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ABSTRACT
The paper focuses on the accuracy improvement of indus-

trial robots by means of elasto-static parameters calibration.
It proposes a new optimality criterion for measurement pose
selection in calibration of robot stiffness parameters. This
criterion is based on the concept of the manipulator test pose
that is defined by the user via the joint angles and the external
force. The proposed approach essentially differs from the tradi-
tional ones and ensures the best compliance error compensation
for the test configuration. The advantages of this approach
and its suitability for practical applications are illustrated by
numerical examples, which deal with calibration of elasto-static
parameters of planar manipulator with rigid links and compliant
actuated joints.

Keywords: robot calibration, stiffness parameters identifi-
cation, selection of measurement poses, optimality criteria

INTRODUCTION
The aerospace and ship building industries intend to pro-

gressively replace conventional materials by composite ones that
provide essential advantages from mechanical point of view, but
at the same time introduce additional complexity in machining
process. Conventional CNC-machines provide high stiffness and
high accuracy, but the workspace is very limited. Besides, it is

∗Address all correspondence to this author.

difficult to process the workpieces with complex shapes. These
limitations are critical for the considered application. In this
case, it is reasonable to consider robotic-based machiningthat
may ensure large workspace and processing of complex shapes.
However, machining of high performance materials with robot
may cause essential compliance errors that influence on the qual-
ity of the final product. For this reason, in the design of robotic-
based machining, stiffness modeling of robotic manipulators un-
der external forces becomes a crucial issue.

Generally, the compliance errors depend on both applied
loading and robot stiffness properties. Moreover, similarto geo-
metrical errors they highly rely on the manipulator configuration
and essentially differ throughout the workspace. So, in order to
achieve maximal efficient compensation, it is required a reliable
stiffness model, which takes into account both stiffness proper-
ties of all joints/links and correct values of all joint angles. One
way to solve this problem is to improve the stiffness model by
means of elasto-static calibration [1] that allows identifying the
stiffness parameters from the measured robot end-effectorposi-
tions.

The problem of robot calibration is in the focus of research
community for many years [2]. However, most of the efforts
have been made for kinematic calibration [3–6], only few works
directly address the issue of elasto-static calibration [7,8] and its
influences on robot accuracy. Only very limited number of works
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address the issue of optimal measurement pose selection [9–11].
Despite the obvious fact that the calibration accuracy may be im-
proved by increasing the number of experiments, the measure-
ment poses may also affect the robot calibration [12]. It hasbeen
shown that the latter may significantly improve the identification
accuracy [13]. This problem can be treated as determining a set
of optimal measurement poses within the reachable joint space
so that the affect of measurement errors on the identification of
robot parameters is minimized.

In the experiment design theory, which can be obviously ap-
plied here, one of the key issues is comparison of the experi-
mental plans. In order to find the optimal experimental plan,nu-
merous quantitative performance measures have been proposed.
They have different affects on the identification accuracy,and
have been defined as the objectives of the optimization prob-
lems, associated with sets of measurement poses. In robotics,
there exist two main trends in defining the objectives: one isthe
conventional optimality criteria [14–16], which operate with the
trace/determinant of the covariance matrix. Another one isthe
observability indices [17–20], which are based on singularvalue
decomposition of the Jacobian. Both trends have limitations that
affects the calibration accuracy in different manner. Besides, the
developed performance measures that operate with abstractno-
tions, and as a result they are not in a good agreement with the
industrial requirements. This motivates a research direction of
this work.

In this paper, to evaluate the quality of measurement poses
used in calibration experiments, a new criterion that is based on
the concept of manipulator test-pose is introduced. In contrast to
the existing criteria, the proposed one has a clear physicalmean-
ing directly related to the robot accuracy, and allows essentially
improving the accuracy of compliance errors compensation via
proper selection of the measurement poses. The main advan-
tages and practical significance of the proposed criteria are illus-
trated with the elasto-static calibration of 2-link planarmanipula-
tor. For the presented example, a series of optimal pose selection
maps with respect to different link length ratio are presented.

