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The paper presents a novel technique for the design of optimal calibration experiments for a planar anthropomorphic manipulator with n degrees of freedom. Proposed approach for selection of manipulator configurations allows essentially improving calibration accuracy and reducing parameter identification errors. The results are illustrated by application examples that deal with typical anthropomorphic manipulators.

INTRODUCTION

The standard engineering practice in industrial robotics assumes that the closed-loop control technique is applied only on the level of servo-drives actuating the manipulator joint variables. However, for spatial location of the endeffector, it is applied the open-loop control method that is based on numerous computations of the direct/inverse transformations that define correspondence between the manipulator joint coordinates and the Cartesian coordinates of the end-effector. This requires careful identification (i.e. calibration) of the robot geometric parameters employed in the control algorithm, which usually differ from their nominal values due to manufacturing tolerances [START_REF] Roth | An overview of robot calibration[END_REF].

The problem of robot calibration is already well studied and it is in the focus of research community for many years [START_REF] Elatta | An Overview of Robot Calibration[END_REF]. In general, the calibration process is divided into four sequential steps [START_REF] Mooring | Fundamentals of Manipulator Calibration[END_REF]: modeling, measurements, identification and compensation. First two steps focus on design of the appropriate (complete but non-redundant) mathematical model and carrying out the calibration experiments. Usually, algorithms for the third step are developed for the identification of Denavit-Hartenberg parameters [START_REF] Hollerbach | A Survey of Kinematic Calibration[END_REF], which however are not suitable for the manipulators with collinear axis considered in this paper. For this particular (but very common) case, Hayati [START_REF] Hayati | Robot Arm Geometric Link Parameter Estimation[END_REF], Stone [START_REF] Stone | Kinematic Modeling, Identification, and Central of Robor Forward Manipulators[END_REF], and Zhuang [START_REF] Zhuang | A complete and pararnetricatly continuous kinematic model for robot manipulators[END_REF] proposed some modifications but we will use a more straightforward approach that is more efficient for the planar manipulators.

Among numerous publications devoted to the robot calibration, there is very limited number of works that directly address the issue of the identification accuracy and reduction of the calibration errors [START_REF] Ikits | Kinematic calibration using a plane constraint[END_REF][START_REF] Mirman | Compensation of robot joint variables using special Jacobian Matrices[END_REF][START_REF] Mooring | Fundamentals of Manipulator Calibration[END_REF][START_REF] Sun | Observability index selection for robot calibration[END_REF][START_REF] Sun | Active robot calibration algorithm[END_REF][START_REF] Hollerbach | Model Identification[END_REF][START_REF] Zhuang | Optimal planning of robot calibration experiments by genetic algorithms[END_REF][START_REF] Daney | Choosing Measurement Poses for Robot Calibration with the Local Convergence Method and Tabu Search[END_REF][START_REF] Borm | Determination of optimal measurement configurations for robot calibration based on observibility measure[END_REF]. It is obviously clear that the calibration accuracy may be improved by increasing the number of experiments (with the factor 1 m , where m is the experiments number). Besides, using diverse manipulator configurations for different experiments looks also intuitively promising and perfectly corresponds to some basic ideas of the classical theory [START_REF] Atkinson | Optimum Experiment Designs[END_REF] that intends using the factors that are distinct as much as possible. However, the classical results are mostly obtained for very specific models (such as linear regression) and can not be applied directly here due to non-linearity of the relevant expressions.

In this paper, the problem of optimal design of the calibration experiments is studied for case if a n-link planar manipulator, which does not cover all architectures used in practice but nevertheless allows to derive some very useful analytical expressions and to propose some simple practical rules defining optimal configurations with respect to the calibration accuracy. Particular attention is given to two-and three-link manipulators that are essential components of all existing anthropomorphic robots.

II. PROBLEM STATEMENT

Let us consider a general n-link planar manipulator which geometry can be defined by equations
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where ( , ) xy is the end-effector position, 00 , ij lq are the nominal length and angular coordinates of the i-th link and actuator respectively, i l  and i q  are their deviations from nominal values, n is the number of links. Let us also introduce notations 00

1 i ij j q     , and 1 i ij j q      
that will be useful for further computations. As follows from (1), the manipulators geometrical model includes 

i i i ni q q q  Q .
Besides, the measurement errors for the Cartesian coordinates ( , ) xy  are assumed to be iid (independent identically distributed) random values with zero mean and standard deviation  , while the measurement errors for the joint variables are relatively small. Hence, the calibration procedure may be treated as the best fitting of the experimental data { , } ii QP by using the geometrical model (1) that leads to the standard least-square problem. However, due to the errors in the measurements, the desired values 

i i i ni q q q  Q
that leads to improvement of this accuracy (in statistical sense).

