
HAL Id: hal-00759904
https://hal.science/hal-00759904v1

Submitted on 3 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Validation of AADL Models via Model
Transformation to SystemC with ATL

Pierre Bomel, Dominique Blouin, Mickael Lanoe, Eric Senn

To cite this version:
Pierre Bomel, Dominique Blouin, Mickael Lanoe, Eric Senn. Functional Validation of AADL Mod-
els via Model Transformation to SystemC with ATL. 5th International Workshop on Model Based
Architecting and Construction of Embedded Systems ACES 2012, Sep 2012, Innsbruck, Austria. �hal-
00759904�

https://hal.science/hal-00759904v1
https://hal.archives-ouvertes.fr

Functional Validation of AADL Models via Model
Transformation to SystemC with ATL
Pierre Bomel, Dominique Blouin, Mickael Lanoe, Eric Senn

Lab-STICC
Université de Bretagne Sud

Lorient, France
+33 (0)2 97 87 45 26

{pierre.bomel, dominique.blouin, mickael.lanoe, eric.senn}@univ-ubs.fr

ABSTRACT

In this paper, we put into action an ATL model transformation in

order to automatically generate SystemC models from AADL

models. The AADL models represent electronic systems to be

embedded into FPGAs. Our contribution allows for an early

analytical estimation of energetic needs and a rapid SystemC

simulation before implementation. The transformation has been

tested to simulate an existing video image processing system

embedded into a Xilinx Virtex5 FPGA.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits, Design Aids]: Simulation

General Terms

Design, Languages

Keywords

AADL, MDE, Program Synthesis, ATL, SystemC, Simulation,

FPGA, Functional Validation.

1. INTRODUCTION
Energy. To be able to use the huge quantity of hardware resources

available inside today’s FPGAs, new electronic system level

(ESL) design methodologies and tools are necessary. Particularly,

the ever increasing density of transistors, the complexity (number

of gates) of assembled hardware functions and the apparition of

new 3D ICs have the consequence that energetic needs are rising,

and will drastically continue to do so. This is what the IRTS

revealed when it added its “Energy” chapter in its annual report

[1]. Therefore, the energy consumption can prevent systems to run

for long because of heat dissipation problems or fast battery

discharge.

HRMPSoC. Embedded systems are becoming more and more

complex. They contain computing processors (microprocessors or

IPcores), memory hierarchies (caches, scratchpads, local and

external memories ...), communication links (point to point, bus,

NoC) and rapid IO devices (Ethernet 1Gbit, real time video,

network of sensors …).

These systems can be dynamically and totally or partially

reconfigurable on the fly. They are heterogeneous (a mix of

hardware and software functions) and may have “time variable

architectures” depending on the ability of the application to react

to environment changes. These systems are called HRMPSoC

(Heterogeneous and Reconfigurable Multiprocessors Systems on a

Chip), have a substantial processing power, are self-adaptative

and are more and more numerous in a mobile and distributed

environment (so called “ubiquitous”).

These systems have three important qualities: huge number of

transistors, heterogeneity of implemented functions and time

variable architectures. Their co-simulation (co because of

heterogeneity and time variability) at high abstraction levels is

required and promoted because it is necessary to validate as

quickly and as soon as possible the functional correctness of

several candidate architectures. These architectures are built from

a set of reused or synthesized on demand components. In such

context, Trabelsi et al. [2] illustrate the fact that functional

validation and early estimation of energetic needs by simulation

are key factors in the choice of the best architecture. Moreover, it

is methodologically efficient to tie both concerns inside a

common specification environment to write once and then share

several times the same system models.

It is proposed to federate analytical energy estimations with

functional validation of electronic systems into an up-to-date and

unique modeling environment based on the Eclipse IDE

(Integrated Development Environment) and the SAE (Society of

Automotive Engineers) Architecture Analysis and Design

Language (AADL) [3]. AADL is an emerging standard

architecture description language for real-time, fault-tolerant,

scalable and embedded multiprocessor systems. It is component-

centric and allows specifying both software and hardware parts of

systems. A SystemC model is built by automatically assembling

components previously grouped in a library in compliance with

the architecture specified with AADL. Thus, having a unique

AADL model of an FPGA based system helps designers to check

two important constraints: 1) that the energetic needs do not

exceed a given value, and 2) that the assembled system is

functional.