PROBLEM STATEMENT

In order to address the problem of elasto-static calibration,
let us define the required mathematic models: geometric and
elasto-static ones. The geometric model that defines the robot
end-effector position as a function of the joint angles and link
lengths can be expressed as

p = g(q,L) (1)

wherep is the end-effector location (position and orientation),
vectorq is the joint angles and vectorL collects the link length.

In accordance with [21], the displacement of the end-

effector under the external loading of serial manipulator is

∆p = Jkθ JTF (2)

where the Jacobian matrixJ can be computed via differentiation
of the geometric model (1);∆p is the robot end-effector displace-
ment caused by external loading;kθ is a matrix that aggregates
compliances{k1, · · · ,kn} of the actuated joints;F is the external
force.

It is assumed that all the geometric parameters{q, L} of
model (1) are well calibrated. So, for the unloaded mode (F= 0),
the vectorq is equal to the nominal value of the joint anglesq0.
Because of the loadingF 6= 0, the joint angles include deflections,
i.e. q = q0+δq, whereδq is the vector of joint displacements
under the external loadingF. Thus, in order to compensate the
undesired displacements caused byF, the elasto-static parame-
ters{k1, · · · ,kn} must be identified precisely. For this purpose, it
is proposed to use calibration technique.

For elasto-static model, each calibration experiment pro-
duces three vectors{∆pi ,qi ,Fi}, which define the displacements
of robot end-effector, the corresponding joint angles and the ex-
ternal forces respectively, wherei is the experiment number. Cor-
respondingly, the calibration procedure may be treated as the best
fitting of the experimental data{∆pi ,qi ,Fi} by using the stiffness
model (2) that can be solved using the standard least-squaretech-
nique.

However in practice, the calibration includes measurement
of Cartesian coordinates that accommodate errorsε, which are
assumed to be i.i.d (independent identically distributed)random
values with zero expectation and standard deviationσ . The er-
rors for the joint variables are assumed to be relatively small.
Because of the errors in the measurements, the desired values
{k1, · · · ,kn} are always identified approximately. So, the prob-
lem of interest is to evaluate the identification accuracy for the
identified parameters and to propose a technique for selecting
the set of joint variablesqi and external forcesFi that leads to
accuracy improvement.

Usually, the optimality criteria that evaluate the qualityof
calibration plans are based on the covariance matrix of the identi-
fied parameters. In this particular case, the parameters ofkθ have
different influences on the end-effector displacements, more-
over, their influence varies throughout the workspace. To over-
come this difficulty, in this work it is assumed that the “cali-
bration quality ” is evaluated for the so-called test configuration
{q∗,F∗}, which is given by the user and for which it is required
to have the best positioning accuracy under the influence of ex-
ternal loading. So, original calibration problem should besolved
with respect to the given constraint.

To solve this general problem, two subproblems should be
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considered: (i) to propose an optimality criterion that is adapted
to the elasto-static parameters calibration of industrialmanipu-
lator; (ii) to find optimal configuration of robot calibration for
given test one that provide the highest position accuracy.

EVALUATION OF IDENTIFICATION ACCURACY
Influence of Measurement Errors

For computational convenience, the linear relation (2) where
the desired parameters{k1, · · · ,kn} are arranged in the compli-
ance matrixkθ of sizen×n should be rewritten into the follow-
ing form

∆pi = Aik (3)

where the n × 1 vector k collects the joint compliances
{k1, · · · ,kn}. Matrix Ai is defined by the columns of Jacobian
and the external force and can be expressed as

Ai =
[

J1
i J1T

i Fi , · · · ,Jn
i JnT

i Fi
]

(i = 1,m) (4)

whereJn
i is the nth column vector of Jacobian matrix for the

ith experiment,m being the number of experiments. From the
identification theory, the joint compliances can be obtained from
Eq. (3) using least square method, which minimizes the residu-
als for all experimental data. So, the corresponding optimization
problem can be formulated as

m

∑
i=1

(Aik−∆pi)
T(Aik−∆pi)→ min

qi ,Fi
(5)

The solution of this optimization problem provides the estima-
tion of desired parameters, which can be computed as

k0 =

(

m

∑
i=1

AT
i Ai

)−1( m

∑
i=1

AT
i ∆pi

)

(6)

