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Abstract Model-based clustering is a popular tool which is renowned for its
probabilistic foundations and its flexibility. However, model-based clustering
techniques usually perform poorly when dealing with high-dimensional data
streams, which are nowadays a frequent data type. To overcome this limita-
tion of model-based clustering, we propose an online inference algorithm for
the mixture of probabilistic PCA model. The proposed algorithm relies on an
EM-based procedure and on a probabilistic and incremental version of PCA.
Model selection is also considered in the online setting through parallel com-
puting. Numerical experiments on simulated and real data demonstrate the
effectiveness of our approach and compare it to state-of-the-art online EM-
based algorithms.

Keywords model-based clustering · mixture of probabilistic PCA · data
streams · high-dimensional data · online inference

1 Introduction

Clustering is a data analysis tool which aims to group data into several ho-
mogeneous groups. It usually occurs in applications in which a partition of
the data is necessary. In particular, more and more scientific fields require
to cluster data in order to understand or interpret the studied phenomenon.
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90, rue de Tolbiac, 75634 Paris Cedex 13, France
E-mail: anastasios.bellas@malix.univ-paris1.fr
E-mail: charles.bouveyron,marie.cottrell@univ-paris1.fr
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For instance, in the domain of aircraft engine health monitoring, Snecma,
the french aircraft engine constructor, is interested in identifying a class sub-
structure inherent to the data, i.e., a partition of the data, in order to better
monitor an engine throughout its life, i.e. detecting malfunctions of the engine
that can occur during a flight.

The clustering problem has been studied for years and can be split into
two main families: heuristic and model-based techniques. Earliest approaches
were based on heuristic or geometric procedures and relied on dissimilarity
measures between the observations. The k-means algorithm [26] and the hi-
erarchical clustering [16] are probably the most used heuristic procedures.
Model-based clustering [18,28] is also a popular approach which is renowned
for its probabilistic foundations and its flexibility. One of the main advantages
of this approach is the fact that the obtained partition can be interpreted from
a statistical point of view.

However, modern data have some specificities which are challenging for
most clustering methods and, in particular, for model-based clustering. In-
deed, data are nowadays frequently high-dimensional, i.e. the number p of
measured variables is large, and are also often available as data streams, i.e.
the observations arrive over the time and the number of observations n → ∞.
Such data, both high-dimensional and data streams, are more and more fre-
quent in applications because of the recent technical advances in measure-
ment devices. This is in particular the case in the applicative example that we
consider in Section 4. Indeed, aircraft engines are nowadays made with sev-
eral built-in high-frequency captors which produce large and high-dimensional
data streams. The clustering of such data streams is in particular helpful for
Snecma for the monitoring of their engines.

To overcome both issues, we propose to adapt a popular model-based clus-
tering algorithm for high-dimensional data, called mixture of probabilistic
principal component analyzers (MPPCA) [35], to the online setting. MPPCA
is a clustering technique which models and clusters the data in low-dimensional
subspaces. It allows to deal with high-dimensional data and has been applied
with success to chemometrics [24] and hyperspectral image analysis [10] for
instance. To make MPPCA able to cluster high-dimensional data streams, we
develop hereafter an online EM-based algorithm which incorporates a proba-
bilistic and incremental version of PCA. The resulting algorithm, called online
MPPCA, is thus able to incrementally estimate mixture parameters while clus-
tering the new observed data and keeping a low-dimensional representation of
the whole data set. Let us notice that, even though we present here an online
inference algorithm for the MPPCA model, it can be easily adapted for similar
models such as MFA [20], PGMM [30] or HD-GMM [10,11].

This article is organized as follows. Section 2 recalls the bases of model-
based clustering and presents existing solutions for clustering high-dimensional
data and data streams. Section 3 introduces the MPCCA model and presents
its online inference algorithm. Model selection and data visualization in the
online setting are also discussed in this section. Numerical experiments and
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comparisons on simulated and real data are reported in Section 4. Finally,
Section 5 gives some concluding remarks and directions for further work.

2 Related work

After having briefly reviewed the essentials of model-based clustering, this
section presents existing solutions for clustering high-dimensional data and
data streams.

