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Abstract – The paper presents a novel technique for the design 

of optimal calibration experiments for a planar 

anthropomorphic manipulator with n degrees of freedom. 

Proposed approach for selection of manipulator configurations 

allows essentially improving calibration accuracy and reducing 

parameter identification errors. The results are illustrated by 

application examples that deal with typical anthropomorphic 

manipulators.  
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I. INTRODUCTION 

 
The standard engineering practice in industrial robotics 

assumes that the closed-loop control technique is applied 
only on the level of servo-drives actuating the manipulator 
joint variables. However, for spatial location of the end-
effector, it is applied the open-loop control method that is 
based on numerous computations of the direct/inverse 
transformations that define correspondence between the 
manipulator joint coordinates and the Cartesian coordinates 
of the end-effector. This requires careful identification (i.e. 
calibration) of the robot geometric parameters employed in 
the control algorithm, which usually differ from their 
nominal values due to manufacturing tolerances [1]. 

The problem of robot calibration is already well studied 
and it is in the focus of research community for many 
years [2]. In general, the calibration process is divided into 
four sequential steps [3]: modeling, measurements, 
identification and compensation. First two steps focus on 
design of the appropriate (complete but non-redundant) 
mathematical model and carrying out the calibration 
experiments. Usually, algorithms for the third step are 
developed for the identification of Denavit-Hartenberg 
parameters [4], which however are not suitable for the 
manipulators with collinear axis considered in this paper. For 
this particular (but very common) case, Hayati [5], Stone [6], 
and Zhuang [7] proposed some modifications but we will use 
a more straightforward approach that is more efficient for the 
planar manipulators.  

Among numerous publications devoted to the robot 
calibration, there is very limited number of works that 
directly address the issue of the identification accuracy and 
reduction of the calibration errors [8-16]. It is obviously clear 
that the calibration accuracy may be improved by increasing 

the number of experiments (with the factor 1 m , where m  

is the experiments number). Besides, using diverse 
manipulator configurations for different experiments looks 
also intuitively promising and perfectly corresponds to some 
basic ideas of the classical theory [17] that intends using the 
factors that are distinct as much as possible. However, the 
classical results are mostly obtained for very specific models 
(such as linear regression) and can not be applied directly 
here due to non-linearity of the relevant expressions. 

In this paper, the problem of optimal design of the 
calibration experiments is studied for case if a n-link planar 
manipulator, which does not cover all architectures used in 
practice but nevertheless allows to derive some very useful 
analytical expressions and to propose some simple practical 
rules defining optimal configurations with respect to the 
calibration accuracy. Particular attention is given to two- and 
three-link manipulators that are essential components of all 
existing anthropomorphic robots.  

 

II. PROBLEM STATEMENT 

Let us consider a general n-link planar manipulator 
which geometry can be defined by equations 
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where ( , )x y  is the end-effector position, 0 0
,

i j
l q  are the 

nominal length and angular coordinates of the i-th link and 

actuator respectively, 
i

l  and 
i

q  are their deviations from 

nominal values, n  is the number of links. Let us also 

introduce notations 
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be useful for further computations. As follows from (1), the 
manipulators geometrical model includes 2 n  parameters 

{ , , 1, }
i i

l i n    that must be identified by means of the 

calibration.   
It is assumed that each calibration experiment produces 

two vectors, which define the Cartesian coordinates of the 



end-effector [ ]
T

i i i
x yP  and corresponding joint 

coordinates 
1 2

( , , ... , )
i i i ni

q q qQ . Besides, the 

measurement errors for the Cartesian coordinates ( , )
x y

  are 

assumed to be iid (independent identically distributed) 
random values with zero mean and standard deviation  , 

while the measurement errors for the joint variables are 
relatively small. Hence, the calibration procedure may be 

treated as the best fitting of the experimental data { , }
i i

Q P  

by using the geometrical model (1) that leads to the standard 
least-square problem. However, due to the errors in the 

measurements, the desired values { , , 1, }
i i

l i n    are 

always identified approximately. So, the problem of interest 
is to evaluate (in the frame of the above assumption) the 

identification accuracy for the parameters { , , 1, }
i i

l i n    

and to propose a technique for selecting the set of the joint 

variables  
1 2

( , , ... , )
i i i ni

q q qQ  that leads to improvement 

of this accuracy (in statistical sense). 
To solve this general problem, let us sequentially present 

the calibration algorithm, evaluate related identification 
errors and develop optimality conditions allowing minimize 
the number of experiments for given accuracy in 
identification of the desired parameters. 

 

III. CALIBRATION ALGORITHM 

As follows from the previous Section, the input data for 
the manipulator calibration are its joint coordinates 

1 2
( , , ... , )

i i i ni
q q qQ  and corresponding end-effector 

positions [ ]
T

i i i
x yP , 1,i m . The goal is to find 

unknown parameters { , , 1, }
i i

l i n    Π  which ensure 

the best mapping of the coordinates 
i

Q  to the end-effector 

positions 
i

P  that is defined by the geometrical model (1), 

which may be re-written in a general form as 
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f Q Π ,  ,
iy

f Q Π  are the right-hand sides 

of system (1).  