This paper presents our work related to automatic generation of

SystemC models from AADL models. Our automatic generation

takes advantage of model transformation, which is expressed with

the ATL language [4]. In section 2 we present the state of the art

in the domain of automatic generation of models from AADL

specifications. In section 3 we present our contributions: a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
ACES-MB'12, September 30 2012, Innsbruck, Austria.

Copyright 2012 ACM 978-1-4503-1800-6/12/09…$15.00.

methodology, a semantic mapping between meta-models elements

of AADL and SystemC languages and finally a set of ATL

transformations. We validate our contributions in section 4 with a

video processing system model. We conclude in section 5.

2. RELATED WORK
AADL enables the development and predictable integration of

highly evolvable systems as well as analysis of existing systems.

It supports early and repeated analyses of system architectures

with respect to performance-critical properties through an

extendable notation, a tool framework, and precisely defined

semantics. In this section we inventory related work about

analysis and/or generation of executable models, with or without

the use of MDE techniques, from such AADL models. Most of

this work concerns the verification of functional and non-

functional system properties or the validation of systems by co-

simulation in order to extract temporal estimations dynamically

without the need for ISS (Instruction Set Simulators) and RTL

level models like in complex and long simulations.

Ocarina [5]: Ocarina is a software tool which allows putting into

action an evolutionary prototyping methodology based on AADL.

Worst case execution time and dead-lock freedom are some of the

non functional properties it can check. It also generates ADA or C

executables on top of the high integrity POLYORB-HI

middleware, in turn targeting ERC32 and LEON2 processors.

Cheddar [6]: Cheddar is an open source tool developed in ADA.

With the help of simulations, it computes various performances

criteria (schedulability analysis, time constraints, resources

allocation, etc.). It accepts as input AADL models thanks to its

embedded Ocarina API. Given the difficulties to apply

schedulability theory, the authors have recently decided to exploit

an MDE methodology to automatically generate, with the help of

the Platypus tool, some decision support tools that will determine

the relevant feasibility tests for a given architecture to evaluate.

Platypus is a meta-model environment relying on the STEP

standard (ISO 10303, EXPRESS language).

ACSR [7] and VERSA: The University of Pennsylvania, in

collaboration with the Freemont Company, has developed a code

generator that translates an AADL model into an ACSR model

(Algebra of real-time process). This ACSR model can be analyzed

with a tool in order to conduct schedulability analysis.

OSATE [8]: OSATE is a set of Eclipse plugins for the modeling

of embedded electronic systems in AADL. It is based on EMF and

contains a complete AADL meta-model. OSATE, as an extension

of Eclipse, is itself an environment for integrating other tools that

operate on AADL. Version 1.5, used for our work incorporates

many analysis tools, but no real tools for code generation for

executable models.

TASTE [9]: The TASTE toolset is the result of work of the

ASSERT (IST 004033, 2004-2007) European project. It was

developed by ESA (European Space Agency) with a set of

partners in the aerospace field. It aims to define a development

process of distributed real-time systems and is based on a tool

chain which includes Cheddar and Ocarina. TASTE can build a

system from heterogeneous software (MathLab, Ada, C, C++ ...).

These codes are either generated automatically by using external

tools or manually written. The overall system consistency is

ensured by the use of two modeling languages: system modeling

with AADL, and messages/data modeling between heterogeneous

modules with ASN.1. Code generators are used during the

modeling phases to produce software for a given target. TASTE

does not generate a mixed executable model for co-simulating

hardware-software. Neither does it currently include hardware

features, although it seems to be part of future extensions.

Gaspard2 [10]. Gaspard2 is a modeling environment for real-time

systems dedicated to intensive and regular data processing. These

processes can be represented using a formalism derived from

ARRAY-OL whose semantics has been adopted in the UML

MARTE profile. It can generate a SystemC 2.0 TML-level

simulation model. This model is based on the notion of virtual

processor and allows representation of both software and

hardware features. Finally, it incorporates the estimated

consumption in the SystemC simulation model. However it does

not accept AADL models as input and does not offer an analytical

model to estimate the power consumption.

AADS, SCOPE [11]. AADS is a tool written in Java for the

hardware/software co-simulation environment named SCOPE. It

converts an AADL model into a SCOPE model. The SCOPE

model is compatible with the Ravenscar computation model.

SCOPE is a co-simulation environment written in SystemC,

which provides time information on the various system tasks. To

do this, no instruction sets simulator is used but time is estimated

by executing an annotated native code. It specifically targets

MicroC and POSIX OS operating systems and the LEON2

processor.