2.1 Model-based clustering

Let us consider a data set of n observations {y1, . . . , yn} ∈ R
p that one wants

to cluster into K homogeneous groups, i.e. determine for each observation
yi the value of its unobserved label zi such that zi = k if yi belongs to the
kth cluster. To do so, model-based clustering [18,28] considers the overall
population as a mixture of the groups and each component of this mixture is
modeled through its conditional probability distribution. In this context, the
observations {y1, . . . , yn} ∈ R

p are assumed to be independent realizations of a
random vector Y ∈ R

p whereas the unobserved labels {z1, ..., zn} are assumed
to be independent realizations of a random variable Z ∈ {1, ...,K}. The set of
pairs {(yi, zi)}

n
i=1 is usually referred to as the complete data set. By denoting

by p the probabilistic density function of Y , the finite mixture model is:

p(y) =

K
∑

k=1

πkfk(y), (1)

where πk (such that
∑K

k=1 πk = 1) and fk respectively represent the mixture
proportion and the conditional density function of the kth mixture component.
Furthermore, the clusters are often modeled by the same parametric density
function. In this case, the finite mixture model is:

p(y) =

K
∑

k=1

πkf(y|θk), (2)

where θk is the parameter vector for the kth mixture component. Among the
possible probability distributions for the mixture components, the Gaussian
distribution is certainly the one most frequently used for both theoretical and
computational reasons. This specific mixture model is usually referred in the
literature as the Gaussian mixture model (GMM).

Unfortunately, the inference of this model cannot be done in a straightfor-
ward manner by maximizing the likelihood, since the group labels {z1, ..., zn}
are unknown. To overcome this problem, the expectation-maximization (EM)
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algorithm iteratively maximizes the conditional expectation of the complete
log-likelihood:

E [ℓc (θ; y, z) |θ
∗] =

K
∑

k=1

n
∑

i=1

tik log (πkφ (yi; θk)) ,

where tik = E [z = k|yi, θ∗] and θ∗ is a given set of mixture parameters. From
an initial solution θ(0), the EM algorithm alternates two steps: the E-step and
the M-step. First, the expectation step (E-step) computes the expectation
of the complete log-likelihood E

[

ℓc (θ; y, z) |θ(q)
]

conditionally to the current

value of the parameter set θ(q). Then, the maximization step (M-step) max-
imizes E

[

ℓc (θ; y, z) |θ
(q)

]

over θ to provide an update for the parameter set.

This algorithm therefore forms a sequence
(

θ(q)
)

q
which is guaranteed to con-

verge toward a local optimum of the likelihood [39]. For further details on the
EM algorithm, the reader may refer to [27].

The two steps of the EM algorithm are iteratively applied until a stop-
ping criterion is satisfied. The stopping criterion may be simply |ℓ(θ(q); y) −
ℓ(θ(q−1); y)| < ε where ε is a positive value to provide. It would be also possible
to use the Aitken’s acceleration criterion [25] which estimates the asymptotic
maximum of the likelihood and allows to detect in advance the algorithm con-
vergence. Once the EM algorithm has converged, the partition {ẑ1, . . . , ẑK} of

the data can be deduced from the posterior probabilities tik = P (Z = k|yi, θ̂)
by using the maximum a posteriori (MAP) rule which assigns the observation
yi to the group with the highest posterior probability.

2.2 Clustering of high-dimensional data

Model-based clustering methods unfortunately show a disappointing behavior
in high-dimensional spaces which is mainly due to the fact that they are sig-
nificantly over-parametrized. Since the dimension of observed data is usually
higher than their intrinsic dimension, it is theoretically possible to reduce the
dimension of the original space without loosing any information. For this rea-
son, dimension reduction methods are frequently used in practice to reduce
the dimension of the data before the clustering step. Feature extraction meth-
ods, such as principal component analysis (PCA), or feature selection methods
are very popular. However, dimension reduction techniques usually provide a
sub-optimal data representation for the clustering step since they imply an
information loss which could have been discriminative.

To avoid the drawbacks of dimension reduction, several recent approaches
have been proposed to allow model-based methods to efficiently cluster high-
dimensional data. Subspace clustering methods are searching to model the data
in subspaces of much lower dimension and, thereby, avoid numerical problems
and boost clustering capability. The Mixture of Factor Analyzers (MFA) may
be considered as the earliest and the most general subspace clustering method.
MFA both clusters the data and locally reduces the dimensionality of each
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cluster. It extends the standard Factor Analysis (FA) model [6,7], which links
linearly the p-dimensional random vector Y to a d-dimensional latent vector
X:

Y = UX + µ+ ǫ (3)

The p × d factor matrix U relates the two random vectors and µ ∈ R
p is a

fixed location parameter. When d < p, X provides us with a parsimonious
representation of Y . In this context, d is interpreted as the intrinsic dimension
of Y .

The MFA model differs from the FA model in that it allows for different
local factor models, in different regions of the input space, unlike FA which
assumes a common factor model for the entire space. MFA is an extension of
FA to a mixture of K factor analyzers. This approach , introduced by [20],
was generalized a few years later by [29], which removed in particular the
constraint on the variance of the noise. The MFA model was also extended
by [5], which introduces the mixture of factor analyzers with common factor
loadings (MFCA) by adding restrictions on the means and the covariance
matrices.