To solve this general problem, let us sequentially present the calibration algorithm, evaluate related identification errors and develop optimality conditions allowing minimize the number of experiments for given accuracy in identification of the desired parameters.

III. CALIBRATION ALGORITHM

As follows from the previous Section, the input data for the manipulator calibration are its joint coordinates 12 ( , , ... , )

i i i ni q q q  Q and corresponding end-effector positions [] T i i i xy  P , 1, im  . The goal is to find unknown parameters { , , 1, } ii l i n       Π
which ensure the best mapping of the coordinates i Q to the end-effector positions i P that is defined by the geometrical model [START_REF] Roth | An overview of robot calibration[END_REF], which may be re-written in a general form as

     , ; , ; 1, i x i i y i x f y f i m     Π Q Π Q   where   , i x f  Q Π ,   , i y f  Q Π are the right-hand sides of system (1). To compute { , , 1, } ii l i n       Π
, let us apply the least-square method which minimizes the residuals for all experimental configurations. Corresponding optimization problem can be written as
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and it can be solved by using stationary condition at the extreme point
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is the orientation of j-th link in the i-th experiment. Since this system of equations is nonlinear with respect to i   , it does not have general analytical solution. Thus, it is reasonable to linearize the model (1)
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where 0 i P is the end-effector position for the nominal values of parameters and the joint variables 0 0 ( ) 0 0 ( ) 0 11 cos sin
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J is the Jacobian matrix, which can be computed by differencing the system (1) with respect to  П that leads to 
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Taking into account ( 6), the function (3) can be rewritten as
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and expressions (4) are reduced to

 11 ( ) ( ) • тт TT i i i i ii        JJ П J P  
So, the unknown parameters  П , can be computed as . To increase the identification accuracy, the foregoing linearized procedure has to be applied several times, in accordance with the following iterative algorithm:

 1 () TT а а а а        П J J J P 
Step 1. Carry out experiments and collect the input data in the vectors of generalized coordinates i Q and endeffector position ( , ) Step 4. Correct mathematical model and generalized coordinates Since in practice it is not true, it is reasonable to minimize the measurement errors impact via proper selection of { , } ii QP.

j j j l l l    , ji ji j       ,

IV. ACCURACY OF CALIBRATION EXPERIMENT

Let us assume that the measurements of x, y are carrying out with some random errors , xi yi



that are assumed to be iid, with the standard deviation  and zero mean value. Thus, model ( 6) can be rewritten as
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where the vector has to be rewritten as
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. As follows from [START_REF] Hollerbach | Model Identification[END_REF], the latter expression produces unbiased estimates
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Besides, it can be proved that the covariance matrix of the parameters  П [START_REF] Cox | Planning of experiments[END_REF], defining the identification accuracy, can be expressed as
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is the identity matrix of the size 2 2 n n  , the expression [START_REF] Daney | Choosing Measurement Poses for Robot Calibration with the Local Convergence Method and Tabu Search[END_REF] can be simplified to
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Therefore, for the problem of interest, the impact of the measurement errors (i.e. "quality" of the experiment plan) is defined by the matrix sum

  1 m T ii i    JJ .
For the considered model [START_REF] Roth | An overview of robot calibration[END_REF], this sum can be expressed as
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, which can be presented via block matrix
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This expression allows estimating the identification accuracy and it can be applied for optimal design of calibration that is presented in the following Section.

V. DESIGN OF CALIBRATION EXPERIMENTS

To optimize location of experimental points in the Cartesian space (and corresponding manipulator configurations), let us investigate in details all components of the matrix

  1 m T ii i  
 JJ that is similar to the "information matrix" in classical design of experiments. As it is known [START_REF] Atkinson | Optimum Experiment Designs[END_REF], this matrix can be evaluated by several criteria. The most common of them are A-and D-optimality criteria, but here it is not reasonable to use the A-criterion because the trace of the matrix

  1 m T ii i  
 JJ does not depend on the experiment plan. Besides, the D-criterion is also not applicable here in its direct form.

Hence, let us introduce a modified D*-optimal criterion which takes into account the structure of the information matrix in this particular case. Since this matrix includes several blocks with different units (linear, angular, etc.), it is reasonable to focus on optimization of each block separately. This approach allows to reformulate the problem and to define the goal as 

     , 1, , 1, det m ax 
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that perfectly corresponds to the classical D-optimality conditions. For practical convenience, cases of 2-, 3-and 4links manipulators were investigated in details and corresponding optimality conditions are presented in Table 1.

