixing is

its ability to characterize the complexity of tracer fila-

ments. Thus, in the first step, we incorporate information

concerning the structure of tracer filaments from the

Lyapunov vectors to form a modified Lyapunov expo-

nent. Then, in the second step, we compare the modified

Lyapunov exponents and the effective diffusivity, with

the aim of generating a mixing diagnostic in units of dif-

fusion by fitting free parameters of a functional form.

Because the effective diffusivity only depends on equiv-

alent latitude, this comparison is done with modified

Lyapunov exponents averaged along contours of equiv-

alent latitude. In the third step, the fitted parameters

are used with the functional form to provide a local

estimation of mixing that represents the variability in

both latitude and longitude.

a. Relation between effective diffusivity and
Lyapunov-derived quantities

In a turbulent system, a passive tracer is stirred in fila-

mentary patches. In the early stage of their life cycle, fil-

aments intensify local gradients by creating fingered

intrusions between regions of different tracer concentra-

tions. Such a gradient intensification mechanism is a pre-

condition to mixing, because the redistribution of tracers

in progressively thinner filaments eventually enhances the

irreversible dispersion effect of small-scale turbulence.

The effective diffusivity and the Lyapunov exponent

calculation provide two different approaches for detect-

ing filamentation events. The effective diffusivity probes

the velocity field with a passive tracer and a background

diffusion. The enhanced dispersion effect resulting from

the stirring is measured indirectly by averaging the fila-

mentation events occurring along tracer contours. A

contour grows during the initial stage of filamentation

and retracts when its (thin) content is dispersed by the

background diffusion. If the turbulent field has reached

(or is close to) steady-state conditions, then growth and

retraction events over an entire contour are at statisti-

cal equilibrium and the contour length evolves toward an

asymptotic value. Longer contours correspond to a

stronger filamentation process and to a more effective

enhancement of the background diffusion. Therefore,

by quantifying the contour length, an estimate of mixing

is obtained in terms of an effective diffusion. However,

the contour averaging nature of the effective diffusivity

is the main limitation of this technique, because mixing

variability along an individual contour cannot be resolved.
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Lyapunov exponents and Lyapunov vectors detect

local stretching properties of a velocity field with both

longitudinal and latitudinal variability. In the case of fila-

mentation events, forward Lyapunov calculations provide

intensity and future direction of tracer gradient inten-

sification, whereas backward calculations estimate the

present orientation of a tracer gradient that has been pas-

sively advected. Strong filamentation is typically associated

with large Lyapunov exponents because of the presence of

strong chaotic regions. On the contrary, weakly mixing

structures, such as the cores of slowly evolving vortices, are

often associated with stagnation, low particle separation,

and therefore low values of Lyapunov exponents (Joseph

and Legras 2002; see also Garny et al. 2007).

Hence, one might expect the effective diffusivity to be

large when the Lyapunov exponent is large. In fact, a re-

lationship can be derived from the following heuristic

model for blob dilution (Shuckburgh and Haynes 2003).

Consider a finite blob of fluid in a domain of size L0 3 L0.

As time t goes on, under the repeated action of stretching

and folding, the fate of the blob is to invade the whole

domain. It does so by elongating as e l̂t, and its lateral size

is bounded by Ld. When the blob fills the domain, its

length L is such that LLd 5 L0
2 (i.e., L2 5 l̂L4

0/k); hence,

the effective diffusivity is keff ’ l̂L2
0.

The actual calculation of effective diffusivity involves

replenishing of the tracer by a large-scale gradient but

follows a similar scaling4 if the contour fills a significant

portion of the accessible domain.

b. Particle dispersion and mixing in a
shear-dominated flow

There are, however, cases in which particle separation

does not always act together with folding, notably in

shear-dominated regions within jet cores. In this case,

the use of the Lyapunov exponent as a diagnostic of

mixing can be misleading.

In a chaotic region, the stirring of a passive tracer is

always active and eventually leads to a uniform tracer

concentration. In contrast, the asymptotic effect of a

pure shear is not the suppression of the tracer gradient

but its orientation parallel to the shear direction (Fig. 1).

Calling f the angle between the gradient direction and

the shear direction, calling L the shear intensity, and

solving the advection equation for the case of a linear

tracer gradient, one finds

f(t) 5 arctan
1

1

tan[f(0)]
1 Lt

8>><
>>:

9>>=
>>;. (9)

Once the angle between the tracer gradient and the shear

direction is zero, the tracer is in a stationary condition. No

mixing occurs at this stage, and this mechanism maintains

asymptotically a large-scale tracer gradient. In this sense,

shear is more consistent with a transport barrier than

a mixing region, even if dissipation of the tracer gradient

can occur during the transient or in response to pertur-

bations (e.g., induced by shear instabilities).