To compute { , , 1, }
i i

l i n    Π ,  let us apply the 

least-square method which minimizes the residuals for all 
experimental configurations.  Corresponding optimization 
problem can be written as  
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and it can be solved by using stationary condition at the 

extreme point 
i

/ 0F  Π  for 1, 2i n  with respect to 

{ , , 1, }
i i

l i n    Π . Corresponding derivations yield 
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where 1,k n , 
( ) ( )

1

j

i i

j k

k

q


   is the orientation of j-th link in 

the i-th experiment. Since this system of equations is 

nonlinear with respect to 
i

  , it does not have general 

analytical solution. Thus, it is reasonable to linearize the 
model (1)  
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where 
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P  is the end-effector position for the nominal values 

of parameters and the joint variables  
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differencing the system (1) with respect to П  that leads to 
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Taking into account (6),  the function (3) can be rewritten as 
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So, the unknown parameters П , can be computed as 
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To increase the identification accuracy, the foregoing 
linearized procedure has to be applied several times, in 
accordance with the following iterative algorithm: 

 
Step 1. Carry out experiments and collect the input data 

in the vectors of generalized coordinates 
i

Q  and end-

effector position ( , )
i i i

x yP . Initialize 0 П . 

Step 2. Compute end-effector position via direct 

kinematic model (1) using initial generalized coordinates 
i

Q  

Step 3. Compute residuals and unknown parameters П  
via (11) 

Step 4. Correct mathematical model and generalized 

coordinates 
j j j

l l l   , 
ji ji j

     , 1,j m . 

Step 5. If required accuracy is not satisfied,  repeat from 
Step 2. 

It should be mentioned, that the proposed iterative 

algorithm can produce exact values of { , , 1, }
i i

l i n    if 

and only if there are no measurement errors in the initial data 

{ , }
i i

Q P . Since in practice it is not true, it is reasonable to 

minimize the measurement errors impact via proper selection 

of { , }
i i

Q P . 

 

IV. ACCURACY OF CALIBRATION  EXPERIMENT 

Let us assume that the measurements of x, y are carrying 

out with some random errors ,
xi yi

  that are assumed to be 

iid, with the standard deviation   and zero mean value. 

Thus, model (6) can be rewritten as 


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where the vector ,
yi

T

xi i
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ε  collect all measurement 

errors. So,  expression (11) for computing the vector of the 
desired parameters П  has to be rewritten as 
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As follows from (13), the latter expression produces 
unbiased estimates 
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Besides, it can be proved that the covariance matrix of the 
parameters П  [18], defining the identification accuracy, 
can be expressed as  
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Therefore, for the problem of interest, the impact of the 
measurement errors (i.e. “quality” of the experiment plan) is 

defined by the matrix sum  
1

m

T
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i

 J J .  

For the considered model (1), this sum can be expressed 
as 
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This expression allows estimating the identification 
accuracy and it can be applied for optimal design of 
calibration  that is presented in the following Section.  



V. DESIGN OF CALIBRATION  EXPERIMENTS 

To optimize location of experimental points in the 
Cartesian space (and corresponding manipulator 
configurations), let us investigate in details all components 

of the matrix  
1

m

T

i i

i

 J J  that is similar to the “information 

matrix” in classical design of experiments. As it is known 
[17], this matrix can be evaluated by several criteria. The 
most common of them are A- and D-optimality criteria, but 
here it is not reasonable to use the A- criterion because the 

trace of the matrix  
1

m

T

i i

i

 J J  does not depend on the 

experiment plan. Besides, the D- criterion is also not 
applicable here in its direct form. 

Hence, let us introduce a modified D*-optimal criterion 
which takes into account the structure of the information 
matrix in this particular case. Since this matrix includes 
several blocks with different units (linear, angular, etc.), it is 
reasonable to focus on optimization of each block separately. 
This approach allows to reformulate the problem and to 
define the goal as  
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diagonal and non-diagonal blocks of (19) respectively. It can 
be proved that this goal is satisfied if 
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that perfectly corresponds to the classical D-optimality 
conditions. For practical convenience, cases of 2-, 3- and 4-
links manipulators were investigated in details and 
corresponding optimality conditions are presented in Table 1. 

A correspondence between the proposed approach and 
the D-optimality can be also proved analytically. In 
particular, straightforward computations give 
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The latter guarantees maximum of the relevant determinant 
and ensures agreement with the D-optimality. 

