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Cette note montre qu'une hypothèse concernant les probabilités de petites boules, fréquemment utilisée en statistique fonctionnelle, implique que la dimension de l'espace fonctionnel considéré est finie. Un exemple de processus L 2 , ne vérifiant pas cette hypothèse, vient compléter ce résultat.

The result

In several functional statistics papers (cf [START_REF] Burba | k-nearest neighbour method in functional nonparametric regression[END_REF], [START_REF] Dabo-Niang | Estimation du mode dans un espace vectoriel semi-normé. (French) [Mode estimation in a seminormed vector space[END_REF], [START_REF] Ferraty | Philippe Nonparametric estimation of a surrogate density function in infinite-dimensional spaces[END_REF], [START_REF] Ferraty | Regression when both response and predictor are functions[END_REF], [START_REF] Ferraty | Rate of uniform consistency for nonparametric estimates with functional variables[END_REF], [START_REF] Ferraty | Régression non-paramétrique pour des variables aléatoires fonctionnelles mélangeantes[END_REF]) the following hypothesis is used :

(H) Let x be a point of the space X where a functional variable X lives. The space X is equipped with a semi distance and B(x, h) is the ball with center xand radius h > 0. We set ϕ x (h) = P(X ∈ B(x, h)) and we assume :

inf h∈[0,1] 1 0 ϕ x (ht)dt/ϕ x (h) ≥ θ x > 0.
where the parameter θ x is locally bounded away from zero.

The aim of this note is to prove that (H) implies that X is of finite dimension.
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Proof : Without loss of generality we can assume that θ x < 1/2. Let F x (h) = h 0 ϕ x (t)dt we have :

1 h h 0 ϕ x (t)dt/ϕ x (h) = F x (h) hF ′ x (h) ≥ θ x .
By integration we obtain

F x (h)/F x (1) ≥ h 1/θx . ( 1 
)
Since ϕ is non decreasing we have

F x (h) ≤ hϕ x (h)
and thus

ϕ x (h) ≥ h 1/θx-1 F x (1).
Let x ∈ X such that the parameter θ y has positive lower bound for y in the ball B(x, h 0 ). This implies that ϕ x (h 0 ) > 0. By a scaling we can assume for simplicity that h 0 = 1. For all y in B(x, 1/4), and for all h ∈ [1/2, 1],

ϕ y (h) ≥ ϕ x (1/4) ≥ ( 1 4 ) 1/θ-1 F x (1),
where θ is the uniform lower bound for θ y for y in B(x, 1). By integration

F y (1) ≥ 1/2( 1 4 ) 1/θ-1 F x (1)
and

ϕ y (h) ≥ h 1/θ-1 F y (1) ≥ 1/2( 1 4 ) 1/θ-1 h 1/θ-1 F x (1)
This implies that there exist at most O(h 1-θ ) disjoints ball of radius h in B(x, 1/4). Then the same set of balls but with radius 2r is a covering, which implies in turn that the box (or entropy) dimension of B(x,1/4) is finite. Since the Hausdorff dimension is smaller than the box dimension it is also finite.

Remark 1. Suppose, in addition, that the probability distribution function of X satisfying H admits a density with respect to some natural positive measure µ and suppose that this density is locally upper-and lower -bounded by M and m respectively :

mµ(B(x, h)) ≤ ϕ x (h) ≤ M µ(B(x, h)).
We have then

∃d > 0, C 2 > 0, h 0 > 0, 0 ≤ h ≤ h 0 =⇒ 1/C 2 h d ≤ µ(B(x, h)) ≤ C 2 h d .
which means that µ shares the same property as the distribution of X. As for example this property does not hold for the Wiener measure.

We may note that the classical random processes : Brownian motion and more general Gaussian processes for which the probability of small balls is known do not satisfy H , see [START_REF] Li | Gaussian Processes : Inequalities, Small Ball Probabilities and Applications[END_REF] for more details.
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Here we consider X(t) a stochastic process constructed as a random series of functions. More precisely

X(t) = ∞ n=1 α n Z n ϕ n (t) (2) 
where -(Z n , n ≥ 1) is a sequence of independent real random variables, with mean 0 and variance 1, with absolutely continuous densities (f n , n ≥ 1) w.r.t to the Lebesgue measure. This is the case for most of the usual continuous distributions of probability : exponential, normal, polynomial, gamma, beta etc...

-(1; ϕ n , n ≥ 1) is an orthonormal basis of L 2 ([0, 1]). -(α n , n ≥ 1) is a sequence of positive real numbers +∞ n=1 α 2 n < ∞. The sum (2) converges in L 2 ([0, 1]).
In particular the form (2) covers all the Gaussian processes through the Karhunen-Loève decomposition.

Then we have :

Proposition 2.1. lim h→0 h d P( X 2 ≤ h) = 0 for any d ≥ 0.
So that the process X(t) does not fulfill the assumption (H) for the L 2 norm at the point zero.

The proof is based on the properties of the convolution : Let f and g the absolutely continuous densities of probability of two independent random variables U and V . Then U 2 (resp. V 2 ) has the density

p U 2 (u) = f ( √ u) √ u resp. p V 2 (v) = g( √ v) √ v ,
where f and g are the symmetrized of f and g, f = 1/2(f (x)+f (-x)). It follows that U 2 + V 2 has for density

C(x) = x 0 f ( √ u) √ u g( √ x -u) √ x -u du = 1 0 1 v(1 -v) g( (1 -v)x) f ( √ vx)dv,
for x ≥ 0 and 0 elsewhere. It is easy to see that for any 0 < A < B, the function C is Lipschitz on [A,B]. At x = 0 it takes the value 0 with right limit β( 12 , 1 2 )f (0)g(0). Now if we make the convolution product of two such functions C 1 and C 2 , we obtain a function vanishing for x ≤ 0, continuous at 0 and Lipschitz on any compact interval of R, thus absolutely continuous. Using a classical result, making the convolution product of k such absolutely continuous functions yields a C k-1 function whose (k -1) th derivative is absolutely continuous.

Then, applying iteratively this result we conclude that the density of the 
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p ≤ h) ≤ P( X 2 ≤ h).