On the other side, particles that do not strictly align on

a streakline are separated by the shear. There is no

mixing associated with this separation if the particles

carry the same value of tracer and are thus indistin-

guishable. In a pure shear flow, the separation is linear

and leads asymptotically to a zero Lyapunov exponent.

However, over finite time this separation can be large.

Moreover, when small random strain with amplitude g

is added to the shear, it is shown in appendix B that

the Lyapunov exponent no longer vanishes but scales

as L2/3g1/3, which is dominated by the large value of

the shear. For this reason, Lyapunov exponents may ex-

hibit large values, and a maximum in Lyapunov expo-

nents may appear where the effective diffusivity has

a minimum. Examples will be shown later, and other

cases of failed relation between effective diffusivity and

Lyapunov exponent of this type can be found in simple

analytic flows (Shuckburgh and Haynes 2003).

FIG. 1. (a) In a shear flow, where stable and unstable directions of deformation are parallel,

a passive tracer initially orientates its gradient parallel to the shear direction, but thereafter the

gradient is unaffected by the flow. (b) Conversely, when stable and unstable directions of de-

formation intersect, the gradient of a passive tracer is exponentially intensified, enhancing the

diffusion effect of small-scale turbulence at any time.

4 The fact that effective diffusivity is independent of k is fairly

well satisfied in practice (Shuckburgh and Haynes 2003).
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c. Particle dispersion from a dynamical
systems perspective

The ambiguous interpretation of large values of

Lyapunov exponents and mixing is also apparent by

looking at filaments from a dynamical systems per-

spective. By identifying the physical space with a phase

space, tracer filament formation has been shown to

correspond to the folding of the stable and unstable

manifolds of hyperbolic structures that are embedded

in the velocity fields. This folding process is typically

associated with the presence of homoclinic and hetero-

clinic intersections of the manifolds of hyperbolic points

(see, e.g., Beige et al. 1991; Wiggins 2005; Haller 2000;

Lapeyre et al. 2001; Mancho et al. 2004; Shadden et al.

2005). These manifolds are often used as templates of

transport properties. In fact, under general conditions, it

can be shown that a passive tracer tends to align its

gradient orthogonally to the unstable manifolds. When

the manifolds fold in thin lobes, as in the case of a per-

turbed homoclinic and heteroclinic intersection, passive

tracers are redistributed in filament patches, enhanc-

ing the background diffusion and eventually leading to

mixing. Manifolds of hyperbolic points have typically

larger stretching rates than the ones found in nearby

regions. On the basis of this heuristic assumption, these

manifolds are often unveiled as local maxima (ridges) in

a map of Lyapunov exponents.5 Although the Lyapunov

calculation also provides estimates of manifold orien-

tation through the Lyapunov vectors, the Lyapunov

exponent depends entirely on the stretching, not on the

geometry of the folding. This complicates the use of the

exponent alone for mixing, because the formation of

longer and thinner filament is not necessarily associated

with larger Lyapunov exponents. The problem can be

exemplified by considering the two cases of unperturbed

FIG. 2. Scatterplot of monthly means of effective diffusivity and (a) Lyapunov exponents l and (b) modified

Lyapunov exponents l sin2a averaged along equivalent latitude contours for the period 1981–2001 at 350 K. Points

are colored in blue and red for tropical (6158) and extratropical (158–808) latitudes, respectively. Density contours

enclosing 50% and 25% of the points are indicated.

FIG. 3. Comparison of time-averaged effective diffusivity (keff;

solid black line) with the Lyapunov exponents (l; dashed line) and

modified Lyapunov exponents (~l; solid gray line) averaged in time

and along equivalent latitude contours for the period 1981–2001 at

350 K. The modified Lyapunov exponents have been multiplied by

a factor 2.5 to fit on the same scale. Note that the anticorrelation

between the unmodified Lyapunov exponent and the effective

diffusivity at the latitudes of the subtropical jets, where transport is

dominated by shear.