A general framework for the MFA model was also proposed by [30] which
includes the works of [20] and [29]. The authors propose a family of mod-
els known as the expanded parsimonious Gaussian mixture model (EPGMM)
family. They derive 12 EPGMM models by either constraining the terms of
the covariance matrix to be equal or not, considering an isotropic variance
for the noise term, or re-parametrizing the factor analysis covariance struc-
ture. In a slightly different context, [10,11] proposed a family of 28 parsimo-
nious and flexible Gaussian models to deal with high-dimensional data. To do
so, the authors re-parametrize the Gaussian mixture model into the group-
specific eigenspaces and constrain model parameters within or across those
eigenspaces. Let us note that both [30] and [10,11] incorporates in their family
the popular mixture of probabilistic principal component analyzers (MPPCA),
initially proposed by [35].

Recently, [9] have proposed a family of mixture models which fit the data
into a common discriminative subspace. The discriminative latent mixture
(DLM) model, as it is called, differs from the FA-based models in the fact that
the latent subspace is common to all groups and is assumed to be the most
discriminative subspace of dimension d. Moreover, the FA-based models choose
the latent subspace(s) maximizing the projected variance whereas the DLM
model chooses the latent subspace which maximizes the separation between the
groups. Let us notice that the inference of the DLM models is not possible with
the EM algorithm and [9] have proposed an alternative inference algorithm,
called the Fisher-EM algorithm.
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2.3 Clustering of data streams

In a probabilistic setting, incremental estimation approaches have naturally
focused on extending the well-known EM procedure [14] for data stream clus-
tering.

In [31], a view of EM that justifies incremental variants of the procedure
is proposed. The authors define an objective function F and reformulate the
EM procedure as a two-step maximization of F , with regard to the posterior
class probability (E-step) and to the parameter vector (M-step). They show
that their formulation is equivalent to standard EM. Moreover, they show that
F =

∑

i Fi, where Fi is the value of F for the i-th observation, i = 1, . . . , n.
Based on the above decomposition, they derive a procedure which uses one
observation at a time, maximizing its respective Fi. It can be shown that
the inferential import of the complete data can be summarized by a vector
of sufficient statistics, which can be kept incrementally. The gain from such
an incremental formulation is that it can speed up convergence, due to the
parameter vector update taking place right after the update of the posterior
class probability for each observation. In [37], the authors consider stochastic
procedures for the recursive (online) update of the parameters of a statistical
model using incomplete data. Their approach is general, but we will present
here its application on EM. They give a recursive procedure to estimate the
Q function of the E-step of a standard EM. Based on this, they maximize Q
with regard to the parameter vector in the M-step using the Newton-Raphson
method. They also make use of the Fisher Information Matrix, which is the
expectation of the Hessian Matrix. In this way, they finally derive a recursive
(online) EM algorithm.

In [33], the authors based their work on [37] to develop an online CEM
(for CEM, see [13]), which is a classification version of the standard EM. They
reformulate CEM so that a stochastic version can be derived and they then
adapt the update equations given by [37] for the M-step to the CEM context.
Online EM was proposed in [12]. The authors make the hypothesis that the
underlying statistical model of the data belongs to the exponential family.
In their work, the standard EM procedure has been re-parametrized entirely
into the space of sufficient statistics. They replace the standard E-step with a
stochastic approximation step, which updates sufficient statistics by a convex
combination of the old and the new ones. The combination is controlled by a
sequence of decaying hyper-parameters γi, with 0 ≤ γi ≤ 1 and i = 1, . . . , n,
where n is the size of the dataset. Then, in the M-step, update formulas based
on the sufficient statistics are being used to update the parameters.

There has also been an interest in developing approaches for incremental
learning of Gaussian mixture models [3,17,22,38] in the sense that new data
are arriving over time and the GMM model must adapt itself appropriately.
Unfortunately, these methods also suffer from the curse of dimensionality. The
difference of these approaches to the online versions of EM mentioned above
is that incremental GMM approaches are also concerned with controlling the
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model complexity (number of mixture components, merging/splitting compo-
nents, adding new ones etc.).

Finally, several works have also treated the problem of clustering data
streams in a non probabilistic setting. In a number of these works [4,15,21,32],
some extensions of the popular k-means or k-median algorithms are developed
in order to cluster data streams. A rather different approach is adopted in [1],
where an online k-means-like clustering component is combined with an offline
one, in order to better capture the evolution of the data stream. For a broad
presentation of heuristic clustering algorithms for data streams, see [19].