Taking into account that the measurement errors exist in the
calibration experiments, Eq. (3) should be rewritten in thefol-
lowing form

∆pi = Aik+ εi (7)

whereεi is the measurement errors in theith experiment with ex-
pectation E(εi) = 0 and variance E(εi

Tεi) = σ2. It is evident that
the measurement errors have affect on the identification accuracy
of k. So, the estimation of the desired parametersk has the form

k =

(

m

∑
i=1

AT
i Ai

)−1( m

∑
i=1

AT
i (∆pi − εi)

)

(8)

As follows from Eq. (8), the latter expression produces unbiased
estimates

E(k) = k0 (9)

where E(k) is the expectation of the identified parameters, which
is assumed to be equal to the real value ofk0. It can be proved
that the covariance matrix of compliance parameters [22], defin-
ing the identification accuracy, can be expressed as

cov(k) =

(

m

∑
i=1

AT
i Ai

)−1

E

(

m

∑
i=1

AT
i εT

i εiAi

)(

m

∑
i=1

AT
i Ai

)−1

(10)
Then, taking into account that E

(

∑m
i=1εT

i εi
)

= σ2I, whereI is
then×n identity matrix, Eq. (10) can be simplified to

cov(k) = σ2

(

m

∑
i=1

AT
i Ai

)−1

(11)

whereσ is the standard deviation of the measurement errors. So,
for the considered problem, the impact of the measurement er-
rors is defined by the matrix sum∑m

i=1 AT
i Ai that is also called

the information matrix.

Obviously, in order to have the smallest dispersion of iden-
tification errors, the elements of covariance matrix shouldbe as
small as possible. However, this is a multi-objective optimization
problem, which means that minimization of one element may
possibly increase others. For this reason, let us concentrate on
the analysis of the existing optimality criteria and their applica-
bility to the considered application in the next section.

Existing Optimality Criteria
In classical regression analysis, there are several conven-

tional optimality criteria that operate with the trace and/or de-
terminant of covariance or information matrices. The most com-
monly used among them are based on A-, T-, D-, G-optimality
principles and maximal diagonal covariance (MDC). In addition,
in robot calibration, there exist many observability indices based
on the singular value decomposition of the Jacobian. For thecon-
sidered application, they can be obtained from SVD of matrixA,
which contains the Jacobian and the external force. More details
concerning these criteria are presented in Table 1.

It should be mentioned that all of the optimization criteria,
which are presented in Table 1 solve the minimization prob-
lem (11) in different manners. As a result, they may provide
different optimal solutions. So, in order to have good accuracy
of robot parameters, it is important to select a proper objective.
The main disadvantage of these approaches is that the objectives
are not directly related to the robot accuracy, which is a critical
issue in the industry. Even if they may increase the identifica-
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Table 1. Optimization functions for existing optimality criteria

Optimality Criterion Optimization Function

A-optimality trace((AT A)−1)→ min
q,F

T-optimality trace(AT A)→ max
q,F

D-optimality det(AT A)→ max
q,F

G-optimality max{d[H]1}→ min
q,F

MDC max{d[(AT A)−1]}→ min
q,F

Product of singular values (O1)
s√σs···σ1√

m → max
q,F

Inverse condition number (O2) σs
2

σ1
3→ max

q,F

Minimum singular value (O3) σs → max
q,F

Noise amplification index (O4) σ2
s

σ1
→ max

q,F

1 d[·] extract diagonal elements of the matrix;
2 σs minimum singular value;
3 σ1 maximum singular value;

tion accuracy of the robot parameters, they can not provide the
best prediction of the robot end-effector location. Therefore, a
new optimality criterion that ensures the best robot end-effector
positioning accuracy under external loading is required.

Test-pose Based Approach

In order to give a clear physical meaning that is related to
the robot accuracy, a new optimality criterion is proposed.This
criterion is based on the mean squared error of end-effectordis-
placements and evaluates the ability to compensate the compli-
ance errors for given test pose. It should be mentioned that sim-
ilar approach has been used in prediction theory, but has never
been applied in robot calibration [23].