5 See, for instance, Koh and Legras (2002) for the manifolds

encircling the stratospheric polar vortex.
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and perturbed homoclinic structures (see, e.g., Beige

et al. 1991, their Fig. 1a; Joseph and Legras 2002, their

Fig. 1). A tracer released in the vicinity of these struc-

tures tends to orientate its gradients orthogonally to the

manifolds (with a relaxation time given by the Lyapunov

exponent). These dynamics result in two very different

tracer redistributions: transport by lobes and formation

of longer interface surfaces (with enhanced mixing in

presence of background diffusion) for the perturbed

case and segregation for the unperturbed case. How-

ever, the values of Lyapunov exponents in the two cases

do not have to be different. Similarly, the values of the

Lyapunov exponents along a manifold are not neces-

sarily larger where the manifold folds and mixing events

occur than when the manifolds intersect at low angles,

and a tracer gradient can be maintained for longer times.

These observations suggest that the Lyapunov expo-

nent, in order to correctly detect mixing events, needs to

be complemented by some additional information (the

Lyapunov vectors) for describing the intersection of

stable and unstable manifolds. In the following, we

will see how to obtain an analytical relation that com-

bines Lyapunov exponents and vectors. This will be

done by comparing climatologies of Lyapunov expo-

nents to the effective diffusivity and by studying in more

detail the case of shear flows that corresponds to the

case in which stable and unstable manifolds intersect at

low angles.

d. Modified Lyapunov exponents

If we assume that the effective diffusivity provides

a good parameterization of mixing, then the fact that

stretching alone is not always a correct proxy of mixing is

apparent in Fig. 2a, which shows no compact relation

between monthly means of effective diffusivity and

monthly means of Lyapunov exponents averaged around

equivalent latitude contours. From Figs. 3 and 4, one can

FIG. 4. Comparison of time-averaged effective diffusivity (keff; solid black line) with the

Lyapunov exponents (l; dashed line) and modified Lyapunov exponents (~l; solid gray line)

averaged in time and along equivalent latitude contours for each season over the period 1981–

2001 at 350 K. The modified Lyapunov exponents have been multiplied by a factor 2.5 to fit on

the same scale.
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see that the Lyapunov exponents (dashed line) and ef-

fective diffusivity (black solid line) are strongly anti-

correlated in the vicinity of the subtropical jets, where

transport is dominated by shear (with keff indicating a

minimum, but l indicating a maximum). An examination

of gridded maps of Lyapunov exponents (Fig. 5) also

indicates that a stretching maxima appears to be located

in correspondence with the strongest zonal segment of

the subtropical jet. This confirms that the Lyapunov ex-

ponent alone can be a misleading diagnostic of mixing in

shear-dominated regions.

However, the Lyapunov calculation also contains

Lyapunov vectors that provide information on the ge-

ometry of the stretching that a passive tracer undergoes.6

As noted earlier, the eigenvector associated with the

principal Lyapunov exponent of the backward calcula-

tion is known to indicate the orientation of the gradient

of a passively advected tracer. Conversely, the eigen-

vector obtained for the Lyapunov calculation forward in

time is the stable direction relative to future gradient

amplification. A simple condition for the presence of

FIG. 5. (left) Effective diffusivity (black) and Lyapunov exponent averaged around equivalent latitude contours

(gray). (right) (top) Gridded Lyapunov exponent l and (bottom) modified Lyapunov exponent ~l 5 l sin2a. The

time mean is for December 2000–February 2001, at 350 K, the streamlines averaged over the same time period are

overplotted.

6 Note that the Lyapunov vectors are always obtained from the

Lyapunov calculation as a by-product when the exponent is com-

puted as described in section 2, even if this information is often

neglected.
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shear is therefore given by the angle a between these two

Lyapunov vectors. This is because in shear-dominated

regions and large times these two directions tend to

coincide, whereas they differ in the case of mixing regions

(see appendix A for more details). As a first step toward

a Lyapunov diffusivity, we propose a quantity that de-

pends on the particle dispersion in the future (the forward

Lyapunov exponent l) and also on the angle a between

forward and backward Lyapunov vectors, so that the

values of strong Lyapunov exponent in shear regions are

suppressed:

~l 5 l sin2a. (10)

The factor sin2a modulates the growth rates of the

tracer gradient [see Eq. (A4)]. It can be justified analyt-

ically considering the dynamics of a fluid parcel in a shear-

dominated flow with random perturbations, as discussed

in appendix B. The angle a increases when the thinning

of filaments develops. The multiplication by the factor

sin2a thus emphasizes the Lyapunov values where the

filaments are thinner and suppresses the values where

shear dominates; hence, it is expected to have a better

correlation with the effective diffusivity.