Unfortunately, most of the above approaches suffer from the curse of di-
mensionality and they cannot handle high-dimensional data.

3 Online mixture of PPCA

In this section, we restrict ourselves to the mixture of PPCA model and con-
sider its online inference. Model selection and visualization of the data into
low-dimensional subspaces are also discussed.

3.1 Mixture of probabilistic PCAs

The mixture of PPCA model [36] is a constrained version and probably the
most popular extension of the MFA model. The MPPCA model assumes that
the observed random vector Y ∈ R

p is, conditionally to Z, linked to a d-
dimensional latent random vector X ∈ R

d through a linear transformation of
the form:

Y|Z=k = UkX + µk + ǫ,

where Uk is the p× d orthogonal transformation matrix, µk ∈ R
p is the mean

vector of the kth factor analyzer and ǫ ∈ R
p is a noise term. The dimension d

of the latent vector is such that d < p and assumed to be known (the choice of
d is discussed in Section 3.3). Moreover, ǫ is assumed to be, conditionally to Z,
a centered Gaussian noise term with a diagonal covariance matrix Ψk = bkIp:

ǫ|Z=k ∼ N (0, bkIp).

Besides, the unobserved latent factor X ∈ R
d is assumed to be, conditionally

to Z, distributed according to a Gaussian density function such as:

X|Z=k ∼ N (0, Id).

This implies that the conditional distribution of Y is also Gaussian:

Y|X,Z=k ∼ N (UkX + µk, bkIp), (4)

and its marginal distribution is therefore a mixture of Gaussians:

p(y) =

K
∑

k=1

πkφ (y;µk, Σk)
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where πk is the mixture proportion for the kth component, φ is the multivariate
Gaussian density function and Σk = U t

kUk + bkIp.

In order to facilitate the description of our online inference procedure, let us
slightly reparameterize the above model. Let us first introduce the orthonormal
transformation matrix Qk which is such that its jth column qkj = ukj/ ‖ ukj ‖
where ukj is the corresponding column of Uk. If the transformation matrix Qk

is orthonormal, it is then necessary to report the variance of the latent factor
within the distribution of the latent factor. We therefore now assume that:

X|Z=k ∼ N (0, ∆k),

where ∆k = diag(λk1, . . . , λkd). The marginal distribution of Y is then still a
mixture of Gaussians but with covariance matrices Σk = Qt

k∆kQk + bkIp. By
denoting by Wk = [Qk, Rk] the p × p matrix made of Qk and an orthonor-
mal complementary Rk, the projected covariance matrix WkΣkW

t
k has the

following form:

WkΣkW
t
k =





















ak1 0
. . .

0 akd

0

0

bk 0
. . .

0 bk



























d















(p− d)

where akj = λkj + bk and akj > bk , for k = 1, . . . ,K and j = 1, ..., d. With
these notations, the mixture of PPCA model is fully parametrized by the set
of parameters θ = {πk, µk, Qk, akj , bk, d; k = 1, ...,K}.

It can be shown [10,35] that, conversely to the MFA model, the MPPCA
model is identifiable and its inference can be done using a simple EM algorithm.
In particular, the update formula in the M step for the orientation matrices
Qk and the variance parameters akj and bk are as follows:

– the d columns of Qk are estimated by the eigenvectors associated with
the d largest eigenvalues of the empirical covariance matrix Sk of the kth
group,

– akj is estimated by the jth largest eigenvalues of Sk,
– bk is estimated by:

b̂k =
1

p− d



tr(Sk)−
d

∑

j=1

âkj



 .

These update formula allow in addition to see the strong link between MPPCA
and the principal component analysis (PCA) method.
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3.2 Online inference of mixture of PPCA

In order to extend MPPCA to the online setting, we develop hereafter an
online EM-based algorithm which incorporates a probabilistic version of the
incremental PCA [23]. We consider here an online setting where new observa-
tions are arriving as time passes and each observation is being discarded after
being processed.

Let us assume that we initially have observed a dataset of n0 observations
(y1, ..., yn0

) ∈ R
p and that we have obtained an initial estimate θ̂(n0) of the

parameter set from these observations. In practice, we obtain an initial esti-
mation of the model parameters for every component k = 1, . . . ,K with a
standard MPPCA on this initial dataset. Let us set n = n0 and consider the
arrival of a new observation yn+1 ∈ R

p. The objective is therefore to update
the estimate of θ from the only knowledge of θ̂(n) and yn+1. This will be a
two-step procedure which involves an E-step and a M-step.