Apart from AADS, none of the work cited above does target both

SystemC code generation and AADL modeling. One of the two

languages is always missing. Finally, AADS does not use the

MDE methodology to convert an AADL model into a SystemC

model. Our contribution is to implement a model transformation

in a standardized modeling environment (OSATE) targeting

another standardized and highly flexible simulation environment

(SystemC, IEEE 1666-2005).

3. CONTRIBUTIONS
In this section we present our design methodology, the set of

AADL/SystemC semantic mappings and the ATL model

transformations supporting the automated generation process.

3.1 Methodology
The methodology that we propose belongs to the category of "fast

and evolutionary prototyping" [12]. It is based on a combination

of modeling techniques, code generation and evaluation. It is

shown in Figure 1 and is divided into six phases:

Figure 1. Model/Generate/Simulate methodology flow.

1. Use a library of components to model a system with

AADL/OSATE. This library is enriched by

 IP designers that provide AADL and SystemC

models,

 and sub-systems previously modeled,

generated and validated.

2. Automatically generate the complete system model in

SystemC by means of a chain of ATL transformations.

A simplified meta-model for SystemC has been

developed including only the necessary concepts needed

for C++ code generation from SystemC models.

3. Integrate the generated SystemC model in the system

architect’s test program. To do this, simply compile the

code generated from the SystemC models of the

assembled components and the test program, then link

all with the SystemC simulation kernel.

4. Simulate the complete system with the resulting

executable. The architect judges the validity of the

system in light of the results based on provided inputs

and expected outputs.

5. If the system is considered functional, the designer can

estimate the energy consumption. But, he may as well

start with the energy estimation and then check the

functionality second. Energy estimation is performed

using analysis models whose input often depend on both

software and hardware parameters. Besides functional

validation, SystemC simulation can also be used to

obtain estimates for some of these input parameters.

6. When the system is functional and “energy correct”, we

can then move on to the detailed design phase or repeat

this method to evaluate a different architecture, or the

same architecture with another components library. The

amount of effort needed for the detailed design phase

depends on the available component libraries. If RTL

components already exist, they can be reused.

Otherwise, they must be developed, which may require

significant efforts.

The two dashed arrows in Figure 1 indicate that the obtained

AADL and SystemC models can be respectively added to the

AADL models libraries and SystemC components library. This

methodology allows the building of libraries of increasingly

complex components.

The components are initially designed to represent a computable

artifact of the behavior of functions. They do not necessarily

represent their final implementation. As such, they can represent

both hardware or software functions. Anyway, there is nothing

that prevents the existence of several SystemC models of the same

function. Therefore, they could represent the same function with

different implementation types or different abstraction levels and,

as long as their interface with the system remains the same, they

can coexist in the libraries.

3.2 AADL / SystemC Mapping
AADL permits the modeling of an electronic system in terms of

software and hardware components 1) which communicate with

each other and 2) with the placement of interconnected software

components over the hardware execution platform. The hardware

is itself made out of a set of connected hardware components

In the scope of our methodology, the objective is the rapid

functional validation of a components assembly, each component

having a functional representation in SystemC. The AADL subset

we have chosen for this methodology allows the description of

data types, interface components, system architectures, shared

data, and communications between components and the external

interface of the complete system. The link between AADL and

SystemC entities is defined thanks to annotations added in the

AADL model. Finally, the model transformation must consider

the incompatibilities between the rules for naming identifiers.

Unambiguous AADL to SystemC conversion rules are needed.

Data types. All types of data processed by components have

matched AADL and SystemC models. Let CppX be the name of a

C or C++ data type, and AadlY the name of the corresponding

AADL data type. Then the AADL data type AadlY has the form

shown in Figure 2:

Figure 2. AADL model of a data type.

The AADL model is reduced to the creation of an AADL

component of type data with the name AadlY. The value of the

property Type_Source_Name is the annotation that indicates the

semantic mapping between CppX and AadlY.

Components. Our AADL components are black boxes for which

only the interface is known. They are represented by AADL

threads. Their interface consists of communication ports and

accesses to shared data.

As shown in Figure 3, the AADL model contains a description of

a thread and its implementation. Inside its features section, the

thread contains a list of ports of type event data port when some

typed data transit and of type event port when it comes to digital

only signals. It also contains a list of shared variables that it must

have access to. This is expressed via a requires data access

clause. The mapping with the SystemC module CppThread, which

represents the true functionality of the thread, is declared with an

annotation: we use the value of the property Source_Text in the

implementation of the thread. Note here the implicit identity

between the AADL ports and SystemC ports of both models.