Returning to Figs. 3 and 4, the modified Lyapunov

exponent ~l (gray line) correctly represents a mixing

minimum corresponding with the wintertime subtropical

jet (although there are still differences with respect to the

effective diffusivity; in particular, the weaker minimum in

correspondence with the summertime subtropical jet is

not well resolved). An examination of gridded maps of

this quantity (Fig. 5) indicates that the inversion of the

subtropical extrema is collocated with the most zonally

active part of the subtropical jet (cf. the minimum of

FIG. 6. Time evolution of the two quantities used to fit Eq. (11): (top) the quantity based on

the Lyapunov calculations, L2
eddyl sin2a, averaged around contours of equivalent latitude and

(bottom) the effective diffusivity keff.
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~l and the maximum of l over the west Pacific). Figure 2b

shows that there is a more compact relation in the extra-

tropics (red dots) between the monthly mean modified

Lyapunov exponent and effective diffusivity compared to

the unmodified version in Fig. 2a. In the extratropics, the

correlation coefficient is r 5 0.73. In the tropics (blue

dots), the correlation is still weak (see later comments).

e. The Lyapunov diffusivity

Supported by the improved correlation between ~l and

the effective diffusivity as well as by theoretical argu-

ments (see appendix B), we define a Lyapunov diffu-

sivity Dl(u, f) as a quantity with the units of diffusion

and a linear dependence on ~l:

D
l

[ k
a

1 bL2
eddy

~l, (11)

where ka and b are proportionality coefficients and Leddy

is a length scale representing the most energetic per-

turbations. As a first approximation, outside the tropics,

one might expect Leddy to scale as the Rossby de-

formation radius. However, there are times (e.g., when

the flow is dominated by the Asian monsoon anticy-

clone) when this may be a very poor approximation. In

light of this, we set Leddy to a generic value of 1000 km,

reducing at high latitudes (above 708) as sine of latitude

(i.e., with the deformation radius). We propose to find

the coefficients ka and b by taking the average around

equivalent latitude contours of Eq. (11) and fitting it to

the effective diffusivity keff. Figure 6 shows the temporal

evolution of L2
eddyl sin2a averaged around equivalent

latitude contours, along with keff. A similar temporal

evolution can be seen in both quantities, reflecting the

good correlation noted earlier.

When evaluating the coefficients in Eq. (11), we

compensate for the fact that we are not properly repre-

senting the latitudinal variations in Leddy by determining

the values of ka and b separately for each equivalent

latitude or in other words by allowing these values to

represent the unaccounted variation in latitude. Specif-

ically, we take the monthly means of L2
eddyl sin2a av-

eraged around equivalent latitude contours and the

monthly means of keff for the entire time period; at each

equivalent latitude, we use a linear fit to obtain ka(fe)

and b(fe). It should be noted that in the tropics, where

divergent motion forced by (in the analyzed wind field,

parameterized) convection is important, the length scale

likely gets very small, possibly to that of the grid size,

and the Lyapunov exponent may not be very meaning-

ful. In addition, the weak temporal variability of both

L2
eddyl sin2a and keff in the tropics (see Fig. 6) makes the

fitting of Eq. (11) unreliable.

Figure 7 presents the results of the linear fit pro-

cedure. At each equivalent latitude outside the tropics

(6158), there is a good fit between L2
eddyl sin2a and keff,

with a correlation coefficient always greater than 0.4.

For these extratropical equivalent latitudes, the mul-

tiplicative coefficient b is typically ;0.5 and the addi-

tive coefficient ka is typically small. The exception is in

the Northern Hemisphere subtropics where, as pre-

viously noted, the scaling we have chosen for Leddy

may be erroneous because of the dominance of the

FIG. 7. Linear coefficients obtained by fitting to Eq. (11): (a) additive coefficient ka, (b) multiplicative coefficient

b, and (c) correlation coefficient r. Outside the tropics, the correlation is always greater than r 5 0.4.
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Asian monsoon anticyclone. The correlation between

L2
eddyl sin2a and keff is weak in the tropics; as previously

discussed, the Lyapunov calculation may have less rel-

evance there. Correspondingly, the Dl values are dom-

inated by the additive coefficient ka in this region, and

the contribution from L2
eddy lsin2a is small.