3.2.1 The E-step

Before updating the estimate of θ, it is necessary to compute the expectation

of the complete log-likelihood E
[

ℓc (θ; y, z) |θ̂
(n)

]

conditionally to the current

estimate θ̂(n). This quantity will be maximized in the second step to obtain the
new estimate θ̂(n+1) of θ. As for all mixture models, the computation of the
conditional expectation of the complete log-likelihood reduces, in the context

of the MPPCA model, to the computation of the probabilities t
(n+1)
k = P (Z =

k|Y = yn+1), k = 1, ...,K, that the new observation belongs to the kth mixture
component. These probabilities can be computed as follows:

t
(n+1)
k =

πkφ
(

yn+1; θ̂
(n)
k

)

K
∑

ℓ=1

πℓφ
(

yn+1; θ̂
(n)
ℓ

)

= 1

/

K
∑

ℓ=1

exp

(

1

2
(Γ

(n)
k (yn+1)− Γ

(n)
ℓ (yn+1))

)

,

(5)
where the classification function Γk has the following form:

Γk(y) = ‖µk−Pk(y)‖
2
Ak

+
1

bk
‖y−Pk(y)‖

2+
d

∑

j=1

log(akj)+(p−d) log(bk)−2 log(πk).

with ‖y‖2Ak
= ytAky,Ak = Qk∆

−1
k Qt

k and Pk(y) = QkQ
t
k(y − µk) + µk.

3.2.2 The M-step

Once the posterior probabilities t
(n+1)
k have been computed, we update the

model parameters such that they maximize E
[

ℓc (θ; y, z) |θ
(n)

]

. In order to
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derive an online inference strategy which does not keep all past observations,
it is necessary to make use of the following approximation:

E
[

ℓc (θ; y, z) |θ
(n)

]

≃ E
[

ℓc (θ; y, z) |θ
(n−1)

]

+

K
∑

k=1

t
(n+1)
k log (πkφ (xi; θk)) .

Then, it is straightforward to show that the update formulas for the mixture
proportions πk and the component means µk, for every component k = 1, ...,K,
are:

π
(n+1)
k = π

(n)
k +

1

N + 1

(

t
(n+1)
k − π

(n)
k

)

, (6)

µ
(n+1)
k =

1

n
(n+1)
k

(

n
(n)
k µ

(n)
k − t

(n+1)
k yn+1

)

, (7)

where n
(n+1)
k = n

(n)
k + t

(n+1)
k and N =

K
∑

k=1

n
(n)
k .

We then want to estimate the variance parameters Qk, akj and bk, for
k = 1, ...,K and j = 1, ..., d. We have seen, at the end of Section 3.1, that the
maximization of E [ℓc (θ; y, z) |θ∗] with respect to these parameters is equiv-
alent to the eigen-decomposition of the empirical covariance matrix Sk, and
this for each component k = 1, ...,K. The problem that we seek to solve can

be therefore stated as follows: having already calculated eigenvectors Q
(n)
k and

eigenvalues Λ
(n)
k from the n first observations, we want to update those pa-

rameters on the arrival of a (n+1)-th observation. In particular, on the arrival
of the new observation yn+1, the new eigenproblem that we need to solve is:

Σ
(n+1)
k Q

(n+1)
k = Q

(n+1)
k Λ

(n+1)
k , (8)

where Λ
(n+1)
k = diag{λk1, ..., λkp} and this for k = 1, . . . ,K.

To begin with, let us define:

g
(n+1)
k =

(

Q
(n)
k

)T (

t
(n+1)
k yn+1 − µ

(n)
k

)

,

h
(n+1)
k =

(

t
(n+1)
k yn+1 − µ

(n)
k

)

−Q
(n)
k gk,

where g
(n+1)
k is the projection of the observation on the subspace defined

by the eigenvectors and h
(n+1)
k is the residue of the retro-projection on the

original space. With these notations, the new eigenvectors Q
(n+1)
k correspond

to a rotation of the old ones plus the unit residue vector h̃k:

h̃
(n+1)
k =







h
(n+1)
k

∥

∥

∥
h
(n+1)
k

∥

∥

∥

2

, if
∥

∥

∥h
(n+1)
k

∥

∥

∥

2
6= 0,

0, otherwise
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and thus we have:

Q
(n+1)
k =

[

Q
(n)
k , h̃k

]

R
(n+1)
k (9)

where R
(n+1)
k is a rotation matrix of size (d+ 1)× (d+ 1). Note that Q

(n)
k

is a p×d matrix, since we have discarded the p−d less significant eigenvalues.