Assuming that the measurement errors affect the identifica-
tion accuracy, Eq. (7) can be expressed in a different manner:

∆p+δp = At(k+δk) (12)

whereδp stands for the deflection error, andδk describes the
compliance error. At is defined by the given test pose using
Eq. (3). Accordingly, Eq. (12) is equivalent to

δp = Atδk (13)

So, the mean squared error of the joint compliances under the
external force, which is defined using termOt , can be expressed
as

Ot = E(δpTδp) (14)

In order to simplify Eq. (14), the termδpTδp could be replaced
by trace(δpδpT), such thatOt has the following form

Ot = trace
(

E
(

AtδkδkTAT
t

))

(15)

And taking into account that E(δkδkT) is the covariance matrix
of the desired parametersk, using Eq. (11),Ot can be reduced to

Ot = σ2 trace



At

(

m

∑
i=1

AT
i Ai

)−1

AT
t



 (16)

Analysis of Eq. (16) allows to formulate several remarks:

Remark 1 This approach is an extension of the conventional A-
optimality concept. It can be treated as the weighted trace
of the covariance matrix of desired parameters, where the
weighting coefficients are derived using the test pose. It also
ensures low values of the covariance matrix elements and
allows to combine multiple objectives with different unitsin
a single scalar criterion.

Remark 2 From computational point of view, carrying out a sin-
gle calibration experiment makes sense only when the num-
ber of parameters to be measured (the end-effector position
for instance) is more than or equal to the number of param-
eters to be identified (the joint compliances). Otherwise, the
system of equations is underdetermined. Besides, from clas-
sical regression analysis, it is known that the increasing of
number of experiments also improves the identification ac-
curacy. It can be proved that the proposed criterion is well
adapted to both cases.

Remark 3 If the test pose and measurement poses are the same,
which means thatAi = At , the expression forOt can be sim-
plified to

O∗
t

∣

∣

∣Ai=At ,i=1,m =
nσ2

m
(17)

wheren is the number of identifiable parameters andm is
the number of measurement poses.

To demonstrate the advantages of the proposed criterion, some
illustrative examples with comparison studies are in the consid-
eration of the next section.

ILLUSTRATIVE EXAMPLE

Geometric and Stiffness Models

Let us consider a 2-link manipulator with rigid links and two
compliant actuated joints located on the base and between the
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Figure 2. Geometry and statics of 2-link manipulator in vector repre-
sentation

two links (Fig. 1). Its geometric model can be expressed as

{

x= l1cos(q1)+ l2cos(q1+q2)

y= l1sin(q1)+ l2sin(q1+q2)
(18)

wherex andy are Cartesian coordinates of the robot end-effector
position to be measured,q1 andq2 are the joint angles that are
the design variables,l1 and l2 are the link lengths. Assuming
that the external forceF has a fixed magnitudeF , one more
design variableϕ that defines the force direction should be in-
troduced. As a result, the external force can be expressed as
F = F [cos(ϕ ),sin(ϕ )]T .

In order to obtain analytical solutions of optimal measure-
ment poses for existing optimality criteria, it is reasonable to
rewrite the geometric model of the considered manipulator inthe
local coordinate systemRr . In this coordinate system, the x-axis
is coincided with the first link. And the joint angles and force
direction can be defined in local frameRr usingqr1, qr2 andϕr

that have the following relations withq1, q2 andϕ , respectively:

{qr1 = 0, qr2 = q2, ϕr = ϕ −q1} (19)

This allows us to reduce the number of design variables from
three{qr1,qr2,ϕr} to two {qr2,ϕr}. Accordingly, the Jacobian
in local frameRr can be expressed as

J =

[

−l2sin(q2) −l2sin(q2)
l1+ l2cos(q2) l2cos(q2)

]

(20)

Using this expression, the stiffness model (2) can be simplified
by rewriting the Jacobian matrix in vector form,

J =
[

‖J1‖e1 ‖J2‖e2
]

(21)

where the scalars‖Ji‖(i = 1,2) refer to the Euclid norm of vector
Ji , andei defines the vector direction. It can be easily proved that,
for the considered manipulator,‖J1‖ and‖J2‖ have the form

‖J1‖=
√

l1
2+ l2

2+2l1l2cos(q2)