Finally, the notion of shared data is also implicitly synonymous to

a C++ global variable that is shared by the codes of the

SC_METHOD or SC_THREAD SystemC processes declared in

the SC_MODULE.

Figure 3. AADL model of a functional component.

Architecture, Shared Data and Communications. To represent

the functional architecture of the system, we use an AADL

component of type process and its associated implementation. We

declare in the subcomponents clause of the implementation as

many threads subcomponents as we need as well as all the shared

data subcomponents that threads need to read/write from. Finally

we connect the ports. Figure 4 illustrates the architecture of such a

process inside which N threads of type AadlThread are chained

together and the ends of the chain are connected to the ports of the

data AadlY

 properties Type_Source_Name => "CppX";

end AadlY;

thread AadlThread

 features

 id : in event data port AadlY;

 od : out event data port AadlY;

 i : in event port;

 o : out event port;

 d : requires data access AadlY;

end AadlThread;

thread implementation AadlThread.impl

 properties Source_Text => "CppThread";

end AadlThread.impl;

process. It also creates the shared data d, of type AadlY, and

indicates that all threads have access to it.

System Interface. The complete top level system is modeled using

an AADL system component type. It has the same type of

interface than the assembled components. The implementation of

the system declares an instance of the process modeled earlier and

connects its ports to those of the top level system (Figure 5).

The identity of the interface of AADL components of type

process and system allows for repeatedly enriching the libraries

from the AADL modeling process. During the generation of

SystemC modules, the same top level system name is created and

becomes a reusable and valid SC_MODULE. This name will be

available for future annotations via the Source_Text property.

Thus, Aadlsyst is a module that can be added to the SystemC

components library and can be reused for future AADL models.

Figure 4. AADL model of the architecture of the system.

Refinement and Implementation. The AADL concepts of

refinement (refines) and implementation are both naturally

represented in the generated SystemC models by the C++

mechanism of inheritance.

Figure 5. AADL model of the top level interface.

Transformation Rules for Identifiers. SystemC is a language

sensitive to uppercase and lowercase while AADL is not. So,

ABCD and abcd are identical in AADL, but not in C or C++. We

need to agree on rules for processing AADL identifiers into new

identifiers that:

 are legal in C++,

 are not identical to C, C++ or SystemC reserved

keywords and macros,

 and are never duplicated.

For this, we followed the AADL SAE’s recommendations about

the C language [13] and have extended them to the case of

SystemC and C++. They are listed here.

 The AADL namespace exists. It contains the names of

all executable objects that are equivalent to AADL

concepts. These names are located in a SystemC

runtime library that contains all types and all classes

required for the generation of C++ and SystemC

models.

 To every AADL package corresponds a C++

namespace. As an example, Figure 6 shows an AADL

package named AadlPack in which all components, data

types and systems mentioned in this article are defined.

 All AADL identifiers are converted to lowercase and a

mechanism for automatic prefixing with "PREFIX_"

avoids duplications or collisions with keywords of C,

C++ or SystemC. In addition, all characters "." are

replaced by "_DOT_", and all sequences "::" are

replaced by "_PATH_". Figure 7 shows all possible

translation cases.

Figure 6. AADL package.

Figure 7. Identifier conversion examples.

3.3 ATL Model Transformations
A chain of five model transformations in ATL has been developed

to generate the SystemC model. In any case, at least two

transformations were needed for first transforming the AADL

model into a SystemC model, and then the SystemC model into

C++ code. Breaking the transformation into smaller pieces

allowed reducing the complexity of the global transformation.

These transformations are based on a source AADL meta-model

and a target meta-model named scMM, which is the C++ subset

that represents our minimum needs to generate SystemC models.