The new covariance matrix Σ
(n+1)
k for the class k is given by:

Σ
(n+1)
k =

n
(n)
k

n
(n+1)
k

Σ
(n)
k +

n
(n)
k

(

n
(n+1)
k

)2 ȳȳ
T (10)

where we have set ȳ = t
(n+1)
k yn+1 − µ

(n+1)
k . Then, by substituting Equa-

tions 9 and 10 into Equation 8, we get:

[

Q
(n)
k

, h̃k

]T







n
(n)
k

n
(n+1)
k

Σ
(n)
k

+
n
(n)
k

(

n
(n+1)
k

)2
ȳȳT







[

Q
(n)
k

, h̃k

]

R
(n+1)
k

= R
(n+1)
k

Λ
(n+1)
k

The above problem can be written as:







n
(n)
k

n
(n+1)
k

[

Λ
(n)
k

0
0 0

]

+
n
(n)
k

(

n
(n+1)
k

)2

[

gkg
T
k

γkgk
γkg

T
k

γ2
k

]






R

(n+1)
k

= R
(n+1)
k

Λ
(n+1)
k

(11)

where we have set γ
(n+1)
k = h̃T

k ȳ. The solution to this new eigenproblem yields

the rotation matrix R
(n+1)
k and the new eigenvalues Λ

(n+1)
k directly. Then, the

new eigenvectors can be obtained using Equation 9. Note that both R
(n+1)
k

and Λ
(n+1)
k are square matrices of dimension (d+ 1), that is, we only need to

solve an eigenproblem of dimension (d + 1) and not p. The update formulas
for the variance parameters akj and bk are then:

a
(n+1)
kj = Λ

(n+1)
kj ,

b
(n+1)
k =

1

p− d



tr(k)−
d

∑

j=1

Λ
(n+1)
kj



 ,

where Λ
(n+1)
kj is the j-ith eigenvalue for the component k and tr(k) =

p
∑

j=1

Λ
(n+1)
kj ,

for k = 1, . . . ,K and j = 1, . . . , d.
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Algorithm 1 The online MPPCA algorithm
1. Initialization: run a classical MPPCA on the n0 first observations to provide an initial

set θ̂(n0) of parameter estimates.
2. For each new observation yi:

– E-step: compute probabilities t
(i)
k

, for k = 1, ..., K, using Equation (5),
– M-step: update parameter estimates using Equations (6-7) and solving the incre-

mental eigenproblem (11) allows to update Q̂k, âkj and b̂k for k = 1, . . . ,K and
j = 1, . . . , d.

3. Return after the last observation yN :

– set θ̂(N) of model parameter estimates,

– data partition which can be deduce from the probabilities t
(i)
k

, i = 1, ..., N and
k = 1, ...,K using the MAP rule.

3.2.3 Algorithm and classification step

The online MPPCA algorithm that we proposed above is summarized in Al-
gorithm 1. Even though the online MPPCA algorithm aims in the first place
to infer the MPPCA model in the online setting, we are also interested in this
work in obtaining a partition of the data after having processed the last ob-
servation. To do so, it is necessary to add a classification step at the end of the
online MPPCA algorithm to provide the expected clustering. In the model-
based clustering framework, observations are usually assigned to a group using
the maximum a posteriori (MAP) rule. The MAP rule assigns an observa-
tion y ∈ R

p to the group for which it has the highest posterior probability
P (Z = k|Y = y) at the end of the algorithm. Therefore, this final classifica-
tion step mainly consists in assigning the observation yi to the group with the

highest t
(i)
k , for k = 1, ...,K and i = 1, ..., N .

3.3 Model selection in the online framework

The online MPPCA algorithm, as presented above, performs an almost au-
tomatic inference of the MPPCA model, except for the hyper-parameters K
and d. Indeed, those parameters cannot be determined by maximizing the
conditional expectation of the complete likelihood since they both control the
model complexity. A popular and well-established way to determine the ap-
propriate value for both K and d for the data at hand is to consider it as
a model selection problem. Thus, the use of either the AIC [2], BIC [34] or
ICL [8] criteria allows to find the appropriate values for K and d. However,
since we consider in this work the online setting where past observations are
not kept in memory, it is necessary to solve the model selection problem in an
online manner as well. This is made possible nowadays by parallel computing.
In our context, this consists in running in parallel several online MPPCA al-
gorithms with different values for the hyper-parameters and select at the end
the solution associated with the highest value for the model selection criterion.
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3.4 Low-dimensional visualizations of the data

A final advantage of our online MPPCA algorithms is that is allows to pro-
vide low-dimensional visualizations of the whole data set, even though the
high-dimensional observations are not kept. The low-dimensional visualiza-
tions consist in the projections of the data into the K estimated subspaces of
the groups. If d is small compared to p, it is reasonable to keep in memory
these low-dimensional representations of the data since the necessary memory
size is γd = K × n × d instead of γp = n × p. However, this requires to be
able to update the low-dimensional projections into the group subspaces at
the arrival of each new observation. At iteration n+ 1, this can be done after
the M-step as follows:

x
(n+1)
i = x

(n)
i R

(n+1)
k ,

where R
(n+1)
k are the eigenvectors of the eigenproblem (11) and this for k =

1, ...,K and i = 1, ..., n.