‖J2‖= l2
(22)

Following the same principle, the scalar productJT
i F can be

expressed as

JT
i F = ‖Ji‖‖F‖cos(ϕi) (23)

where‖F‖ = F , ϕi stands for the angle between force direction
e0 and direction of Jacobian column vectorei (Fig. 2). It is also
reasonable to introduceϕ0 that refers to the angle between two
Jacobian column vectors, it has the relation ofϕ0 = ϕ1+ϕ2. In
the frame of introduced notations,A should take the form

A = F
[

‖J1‖2cos(ϕ1)e1 ‖J2‖2cos(ϕ2)e2
]

(24)

Consequently, the analytical expression of information matrix is

ATA = F2
[

M11 M12

M21 M22

]

(25)

where

M11 = ‖J1‖4cos2(ϕ1)

M12 = M21 = ‖J1‖2‖J2‖2cos(ϕ0)cos(ϕ1)cos(ϕ2)

M22 = ‖J2‖4cos2(ϕ2)

(26)

The obtained expression is quite suitable for formulating the op-
timization functions for both existing and proposed criteria. Let
us address this in the following sections.

Evaluation of Existing Optimality Criteria
For illustrative purposes, the comparison study has been

carried out for 2-link manipulator with the following parame-
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Table 2. Comparison of numerical optimization results for existing
optimality criteria (l1 = 0.6 m, l2 = 0.4 m,F = 1 N)

Criterion
Optimal Pose[deg] Identification Accuracy[rad2/N2]

q1 q2 E[δk1
Tδk1] E[δk2

Tδk2]

Conventional Optimality Criteria

T-optimality 0 0 inf inf

A-optimality -83.34 98.79 13.7315 53.4130

D-optimality -43.72 62.93 5.3208 113.3093

MDC 78.16 112.17 44.2991 44.2991

SVD-based Observability Indices

O1 -43.72 62.93 5.3208 113.3093

O2, O4 86.85 131.80 64.06 64.06

O3 85.40 112.57 29.4947 47.2227
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Figure 3. Identification accuracy of elasto-static parameters using dif-
ferent optimization criteria

ters: the link lengthsl1 = 0.6 m, l2 = 0.4 m and force magnitude
F = 1 N. The numerical results for the case ofone calibration
experimentfor different optimization objectives are presented in
Table 2. They include corresponding optimal measurement poses
and the identification accuracy of the elasto-static parameters.
For comparison, the latter are also illustrated in Fig. 3.

The results show that the solution for the T-optimality cor-
responds to a kinematically singular configuration with an in-
finite covariance matrix, which is not suitable for practical ap-
plications. Besides, solutions forO2 andO4 are dominated by
the solutions for A-optimality,O3 and MDC (maximal diago-
nal covariance). So, they cannot be treated as the optimal ones
for elasto-static calibration. Further, the MDC,O3, A- and D-
optimality principles provide a set of so-called Pareto optimal so-
lutions, which do not dominate each other. However, they canbe
compared using a single scalar performance measure proposed in

1l
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1k

2k

x

y

1

*q

2

*q

2k

F1l
2l1

optq

2

optq

F

test pose

optimal

measurement pose 

Figure 4. Test pose and corresponding optimal measurement pose of
2-link manipulator

this paper (the s.t.d. of the position errors after compensation of
the elasto-static deflections). Using this approach, the common
difficulty (defining the objective function) of multi-objective op-
timization can be overcome. As a result, the possibility to obtain
a unique optimal solution is rather high, and the quality of as-
sociated calibration plans (measurement poses) is estimated by a
physically clear performance measure: the degree of compliance
errors compensation. So, let us focus on the evaluation of the
proposed criterion and its potential advantages comparingto the
existing experimental design approaches.

Evaluation of the Proposed Criterion

Since the considered 2-link manipulator has two output vari-
ablesx andy to be measured, and two parametersk1 andk2 to be
identified, it is possible to calibrate it with either one or several
measurement poses. Let us start from calibration with a single
experiment and further address calibration with several experi-
ments.