Figure 8 presents the results of the fit (gray) to the ef-

fective diffusivity data (black) for each season averaged

over the period 1980–2001. It can be seen that, at all times,

the linear fit reproduces the effective diffusivity well.

f. A climatology of local mixing at 350 K

The effective diffusivity for the UTLS region has been

analyzed previously by Haynes and Shuckburgh (2000b)

and Scott et al. (2003). Here, we focus on the ability of

the Lyapunov diffusivity to detect longitudinal variabil-

ity of isentropic mixing. Figure 9 presents the Lyapunov

diffusivity as a gridded map that is time averaged for

December 2000–February 2001 and as a climatology for

the entire period 1981–2001.

The picture for December 2000–February 2001

demonstrates that there is considerable longitudinal

variability in the mixing that arises from the longitu-

dinal variability in the Lyapunov exponents (Fig. 5). At

all latitudes, local mixing regions may be characterized

by intensities several times stronger than their zonal

mean.

The climatological picture highlights some interesting

systematic features of the longitudinal variability. The

effective diffusivity detects reduced mixing, indicating

a barrier to eddy transport at the latitudes of the sub-

tropical jets. The Lyapunov diffusivity uncovers a more

complex picture, with sections of mixing minima sepa-

rated by synoptic-scale regions of vigorous mixing along

the subtropical jets.

In the Northern Hemisphere, the jet velocities are

strongest in a climatological sense in the western Pacific

and North Africa–Middle East and the barrier strength

is also strongest in these regions. The strongest mixing in

the region of the subtropical jet (2 3 106 m2 s21 in the

climatological mean) is at the jet exits in the central and

FIG. 8. The effective diffusivity keff as a function of equivalent latitude (black) and the

Lyapunov diffusivity Dl averaged around contours of equivalent latitude (gray) for each

season averaged over the period 1980–2001.

3688 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 66

Unauthenticated | Downloaded 10/22/21 12:27 PM UTC



eastern sides of the ocean basins, extending into North

America and northern Europe, respectively. These re-

gions coincide with regions of enhanced Rossby wave

breaking (Postel and Hitchman 1999). Poleward of the

subtropical jet is a region of rather homogeneous mixing

at all longitudes. In the Southern Hemisphere, mixing

appears more uniform and relatively weaker than in

the Northern Hemisphere in the climatological mean. A

strong subtropical barrier is observed at all longitudes

(strongest over Australia). There is also evidence of

a barrier associated with the polar jet at 608S over the

Indian and Atlantic Oceans. Regions of enhanced mix-

ing in the Pacific subtropics and at all longitudes along

the coast of Antarctica roughly correspond to regions of

enhanced Rossby wave breaking (Postel and Hitchman

1999; Berrisford et al. 2007). All these longitudinal

variations in mixing will be examined in more detail in

Part II.

4. Discussion

In this paper, we have introduced a new diagnostic

of transport and mixing, the Lyapunov diffusivity. This

diagnostic uses the effective diffusivity for quantifying

mixing as a function of equivalent latitude and both

Lyapunov exponents and vectors for measuring the in-

tensity and geometry of local stretching. The combination

of the two diagnostics overcomes the main limitation of

FIG. 9. (left) Effective diffusivity (black) and fitted Lyapunov diffusivity averaged around equivalent latitude

contours (gray). (right) Gridded Lyapunov diffusivity Dl. The time means for (top) December 2000–February 2001

and (bottom) the period 1981–2001 at 350 K. The streamlines averaged over the same time periods are overplotted.
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the effective diffusivity; it allows mixing variability to be

resolved along equivalent latitude contours (which, for

the atmosphere, corresponds broadly to the longitudinal

direction).

The geometric information coming from Lyapunov

vectors is especially relevant in shear-dominated regions,

where stretching is orthogonal to the gradient developed

by a passively advected tracer. In this case, without

a correction by a geometrical factor, the Lyapunov ex-

ponents are not correlated in space and/or time with the

effective diffusivity. By studying the case of a shear-

dominated flow perturbed by a random deformation, we

have found an analytical relation for obtaining a local

diffusivity from Lyapunov calculations. Fitting this re-

lation to values of effective diffusivity allows a ‘‘Lyapunov

diffusivity’’ to be defined. This quantity has the comple-

mentary advantages of Lyapunov calculations and effec-

tive diffusivity: the ability to resolve local mixing events in

both latitude and longitude, along with the parameteri-

zation of mixing in diffusion units.

The theoretical analysis we have performed is based

on the study of a shear-dominated flow perturbed by

a random and weak deformation. This case is especially

well suited for the subtropics, but the link between

Lyapunov calculations and effective diffusivity that we

find can be interpreted in the general case in terms of

filament dynamics and is supported by the good corre-

lation with effective diffusivity outside the tropics. The

linear fit we perform has the effect of redistributing the

effective diffusivity over a longitudinal contour, which

is proportional to the value of Leddyl sin2a. A future

goal is to develop the theoretical framework to provide

a parameterization of the proportionality coefficients.