4 Experiments

In this section, we present and discuss the results of the experiments that we
performed on simulated and real data, with the aim of validating the perfor-
mance of online MPPCA and of comparing it to other online algorithms.

4.1 An introductory example

We begin by an introductory experiment on simulated data. We have generated
a dataset of n = 12000 observations (y1, . . . , yn) ∈ R

p based on the assumption
that data live in low-dimensional subspaces, with p = 30 andK = 3. Hereafter,
we refer to this dataset as X30. The mixture proportions are π1 = 0.4 and π2 =
π3 = 0.3. For simplicity, we have considered that for each class, the variance
is common across all dimensions, that is akj = ak, for k = 1, . . . ,K and j =
1, . . . , d. We have set a1 = 150, a2 = 75, a3 = 50, b1 = b2 = b3 = 5 and µ1 = 0,
µ2 = {0, . . . , 5, . . . , 0} and µ3 = {0, . . . ,−5, . . . , 0}, with µ1, µ2, µ3 ∈ R

p. We
have set the intrinsic dimension (dimension of the subspaces) at d = 2. Figure 1
shows the projection of the simulated dataset of p = 30 on the PCA axis. We
can see that it is a challenging dataset for a clustering algorithm.

Note that we have initialized online MPPCA with n0 = 100 observations.
The algorithm was given the true values for K and d. In practice, one has run
it with different values of K and d and keep the values giving the best model
(according to a criterion, i.e. BIC [34]).

Figures 2 show the results obtained by online MPPCA for the dataset X30.
The upper part of the Figure shows the evolution of the estimation of

MPPCA parameters ak for k = 1, . . . ,K versus the number of the observations.
The horizontal correspond to the true values of the parameters. We can see
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Fig. 1 Simulated data from K = 3 classes (represented by the three colors) of original
dimension p = 30, projected on the PCA axis. We can see that it is a challenging dataset
for a clustering algorithm.

that as the number of observations grows, online MPPCA converges towards
the true value of the parameters.

The lower part of the Figure shows the evolution of clustering accuracy ver-
sus the number of observations for online MPPCA. We can see that clustering
accuracy given by online MPPCA constantly increases as new observations
are arriving, converging to the accuracy given by a standard MPPCA model
which passes over data multiple times.

4.2 Comparison with online EM and online CEM

In this second experiment, we compare online MPPCA to two other online
algorithms, online EM [37] and online CEM [33]. Note that these algorithms
to which we compare have not been designed to handle high-dimensional data.
In this experiment, we have used X30, the high-dimensional simulated dataset
presented above, as well as a second simulated dataset of lower dimension
(p = 10), generated with the same parameters as the former. We will refer to
this new dataset as X10. Our goal was to study the behaviour of the three al-
gorithms in low dimension and then illustrate the capability of online MPPCA
to cluster efficiently even in high dimension.

We have evaluated the three algorithms on the quality of their estimation
of the class means and on the accuracy of the clustering produced. The quality
of the estimation of the means was taken to be the square of the distance of
the estimated means to the true ones, averaged over all K = 3 classes

eµ =
1

K

K
∑

k=1





1

p

p
∑

j=1

(µ̂kj − µkj)
2





Online MPPCA, online EM and online CEM were initialized 30 times by a
standard MPPCA, an EM and a CEM, respectively, of which the initialization
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Fig. 2 (Top) Evolution of the estimated parameters ak for the dataset X30 versus the
number of observations for online MPPCA. Horizontal lines correspond to the true values
of the parameters. (Bottom) Clustering accuracy evolution for the dataset X30 versus the
number of observations for online MPPCA. The solid horizontal line corresponds to the
clustering accuracy given by a standard MPPCA, which passes multiple times over data.

giving the greatest BIC value was kept. Figure 3 and Figure 4 show the com-
parative performance (error estimation measure eµ and clustering accuracy)
of online MPPCA (black), online EM (red) and online CEM (blue) for the
datasets X10 and X30, respectively.