Simulations for the case of a single experiment have been
carried out for the test pose with the joint anglesq∗1 = π/3,
q∗2 = π/6. It should be mentioned that the variablesq1 andϕ
are dependent. So, the force direction can be fixed for the test
pose and measurement pose. In this caseϕ =−π/2 is used. The
same numerical values for the manipulator link lengths are used
as in previous subsection. The test pose and the optimal mea-
surement pose{qopt

1 ,qopt
2 } obtained using the proposed criterion

are presented in Fig. 4. As follows from this figure, they are lo-
cated quite far from each other in the workspace.Such test pose
is selected for two reasons:For the given test pose, the quality
of different measurement poses used in the calibration experi-
ments are illustrated in Fig. 5, among which the obtained opti-
mal solutions ensure five times more accurate compensation of
the compliance deflections. This improvement of the calibration
accuracy is defined by a scalar factorχ , which has the following
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form

χ =
O∗

t

Ot
(27)

The higher theχ is, the more accurate the compensation is.

To demonstrate advantages of the proposed performance
measure comparing to the existing ones, the expression (16)is
used to evaluate the quality of the optimal calibration plans,
which are associated with the Pareto solution obtained in the
previous subsection. The corresponding values ofχ are given
in Table 3. Here, ˜δk1 and ˜δk2 refer to the mean square errors in
identification of elasto-static parameters. For the presented ma-
nipulator, it is evident that the precision ofk1 has higher influence
on the end-effector positioning accuracy thank2. For this reason,
the criteria MDC andO3, which aim at balancing/eliminating the
differences between˜δk1 and ˜δk2, have decreased the desired ac-
curacy of the error compensation. On the other hand, using the
A- and D-optimality(O1) principles, yield, increasing of the ac-
curacy by the factor of 1.7 and 4.5 respectively, but the proposed
criterion ensures the best compliance error compensation.

The most important issue derived from the simulation results
can be summarized in the following remark:

Remark 4 The maximal level of accuracy improvement varies
with the test pose.

In order to make the results more representative, the inverse of χ
is used to ensure the resulting values are bounded within[0,1].
So, the smaller value of1χ is, the higher the maximal accuracy
improvement is. It is shown in Fig. 6 that if the test pose is in
the dark areas, the benefits of test-pose approach are minimum.
In this case, it is possible to use the test pose as the calibration
configuration. But, in most cases, the improvements are essen-
tial, the average value of it is 7.08. The most significant change
occurs when the test pose is in the white areas, the degree of com-
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Table 3. Comparison of accuracy improvement using different opti-
mality criteria

Criterion χ ˜δk1 [rad/N] ˜δk2 [rad/N] Ot

O∗
t 1 11.1111 inf 2

A-optimality 1.7041 3.7056 7.3084 1.1736

D-optimality (O1) 4.4632 2.3067 10.6447 0.4481

MDC 0.5361 6.6558 6.6558 3.7305

O3 0.8052 5.4309 6.8719 2.4838

Ot 5.1694 2.1434 12.5104 0.3869

pensation accuracy is raised maximumly, by the factor of 10.

For the considered manipulator, its optimal measurement
pose for calibration with respect to a given test pose can be se-
lected using the maps presented in Fig. 7. Furthermore, taking
into account different link length ratiob = l2/l1, the maps for
selecting optimal measurement poses forb equal to 0.2, 0.5 and
0.9 are obtained and illustrated in Figs. 8-10. Thus, using the
developed technique, for a 2-link manipulator with a given test
pose and known link length ratio, it is possible to obtain theop-
timal measurement pose for calibration experiments and thecor-
responding level of accuracy improvement.

For the case ofseveral calibration experiments, the simula-
tion results (for two and three measurement poses) are presented
in Tables 4 and 5. For comparison purposes, four different cali-
bration plans are used:

(i) obtained by repeating the same measurement pose for several
experiments.

(ii) obtained by optimization ofOt with respect toq1.
(iii) obtained by optimization ofOt with respect toq2.
(iv) obtained by optimization ofOt with respect toq1 andq2.
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Figure 7. Maps for optimal measurement pose selection:l2/l1 = 0.67

The simplest way is to repeat several times the calibration
using the same measurement pose{qopt

1 ,qopt
2 }, which is obtained

as the optimal one for a single calibration experiment (case(i)).
This must obviously lead to the improvement of accuracy in ac-
cordance with expression (17). However, it is evident that the
best results can be obtained using the global optimization (case
(iv)), but this approach is more computational consuming.