Validity of the proposed approach and its practical 
significance was also conformed by a simulation example 
that deals with 4-links manipulator with geometrical 

parameters 
1

260l m m , 
2

180l m m , 
3

120l m m , 

4
100l m m  and their deviations 

1
1.5l m m , 

2
0.6l mm  , 

3
0.4l m m  , 

4
0.7l mm ; and 

deviation of zero values of angular coordinates o

1
0.5q  , 

o

2
0.5q   , o

3
0.7q  , o

4
0.3q   . All experiments 

were carried out for 10 random experimental points, the 
results are summarized in the Figure 1. They show that 
random plans give rather poor results both for D-optimality 
and D*-optimality criteria comparing to the optimal ones (for 

the optimal plans  det 1 C  and  det 0 S ;  det 1 D , 

where D  is normalized block matrix (19)).  
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Figure 1.  Determinant values of matrix D' for 4-links manipulator  

for random calibration plans with 10 experimental points: 

TABLE I.  OPTIMAL PLAN CONDITIONS FOR 2-, 3- AND 4-LINKS MANIPULATORS 

Manipulator Conditions for optimal plan Notation 
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1 1

0; 0

m m

i i

i i

c s

 
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manipulator 2 2 3 3 23 23
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For the proposed set of calibration experiments, the 
calibration accuracy can be estimated via the covariance 
matrix, which in this case is diagonal and may be presented 
as 

 2
·

·cov( )
m


 

   
 

L L 0
П

0 I
 

where 
1 2

( , , ..., )
n

diag l l lL , and identification accuracy can 

be evaluated as 

 ; ; 1,
qi Li

i

i n
m l m

 
   


 

where ,
qi L i

   are standard deviations of angular (
i

q ) and 

linear (
i

l ) parameters from the nominal values. 

The results show that identification errors of the linear 
parameters depend only on the number of experimental 
points, while the angular parameter errors also depend on the 
link length. 

VI. SIMULATION STUDY  

Let us present some simulation results that demonstrate 
efficiency of the proposed technique for several case studies 
that deal with two-, three- and four-links manipulators and 
employ different number of calibration experiments. It is 
assumed that in all cases the calibration experiments were 
designed in accordance with expressions developed in 
Section 5 ( see Table 1). To obtain meaningful statistics, the 
simulation was repeated 10000 times; the deviation of 
measurement error   was equal to 0.1 mm. 

It was also assumed that the manipulator geometrical 

parameters are 
1

260l m m , 
2

180l m m , 
3

120l m m , 

4
100l m m  and their deviations are equal to 1.5 mm, -

0.6 mm, -0.4 mm and 0.7 mm. respectively, while the 
deviation of zero values of angular coordinates 0.5°, -0.5°, 
0.7° and -0.3° for the first, second, third and fourth joints 
respectively. Short summary of the simulation results are 
presented in Table 3 and in Figure 2.  

As follows from this study, the identification accuracy of 
the experimental result and analytical estimations are in good 
agreement. In particular, for linear parameters, the 

TABLE II.  ESTIMATION OF THE IDENTIFICATION ACCURACY OF GEOMETRICAL PARAMETERS: ANALYTICAL SOLUTION 
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TABLE III.  ESTIMATION OF IDENTIFICATION ACCURACY OF GEOMETRICAL PARAMETERS 

Manipulator Model parameters 
Identification accuracy 

3 experimental points 20 experimental points 

2-links  

manipulator 

1 1 1

2 2 2

260 , 1.5 , 0.5

180 , 0.6 , 0.5

mm L mm q deg

mm L mm qL g

L

de

    

      
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1 1

2 2
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0.058 , 0.018 deg

L mm q

L mm q

   

   
 

1 1

2 2
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0.058 , 0.007 deg
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   

   
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1 1 1

2 2 2
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mm L mm q deg

mm L mm q de

L

g

mm L mm q dL eg

L
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   
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   

 

 



identification error reduces from 0.022 mm to 0.005 mm 
while the experiment number increases from 4 to 20. 
Besides, these results allow defining minimum number of 
experimental points to satisfy the required accuracy. Thus, to 
satisfy an accuracy of 0.001 mm for linear parameters it is 
required to carry out 100 experiments, which will provide 
accuracy for angular parameters 0.002°, 0.003°, 0.005° and 
0.006° respectively. 

VII. CONCLUSION 

The paper presents a new approach for design of 
calibration experiments that allows essentially reducing the 
identification errors due to proper selection of the 
manipulator postures employed in the measurements. There 
were obtained analytical expressions describing set of the 
optimal postures corresponding the proposed D*-criterion 
that is adopted to special structure of the information matrix. 
Validity of the obtained results and their practical 
significance were confirmed via simulation study that deals 
with two-, three- and four-links planar manipulators. 

Compared to previous contributions, these results can be 
treated as further development of the design-of-experiments 
theory that is adapted to the specific type of the non-linear 
models that arise in robot kinematics. Future work will focus 
on extension of these results for non-planar manipulators. 
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Figure 2.   Identification accuracy for the geometrical parameters identification of 4-links manipulator with optimal experiment planning:  

"x" are experimental values corresponding to the optimal calibration plan, "o" are experimental values corresponding to the standard calibration plan 

"1" is analytical curve coresponding to the optimal plan, "2" is an average experemental curve  corresponding to 10000 random calibtration  plans. 