It is smaller and easier to manage than a full set of C++ and

SystemC meta-models syntactically complete. Because we do not

target all the C++ and SystemC specificities like compilers do, we

process SystemArch

 features

 id : in event data port AadlY;

 od : out event data port AadlY;

 i : in event port;

 o : out event port;

end SystemArch;

process implementation SystemArch.impl

 subcomponents

 t1 : thread AadlThread.impl;

 …

 tN : thread AadlThread.impl;

 d : data AadlY;

 connections

 c1a : event data port id -> t1.id;

 c1b : event port i -> t1.i;

 d1 : data access d -> t1.d;

 …

 cNa : event data port t(N-1).od -> tN.id;

 cNb : event port t(N-1).o -> tN.i;

 dN : data access d -> tN.d;

 cNc : event data port tN.od -> od ;

 cNd : event port tN.o -> o ;

end SystemArch.impl;

system AadlSyst

 features

 id : in event data port AadlY;

 od : out event data port AadlY;

 i : in event port;

 o : out event port;

end AadlSyst;

system implementation AadlSyst.impl

 subcomponents

 arch : process SystemArch.impl;

 connections

 c1 : event data port id -> arch.id;

 c2 : event data port arch.od -> od;

 c3 : event data port i -> arch.i;

 c4 : event data port arch.o -> o;

end AadlSyst.impl;

package AadlPack

 data AadlY …

 end AadlY;

 thread AadlThread …

 end AadlThread;

 …

 system AadlSyst …

 end AadlSyst;

 system implementation AadlSyst.impl …

 end AadlSyst.impl;

end AadlPack;

Idf -> idf

IDF -> idf

break -> PREFIX_break

a.b -> a_DOT_b

c_DOT_d -> c_DOT_d

c.d -> PREFIX_c_DOT_d

a::b -> a_PATH_b

c_PATH_d -> c_PATH_d

c::d -> PREFIX_c_PATH_d

do not require a complete meta-model. Moreover the genericity of

scMM allows us to retarget to any other object-oriented language.

Figure 8 shows the scMM meta-model. The C++ concepts are

namespaces (Namespace), classes (ClassList, Class, ClassSection

and ClassMember), identifiers and builders of connections

(ConnectionId, ConstructorConnectionInit, and Binding) and

finally the identification of the system model (TopLevel).

The five transformations are (Figure 9):

 a2s.atl is the essential exogenous transformation that

converts our AADL subset into its scMM equivalent.

 updateRefs.atl and updateRef2.atl are two endogenous

scMM model transformations updating internal

references that could not be computed in the initial

processing by a2s.atl.

 orderClasses.atl is the endogenous transformation

whose role is to sort all classes and types in an order

consistent with a compilation process.

 sc2txt.atl is the transformation that converts the scMM

model, with all its internal references properly updated

and rearranged into a compilable ASCII text. It supports

the syntax of the C++ object-oriented target language.

Figure 8. scMM meta-model.

4. RESULTS
The presented results have been tested in the following technical

context: Eclipse 3.6, ATL 3.1.1, AADL/OSATE 1.5, SystemC

2.2.0 and Eclipse C Development Tools (CDT) 7.0.2. Our

transformation chain has been integrated in the Eclipse IDE as a

plugin whose code was partially generated by the ATL

development toolkit. Users can select the AADL files to be

transformed, and a directory of a predefined CDT project into

which the generated C++ files will be put, properly configured for

SystemC for quick simulation of the system.

We have modeled an existing image processing system with

AADL that can process a 25 frames/s VGA video image stream. It

is embedded into a Xilinx Virtex5 FPGA. Image capture and

display are performed by hardware blocks respectively interfaced

with a camcorder and an LCD screen. The image real-time

processing is performed by a program executed by a synthesizable

MicroBlaze processor. This system can be easily customized and

serves many research and project activities. It has been developed

thanks to the MOPCOM project.

Figure 9. ATL model transformation chain.

For didactic purposes (black and white paper print) we have

chosen to reverse the three color components (RGB) of the

received images. We have transmitted the image of Lena as a very

well known test input so that readers feel familiar with the

presented results.

Figure 10 and Figure 11 show the graphical and AADL

architecture of the system. It consists of four components whose

names are meaningful: capture, processing, display and global

synchronization. The synchronization block performs the

permutation of the images accesses indices and schedules the

image processing at a given frame rate. Capture and display

blocks operate at the pixel clock. A shared memory stores a buffer

of three images inside which the blocks can make reads and writes

through a shared bus. In the AADL model, one can see the

instantiation of the four components Synchro0, Capture0,

Display0 and Processing0, the imageArray image buffer, and the

connections needed to connect the ports and provide access to

imageArray to all threads.

Figure 10. Video processing system architecture.

The simulation of this architecture proves that the system is

functional. The resulting images are depicted in Figure 12. While

the real system is a real-time one running at a rate of 25 frames /

sec, the SystemC model is simulated at a rate of only one image

every four to five seconds. So we have a ratio of about 100

between the simulation speed and the real time processing rate

expressed in images per seconds.