Table 4 includes comparison of all above mentioned cases
for two calibration experiments. The results show that cases (i)
and (ii) produce almost the same values for the objective func-
tion, and the difference in identification accuracy is not signifi-
cant. This indicates that changing in the variableq1 has no con-
tribution to the accuracy improvement. On the other hand, case
(iii) (optimization with respect toq2) has more influence. The
identification error ink2 is reduced significantly (almost twice),
but the improvement in the compliance errors compensation is
still negligible (less than 1%). For case (iv), in spite of the error
in k2 is higher than in case (iii), the degree of error compensation
is increased by 8% with regard to all other cases. So, the preci-
sion ofk1 is more important thank2. It should be mentioned that,

Table 4. Numerical optimization results with different calibration
plans: case of two experiments

Variables Ot
q1 q2 E[δk1

Tδk1] E[δk2
Tδk2]

[deg] [deg] [rad2/N2] [rad2/N2]

qopt
1 , qopt

2 0.1934 -27.50 71.34 2.2971 78.2531

-27.50 71.34

q1, qopt
2 0.1934 -21.97 71.34 2.2971 78.8330

-32.15 71.34

qopt
1 , q2 0.1920 -27.50 41.22 2.2803 34.6372

-27.50 -145.05

q1, q2 0.1640 -131.81 131.81 1.9474 36.5317

180.00 -29.12

Table 5. Numerical optimization results with different calibration
plans: case of three experiments

Variables Ot
q1 q2 E[δk1

Tδk1] E[δk2
Tδk2]

[deg] [deg] [rad2/N2] [rad2/N2]

qopt
1 , qopt

2 0.1290 -27.50 71.34 1.5314 52.1687

-27.50 71.34

-27.50 71.34

q1, qopt
2 0.1290 0.03 71.34 1.5314 59.9693

-13.14 71.34

-45.51 71.34

qopt
1 , q2 0.1192 -27.50 55.69 1.4157 26.9694

-27.50 55.69

-27.50 -146.41

q1, q2 0.1039 0 46.10 1.2340 32.2630

-131.81 131.81

-180.00 -46.10

comparing to one calibration experiment, the global optimization
of calibration plan allows increasing the efficiency of error com-
pensation by the factor of 1.5 (instead of the usual 1.4).

Similar results were obtained for the case ofthree calibra-
tion experimentsand presented in Table 5. Here, the global opti-
mization permits increasing the degree of error compensation by
10% with regard to other cases, and by the factor of 1.9 (instead
of the usual 1.7) comparing to calibration with one experiment.
In this case, the mean square errors in the identified parameters
k1 andk2 can be reduced to 1.11 (rad/N) and 5.68 (rad/N) respec-
tively. Hence, the proposed test-pose approach allows increasing
the identification accuracy as well as the degree of error compen-
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Figure 8. Maps for optimal measurement pose selection forb= 0.2

sation significantly.

CONCLUSIONS

In this paper, a new criterion for selection of measurement
poses for elasto-static calibration is proposed. It is based on the
concept of the manipulator test-pose, and evaluates the degree
of compliance errors compensation. The proposed criterional-
lows essentially improving the identification accuracy viaproper
selection of the manipulator measurement poses that are used
in calibration. In contrast to the existing criteria, it hasa clear
physical meaning that is directly related to the robot accuracy,
and permits to combine multiple objectives with different units
into a single scalar expression. It was proved that this approach
is an extension of the conventional A-optimality principleknown
from the design of experiments theory, and the proposed criterion
can be expressed as the weighted trace of the covariance matrix,
where the weighting coefficients are derived using the test pose.

The advantages of the proposed criterion and the compari-
son study with conventional ones were illustrated via simulation
study that deals with a 2-link planar manipulator. For this manip-
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Figure 9. Maps for optimal measurement pose selection forb= 0.5

ulator, the maps for selecting optimal measurement poses with
respect to the given test pose were proposed for different link
length ratio.
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