A correspondence between the proposed approach and the D-optimality can be also proved analytically. In particular, straightforward computations give
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The latter guarantees maximum of the relevant determinant and ensures agreement with the D-optimality.

Validity of the proposed approach and its practical significance was also conformed by a simulation example that deals with 4-links manipulator with geometrical parameters 1 260 . All experiments were carried out for 10 random experimental points, the results are summarized in the Figure 1. They show that random plans give rather poor results both for D-optimality and D*-optimality criteria comparing to the optimal ones (for the optimal plans

l m m  , 2 180
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where  D is normalized block matrix ( 19)). 
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For the proposed set of calibration experiments, the calibration accuracy can be estimated via the covariance matrix, which in this case is diagonal and may be presented as
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, and identification accuracy can be evaluated as

 ; ; 1, qi L i i in m l m         where , qi L i
 are standard deviations of angular ( i q ) and linear ( i l ) parameters from the nominal values. The results show that identification errors of the linear parameters depend only on the number of experimental points, while the angular parameter errors also depend on the link length.

VI. SIMULATION STUDY

Let us present some simulation results that demonstrate efficiency of the proposed technique for several case studies that deal with two-, three-and four-links manipulators and employ different number of calibration experiments. It is assumed that in all cases the calibration experiments were designed in accordance with expressions developed in Section 5 ( see Table 1). To obtain meaningful statistics, the simulation was repeated 10000 times; the deviation of measurement error  was equal to 0.1 mm.

It was also assumed that the manipulator geometrical parameters and their deviations are equal to 1.5 mm, -0.6 mm, -0.4 mm and 0.7 mm. respectively, while the deviation of zero values of angular coordinates 0.5°, -0.5°, 0.7° and -0.3° for the first, second, third and fourth joints respectively. Short summary of the simulation results are presented in Table 3 and in Figure 2.

As follows from this study, the identification accuracy of the experimental result and analytical estimations are in good agreement. In particular, for linear parameters, the ; ; ; ; ; ; ; ; 
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identification error reduces from 0.022 mm to 0.005 mm while the experiment number increases from 4 to 20.

Besides, these results allow defining minimum number of experimental points to satisfy the required accuracy. Thus, to satisfy an accuracy of 0.001 mm for linear parameters it is required to carry out 100 experiments, which will provide accuracy for angular parameters 0.002°, 0.003°, 0.005° and 0.006° respectively.

VII. CONCLUSION

The paper presents a new approach for design of calibration experiments that allows essentially reducing the identification errors due to proper selection of the manipulator postures employed in the measurements. There were obtained analytical expressions describing set of the optimal postures corresponding the proposed D*-criterion that is adopted to special structure of the information matrix. Validity of the obtained results and their practical significance were confirmed via simulation study that deals with two-, three-and four-links planar manipulators.

Compared to previous contributions, these results can be treated as further development of the design-of-experiments theory that is adapted to the specific type of the non-linear models that arise in robot kinematics. Future work will focus on extension of these results for non-planar manipulators. . Identification accuracy for the geometrical parameters identification of 4-links manipulator with optimal experiment planning: "x" are experimental values corresponding to the optimal calibration plan, "o" are experimental values corresponding to the standard calibration plan "1" is analytical curve coresponding to the optimal plan, "2" is an average experemental curve corresponding to 10000 random calibtration plans.

2 .QStep 3 .

 23 Compute end-effector position via direct kinematic model (1) using initial generalized coordinates i Compute residuals and unknown parameters  П via[START_REF] Sun | Observability index selection for robot calibration[END_REF] 

  , expression[START_REF] Sun | Observability index selection for robot calibration[END_REF] for computing the vector of the desired parameters  П

Figure 1 .

 1 Figure 1. Determinant values of matrix D' for 4-links manipulator for random calibration plans with 10 experimental points:

Figure 2

 2 Figure2. Identification accuracy for the geometrical parameters identification of 4-links manipulator with optimal experiment planning: "x" are experimental values corresponding to the optimal calibration plan, "o" are experimental values corresponding to the standard calibration plan "1" is analytical curve coresponding to the optimal plan, "2" is an average experemental curve corresponding to 10000 random calibtration plans.

TABLE I

 I 

							.	OPTIMAL PLAN CONDITIONS FOR 2-, 3-AND 4-LINKS MANIPULATORS		
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 II ESTIMATION OF THE IDENTIFICATION ACCURACY OF GEOMETRICAL PARAMETERS: ANALYTICAL SOLUTION

	Manipulator			() 					Identification accuracy
				1							
	2-links	(	22 12 , 	,	,	)	,	1	2	1	2
	manipulator										12
		m diag m l i	T JJ ii m l		m m				
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