Figure 11. AADL model of the system internal architecture.

 Input Lena Output Lena

Figure 12. Simulated processed images.

5. CONCLUSION AND PERSPECTIVES
In this article we presented our work about the transformation of

AADL models into SystemC for electronic systems embedded

into FPGAs. Our contributions, which have been validated by the

modeling of a real time image processing system, the code

generation and the SystemC simulation (consistent with the

expected behavior), show that it is possible and efficient to

combine in the same Eclipse meta-modeling environment the

analytical estimation of power consumption and the functional

validation by simulation. By reusing the same models, the two

methodologies reduce the modeling efforts imposed to the system

architect. Finally, this rapid generation and simulation design

process allows considering a broader exploration of the

architectural design space.

During this work, we have identified that the use of incomplete

AADL specifications (keyword refines) enables a generic

modeling and a late binding mechanism during the modeling

process. This mechanism seems very close to the C++ template

concept. We intend to study it and integrate it in the ATL

transformations. With this modeling feature, it will be possible to

model generic architectures and refine them only when needed.

Hence, functional components AND generic architectural

components will be both available in our AADL and SystemC

libraries.

6. ACKNOWLEDGMENTS
This work is part of the Open-PEOPLE project (26/12/2008-

25/12/2011) and is currently funded by the French Research

Agency (ANR). It is labeled by the “Images et Réseaux” ("Media

and Networks”) Brittany pole. The MOPCOM project has been

supported by the ANR (contract 2006 TLOG 022 01), the “Images

et Réseaux” pole and the Bretagne and Pays de la Loire regions.

7. REFERENCES
[1] "International Technology Roadmap for Semiconductors, 2010

update", www.itrs.net

[2] C. Trabelsi, R. B. Atitallah, S. Meftali, J.-L. Dekeyser and A. Jemai,
"Model-Driven Approach for Hybrid Power Estimation in
Embedded Systems Design", EURASIP Journal on Embedded
Systems, vol. 2011, id. 569031, Hindawi Publishing, 2011.

[3] SAE. "Architecture Analysis & Design Language" (AADL).
AS5506A.

[4] F. Jouault and I Kurtev. "Transforming models with ATL". Satellite
Events at the MoDELS 2005 Conference, 2005, pp. 128-138.
http://wiki.eclipse.org/M2M/ATL

[5] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. "From the prototype
to the final embedded system using the Ocarina AADL tool suite".
ACM Transactions on Embedded Computing Systems, TECS 2008,
vol. 7, n° 4, article 42, july 2008.

[6] M. Kerboeuf, A. Plantec, F. Singhoff, A. Schach and P. Dissaux.
"Comparison of six ways to extend the scope of Cheddar to AADL
v2 with Osate". 5th international workshop on AADL and UML.
Oxford, UK, March 2010, pp. 367-372

[7] O. Sokolsky, I. Lee and D. Clark. "Schedulability Analysis of AADL
models". Procs of the 20th Intl. Parallel and Distributed Processing
Symposium, IPDPS 2006, vol. 2006, april 2006, article 1639421.

[8] OSATE. Carnegie Mellon Software Engineering Institute (SEI),
"Open Source AADL Tool Environment" (OSATE),
http://www.aadl.info/aadl/currentsite/tool/osate-down.html

[9] TASTE. M. Perrotin, E. Conquet, P. Dissaux, T. Tsiodras and J.
Hugues. "The TASTE Toolset : turning human designed
heterogeneous systems into computer built homogeneous software".
Procs. of the Intl. Conf. Embedded Real Time Software Systems
(ERTSS), may 2010, Toulouse, France.

[10] R. Ben Atitallah R., E. Piel, S. Niar, P. Marquet and J.-L. Dekeyser
J-L. "A Fast MPSoC Virtual Prototyping for Intensive Signal
Processing Applications". Microprocessors and Microsystems
Embedded Hardware Design Journal (MICPRO) 2011.

[11] Roberto Varona, Eugenio Villar and A-I. Rodríguez. "Ravenscar
Computational Model compliant AADL Simulation on Leon2".
Procs. of the International Symposium on Information System and
Software Engineering, ISSE 2011, March 2011, Prague, Czech
Republic.

[12] F. Kordon and Luqi. "An Introduction to Rapid System Prototyping".
IEEE Transactions on Software Engineering, 70(3), pp. 817-821,
2002

[13] SAE, "Language Compliance and application program Interface".
The AADL specification, 2005, annex volume 1, annex D.