By applying the Lyapunov diffusivity to the 350-K

isentropic surface, we have been able to characterize

local transport and mixing structures in the UTLS re-

gion. In Part II, we conduct a detailed examination of

the seasonal and interannual variability of this local

transport and mixing structure. A future study will

consider other regions of the atmosphere: in particular,

isentropic exchanges across the tropical pipe in the

stratosphere (Plumb 2002; Shuckburgh et al. 2001).

Both the effective diffusivity (Marshall et al. 2006;

Shuckburgh et al. 2009b) and the Lyapunov exponents

and vectors (Abraham and Bowen 2002; d’Ovidio et al.

2004; Waugh et al. 2006; Lehahn et al. 2007) have been

shown to provide robust diagnostics of ocean circula-

tions. This offers the possibility of using the Lyapunov

diffusivity to quantify local eddy mixing in the ocean.

This would be particularly interesting, because studies

using the effective diffusivity based on restricted patches

of the ocean (Shuckburgh et al. 2009c) have indicated

that there is very significant local variability in the eddy

diffusivity.
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APPENDIX A

Lyapunov Exponents and Lyapunov Vectors

We consider here the evolution of an infinitesimal

blob of tracer that is assumed to be circular at time t0
(see Fig. 10). Equation (6) shows that this evolution is

entirely defined by the linear application M, which sat-

isfies, from (5),

D

Dt
M(x

0
jt

0
, t

0
1 t) 5 $u(x

0
, t

0
1 t)M(x

0
jt

0
, t

0
1 t),

(A1)

with M(x0jt0, t0) [ I.

From its definition in (8), we see that the Lyapunov

exponent is l 5 ½ t ln s, where s is the largest eigen-

value of MTM. For an incompressible flow, the other

eigenvalue is 1/s, defining a second Lyapunov exponent

as l2 5 2l. These two eigenvalues are associated with

two normalized orthogonal eigenvectors G1(t0) and

H1(t0), satisfying for the former

FIG. 10. The evolution of a blob of tracer in forward and backward time under the linear application M. The

directions G1, G2, H1, and H2 are indicated at different times.
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MT(t
0
, t

0
1 t)M(t

0
, t

0
1 t)G1(t

0
) 5 e�2l(t0, t01t)tG1(t

0
) .

(A2)

The eigenvector G1(t0) is called the stable direction at

time t0. A line element along G1(t0) is shrunk by the flow

between t0 and t0 1 t and gets aligned with the trans-

verse direction of the blob at time t0 1 t given by

G1(t
0

1 t) 5 el(t0, t01t)tM(t
0
, t

0
1 t)G1(t

0
) .

The orthogonal direction H1(t0 1 t) is the elongation

axis of the blob at time t0 1 t and the image of H1(t0)

that we refrain, however, to call the unstable direction

for the following reason; if a line element is initially

projected onto G1(t0) and H1(t0) as dx(t0) 5 aG1(t0) 1

bH1(t0), then its counterpart at time t0 1 t will be

dx(t
0

1 t) 5 ae�ltG1(t
0

1 t) 1 beltH1(t
0

1 t). (A3)

Hence, all line elements but those aligned initially with

G1(t0) tend to become aligned with H1(t0 1 t) as t in-

creases. In other words, the only distinctive direction at

time t0 for future evolution is the stable direction G1(t0),

because all other directions are unstable.

Applying the same reasoning for past evolution,

which maps the blob at t0 to its previous shape at t0 2 t9

by M21(t0 2 t9, t0), a new direction G2(t0) can be defined

for which a line element is shrunk for backward evolu-

tion in time and becomes aligned with G2(t0 2 t9) at t0 2

t9. Correspondingly, H2(t0) and H2(t0 2 t9) are defined

as the axis of expansion for past evolution. We call

G2(t0) the unstable direction at time t0, because it is the

direction along which all tracer elements at time t0 2 t9,

but those aligned with H2(t0 2 t9) tend to align when t9

gets large. All the other directions at time t0 are images

of direction close to H2(t0 2 t9) at time t0 2 t9. Hence,

G2(t0) is the only distinctive relation for past evolution

at time t0.

Notice that G1(t0) and G2(t0) depend on t and t9, but

they converge exponentially in time (Goldhirsch et al.