For the dataset X10 it is clear, both from the clustering accuracy and
the estimation error eµ that online MPPCA converges faster than the other
two algorithms. Online CEM converges faster than online EM, a result in
compliance with conclusions made in [33].

For the dataset X30, we can see that online MPPCA clearly outperforms
the other two algorithms, even in high dimension p = 30. As expected, high
dimensionality affects the clustering performance of both online EM and online
CEM. Note here that we have not compared the three algorithms in p > 30
because online CEM in particular cannot handle such a dimensionality due to
numerical problems.
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Fig. 3 (Top) Evolution of eµ for the dataset X10 versus the number of observations for
online MPPCA (black), online EM (red) and online CEM (blue). (Bottom) Clustering ac-
curacy evolution for the dataset X10 versus the number of observations for online MPPCA
(black), online EM (red) and online CEM (blue).

4.3 Application to aircraft engine health monitoring

In the aircraft engine domain, the monitoring of engine health is a crucial task.
Snecma, the french aircraft engine constructor, performs such tests in a test
bench environment. A multitude of engine or bench parameters are measured,
such as bench pressure, engine temperature, engine speed etc. Some of them are
parameters of the environment of the test defined by external conditions and
the manipulations performed by the test pilot (air pressure, rotation speed),
while other are internal parameters of the engine (inside temperature and
pressure etc.). The former are called exogenous, while the latter endogenous.
We are typically interested in the endogenous variables.

Typically, there exists different phases during a flight, called flight modes:
taking off, cruising, landing etc. Each test consists of a sequence of alternating
stationary and non-stationary phases at different levels. The stationary phases
correspond in general to such flight modes, while the non-stationary ones re-
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Fig. 4 (Top) Evolution of eµ for the dataset X30 versus the number of observations for
online MPPCA (black), online EM (red) and online CEM (blue). (Bottom) Clustering ac-
curacy evolution for the dataset X30 versus the number of observations for online MPPCA
(black), online EM (red) and online CEM (blue).

flect the transition between two such phases. Nevertheless, a flight mode can
include multiple stationary phases, that is, a stationarity control on the data
is not enough to detect the flight modes.

Aircraft engineers can identify these modes by looking at the data but this
can be extremely time-consuming. Moreover, due to the high dimensionality
of data, there can be relations that humans cannot perceive. Note that by
knowing, at any given time, in which flight mode the engine currently is, tasks
like anomaly detection can be performed much more reliably, since the ’local’
context of the data (flight mode specificities) is also taken into account.

Here, we initially consider a streaming dataset of n = 4683 observations and
p = 173 variables, issued from an engine bench test. Expert advice provided us
with a configuration of 4 endogenous variables and 6 exogenous. Therefore, we
consider only those p = 10 variables out of 173. We then treat them in order
to remove the influence of the exogenous variables to the endogenous ones. In
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Fig. 5 Projection of aircraft engine data on each of the class-specific subspaces of dimension
d = 2. Colors correspond to different classes according to the clustering produced by online
MPPCA. The projections give an interesting insight into the classes.

the end, we have a dataset of p = 4 endogenous variables, clean of exogenous
influence.

We use this dataset to illustrate that online MPPCA can facilitate the
detection of homogeneous groups of aircraft engine data. Such a group can
coincide with a flight mode, subsume multiple flight modes or correspond to a
part of a flight mode. Expert analysis is then needed to analyse these groups
and relate them to the engine or to actual events (if any) that occured during
a test sequence.

We launched online MPPCA with K = 12 and d = 2. In fact, we tested
different combinations of the values of these two parameters and we kept the
one giving the greatest BIC value. The initial dataset size was set at n0 = 300.

Figure 5 shows the projection of the data onto each one of the class-specific
subspaces given by online MPPCA, after having processed all the observations.
Colors correspond to different classes according to the clustering produced by
online MPPCA. We can see that the projections give an interesting insight
into the clustering induced by online MPPCA. Clusterings in each subspace
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can provide aircraft engineers with a much richer information on a possible
inherent substructure of the data.

5 Conclusion

We have proposed an online inference algorithm for the MPPCA model which
relies on an EM-based procedure and a probabilistic and incremental version
of PCA. The proposed strategy allows to incrementally update, at the ar-
rival of a new observation, the estimates of the MPPCA parameters. It allows
also to provide low-dimensional visualizations of the data based on sufficient
information. Model selection is also considered in the online setting through
parallel computing. Numerical experiments on simulated and real data have
shown that the online MPPCA algorithm performs better in high-dimensional
spaces compared to existing online EM-based algorithms. Among the possible
extensions for this work, it could be interesting to consider the re-computation
of the posterior probabilities for all observations (including past observations)
in the E-step based on the kept projected data.
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