1987; Legras and Vautard 1996), unlike the Lyapunov

exponent, which converges as 1/
ffiffi
(

p
t). Notice also that

the necessary distinction between past and future evo-

lution is often obscured in the mathematical literature

by the fact that Lyapunov exponents are generally in-

troduced for a time-periodic dynamical system, a re-

striction that is not necessary for the Oseledec theorem

(Oseledec 1968) and does not apply to geophysical flows.

An extended version of this discussion for N-dimensional

flows and examples can be found in Legras and Vautard

(1996).

Under suitable conditions, the extensions of G1(t0)

and G2(t0) at finite distance generate the stable and

unstable manifolds of the Lagrangian trajectories con-

taining all the points converging to it in the future or past

evolution, respectively. Haller (2000, 2002) discusses

how this notion applies to finite durations.

The roles of G and H in this discussion are swapped if

one considers gradients instead of line elements. As

a result, the gradient of a passive tracer tends to align

with H2(t0) at time t0, and the stable direction for future

evolution is given by H1(t0). This alignment is also pre-

conditioning the evolution for t . t0. Assuming alignment

with H2(t0) at time t0 and using (A3) modified for the

gradient by swapping G and H, the growth rate is then

d

dt
j$cj2 5 l sin2ae2lt , (A4)

where a is the angle between the stable and the unstable

direction (see Fig. 10).

APPENDIX B

Stretching and Effective Diffusivity in a
Shear-Dominated Flow

A pure shear U(y) 5 Ly is characterized by a linear

growth of the distance between two parcels; hence, the

Lyapunov exponent vanishes at large time. However, it

is clear that, for a flow with large shear region, the sep-

aration between two parcels can grow quickly within the

shear region, as long as the parcels are not aligned with

the wind. The shear tends to produce such alignment

with the wind (or an alignment of the gradient perpen-

dicular to it), but this alignment can be destroyed by an

added perturbation. The basic mechanism is that, under

pure shear, the alignment is a stable equilibrium for

a rotation of the segment formed by two parcels against

the shear, whereas it is unstable for a rotation in the

same direction as the shear. When the segment is ap-

proaching the equilibrium from the stable side, a small

perturbation can send it on the unstable side, where the

shear tumbles it by a p angle toward equilibrium again.

It is shown here that the repeated action of this process

generates a mean growth of the distance between the

two parcels and that it provides a relation between

the Lyapunov exponent and the shear, which is the

main ingredient for relating the effective diffusivity to

Lyapunov calculations.

We consider the case of an incompressible two-

dimensional flow dominated by a fixed shear U 5 Ly

with added fluctuating strain and rotation. The in-

stantaneous velocity gradient is
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F 5 $u 5 V
0 �1

1 0

 !
1 g

sin2f �cosf

�cos2f �sin2f

 !

1 L
0 1

0 0

 !
,

where V, g, and f are the rotation, strain, and orienta-

tion of the strain axis, respectively.

A small blob of tracer can be described by its inertial

matrix

I(t) 5
1

2N

ð
xxTC(x, t) d2x,

where N 5
Ð

C(x, t) d2x is the total concentration. Under

advection by the flow plus diffusion, the inertial matrix

evolves according to (Balkovsky and Fouxon 1999)

dI

dt
5 k 1 FI 1 IFT.

A convenient representation of I is I 5 R(Q)S(r)R(2Q),

where R(Q) is the rotation of angle Q and S(r) is a di-

agonal matrix with diagonal (e2r, e22r). Here, Q is the

angle of the main inertial direction of the blob with the x

axis, and the equations for Q and r are

dr

dt
5�g sin2(Q� f) 1

1

2
L sin2Q 1

k

2
e�2r and

(B1)

dQ

dt
5 V�g cos2(Q� f) coth2r

1
L

2
(cos2Q coth2r � 1). (B2)

The equation for a line element is obtained for k 5 0 and

in the limit of large r [i.e., letting coth2r 5 1 in (B2)].

In this case, the angular equation decouples from the

equation of the elongation. In the following, we will

neglect k, but it can be easily reintroduced in the final

result. In the simplest case, V 5 g 5 0, the full solution is

simply given by

S[r(t)] 5 R[�Q(t)]
0 Lt
0 0

� �
R(Q

0
)S(Q

0
)R(�Q

0
)

0 0
Lt 0

� �
R[Q(t)],

but the basic behavior can be readily seen directly from

(B1) and (B2); the angle Q tends to 0 or p, and r in-

creases to infinity but less than linearly in time. Conse-

quently, the Lyapunov exponent tends asymptotically to

zero, whereas it can still be large at finite time. However,

the two equilibria are only stable on one side. As the

angle approaches 0 or p from upper values, a small

perturbation induced by additional strain or rotation

can induce a jump to the other side of the equilibrium,

which is followed by tumbling and stretching of the

patch by the shear. Thus, for a perturbed shear flow, the

Lyapunov exponent no longer vanishes, and the stretch-

ing is mainly performed by the shear, whereas the per-

turbation triggers the jumps across Q 5 0 and p. Adding

a small diffusion does not change the picture very much,

because the equilibrium is then displaced to a small O(k)

angle and a finite r, but with the same stability properties.

To investigate further the behavior of the perturbed

flow, we consider the large r limit and a random short-

lived perturbation modeled as a Wiener process. In this

case, the angular equation is

dQ 5 2~g1/2 dw� L sin2Q dt, (B3)

with hdw(t) dw(t9)i 5 d(t 2 t9) dt2, where h(�)i means

a statistical average and we have assumed that f is

random and that the strain and the rotation have equal

variance. The Fokker–Planck equation for the proba-

bility distribution P(Q, t) is then

›P

›t
5 L

›P sin2Q

›Q
1 ~g

›2P

›Q2
. (B4)

The stationary solution for this equation is (Turitsyn 2007)

P(Q) 5 Kf (Q)

ðQ

Q�p

f (Q)

f (s)
ds, where (B5)

f (Q) 5 exp �x

2
Q� 1

2
sin2Q

� �� �

and the shear to perturbation ratio is x 5 L /~g. The

periodicity condition P(Q 1 p) 5 P(Q) is satisfied by

(B5) and the constant K is obtained by the normaliza-

tion condition

2

ðp

0

P(Q) dQ 5 1.

For large x, we can perform explicit calculations using the

steepest descent method, and we have K 5 cx2/3, where

c 5 31/3221G22(1/3) 5 0.1005 . . . . In this limit, we write

P(Q) 5 cx2/3

ðQ

Q�p

exp �x

3
(Q3� s3)

h i
ds. (B6)
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It is visible from (B6) that the distribution P(Q) peaks

at a small angle with a mean value scaling as x21/3 and

the Lyapunov exponent l is obtained from

l 5
dr

dt

� �
5 L

ðp

0

sin(2Q)P(Q) dQ 5 c
3
Lx�1/3, (B7)

where the constant c3 is numerically obtained as c3 ’

0.37. In other words,

l 5 c
3
L2/3~g1/3. (B8)

Equation (B8) can be used to get a relation between

the effective diffusivity and the Lyapunov exponents. In

a shear flow, the stable and unstable directions defined

in appendix A tend to align with the flow, and the tracer

gradients tend to be orthogonal to the flow. In a pure

shear flow, when the two directions are aligned and the

stable and unstable manifold are the same, a perfect

mixing barrier is generated. This barrier breaks under

perturbation, and the width of the stochastic zone or the

angle between the stable and the unstable manifolds

depends on the amplitude of the perturbation, according

to Melnikov theory (Wiggins 2003).

In the simple model considered here, the unstable

direction aligns with the main inertial axis, whereas the

stable direction is obtained by reverting the temporal

integration from some time in the future. The stable

direction then lies at an angle scaling as x21/3 on the

opposite side of the shear axis with respect to the un-

stable direction. Consequently, the angle between the

stable and unstable directions is small and scales as x21/3.

The tracer gradient is basically orthogonal to the un-

stable direction, and this is favored in the atmosphere by

the existence of a mean pole-to-equator difference for

most species and a mean flow along the parallels. To

establish the link between stretching and effective dif-

fusivity, we also need to assume a typical spatial scale Lf

for the random deformation. In this case, one can argue

that the effective diffusivity scales as ~gL2
f . Because the

Lyapunov exponent l scales as L2/3~g1/3, we can write the

relation as keff ; l(~g/L)2/3L2
f . Taking into account that

the angle a between the stable and unstable directions is

;(~g/L)1/3, we obtain

k
eff

; la2L2
f .

This result is obtained for a small ratio, ~g/L. To gener-

alize it to the whole flow and all circumstances, we

propose that the relation between Lyapunov exponent

and effective diffusivity should be

k
eff

5 k
a

1 bL2
f l sin2a, (B9)

where ka and b are experimentally determined quantities.
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