
HAL Id: hal-00759840
https://hal.science/hal-00759840

Submitted on 3 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Approach for Modeling and Formalizing
SOA Design Patterns with Event-B

Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira

To cite this version:
Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, Khalil Drira. Towards an Approach for
Modeling and Formalizing SOA Design Patterns with Event-B. The 28 th Annual ACM Symposium
on Applied Computing, Mar 2013, Coimbra, Portugal. 3p. �hal-00759840�

https://hal.science/hal-00759840
https://hal.archives-ouvertes.fr


Towards an Approach for Modeling and Formalizing SOA

Design Patterns with Event-B

Imen Tounsi1, Mohamed Hadj Kacem1, Ahmed Hadj Kacem1, and Khalil Drira2,3

1 ReDCAD-Research unit, University of Sfax, Sfax, Tunisia,
2 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

3 Univ de Toulouse, LAAS, F-31400 Toulouse, France,
{imen.tounsi,mohamed.hadjkacem}@redcad.org, ahmed.hadjkacem@fsegs.rnu.tn, khalil@lass.fr

Abstract. This paper introduces a formal architecture-centric approach, which allows first to
model message-oriented SOA design patterns with the SoaML standard language, and second to
formally specify these patterns at a high level of abstraction using the Event-B method. These
two steps are performed before undertaking the effective coding of a design pattern providing
correct by construction pattern-based software architectures. We implement our approach under
the Rodin platform which we use to prove model consistency.

Keywords: Design patterns: SoaML modeling: Event-B method

1 Introduction

Service-oriented architectures (SOA) is a technology that offers a model and an opportunity to
solve problems related to the communication and the integration between heterogeneous applications
[Erl, 2009]. Nevertheless these architectures are subject to some quality attribute failures (e.g., re-
liability, availability, and performance problems). Design patterns, as tested solutions to common
design problems within a context, have been widely used to solve these weaknesses.

Most design patterns are presented in an informal way that can raise ambiguity and may lead to
their incorrect usage. Patterns, proposed by the SOA design pattern community, are described with
informal visual notations [Erl, 2009]. The intent of our approach is to model and formalize message-
oriented SOA design patterns. These two steps are performed before undertaking the effective coding
of a design pattern, so that the pattern in question will be correct by construction. Our approach
allows to reuse correct SOA design patterns, hence we can save effort on proving pattern correctness.

In this paper, we introduce a formal architecture-centric approach. The key idea is to model SOA
design patterns with the semi-formal Service oriented architecture Modeling Language (SoaML) in
order to attribute a standard notation to SOA design patterns, then to formally specify them with
the Event-B method. We have tested our approach with pattern examples. From these patterns we
quote the Asynchronous Queuing pattern proposed by the SOA design pattern community. We
implement the specifications under the Rodin platform which we use to prove model consistency. We
provide both structural and behavioral features of SOA design patterns in modeling and formalizing
steps. Structural features of a design pattern are generally specified by assertions on the existence of
entity types in the pattern. The configuration of the entities is also described, in terms of the static
relationships between them. Behavioral features are defined by assertions on the temporal orders of
the messages exchanged between the entities [Zhu and Bayley, 2010].

The rest of this paper is organized as follows. Section 2 gives an overview of our proposed approach.
Section 3 discusses related work. Section 4 concludes and gives future work directions.

2 Approach overview

The proposed approach mainly consists of two steps. In the first step, SOA design patterns are modeled
graphically with the SoaML language [OMG, 2012]. In the second step, the obtained graphical models
are formalized with the Event-B method [Abrial, 2010] (Fig. 1).



2 Imen Tounsi, Mohamed Hadj Kacem, Ahmed Hadj Kacem, and Khalil Drira

2.1 Pattern Modeling

We provide a modeling solution for describing SOA design patterns using a visual notation based on the
graphical SoaML standard language. To specify structural features, we use Participant diagram that
allows modeling entities that make up the pattern’s architecture, their types and their dependencies
(connections). We also use ServiceInterface and MessageType diagrams to respectively model
interfaces of entities and exchanged messages. To specify behavioral features, we use UML2.0 sequence
diagram that provides a graphical notation to describe dynamic aspects of design patterns.

Entities, that make up the architecture of an SOA design pattern, can be either Participants or
Agents. It is a Participant when it provides and/or consumes services and it is an Agent when it
can adapt to and interact with its environment. Agents are also participants, providing and using
services. Entities can have ports that constitute interaction points with their environment. The port

type can be either service or request. The communication path between Services and Requests within
an architecture is called ServiceChannel.

2.2 Pattern Formalization

For the formalization of SOA design patterns, we use the Event-B method.We use the Rodin Platform
[Abrial et al., 2010] in order to prove the correctness of the pattern specification.

A design pattern is described with structural features and behavioral features. Structural features
are specified with one or several contexts PCi and behavioral features are specified with one or several
machines PMi. To reduce the complexity of pattern formalizations, we define specification levels. In
the first level, we create a very abstract model (a context PC0 and a machine PM0). In the next
levels, we use the refinement techniques to gradually introduce detail and complexity into our model
until obtaining the final pattern specification. When we move from Level(i) to Level(i+1), we add a
new entity and its connections to the model. In Level(i+1), the context PCi is extended with the
context PC(i+1) and the machine PMi is refined with the machine PM(i+1). The refined machine
sees the extended context.

«ServiceInterface» 

Diagram

«MessageType» 

Diagram

Sequence Diagram

«Participant» 

Diagram

B
e
h

a
v
io

r
a

l

fe
a

tu
r
e
s

S
tr

u
c
tu

r
a
l 

fe
a

tu
r
e
s CONTEXT

PCn

S
ee

s

RefinesMACHINE 

PM0

S
ee

s

Level nLevel 0

CONTEXT

PC0

MACHINE 

PMn

SoaML Event-B

Extends

Fig. 1. Approach overview

3 Related work

Research connected to design patterns in the field of software architecture are mainly classified into
three branches of work according to their architectural style. The first is about design patterns for
Object-Oriented Architectures [Gamma et al., 1995], the second is about design patterns for Enter-
prise Application Integration (EAI) [Gregor and Bobby, 2003], and the third is about design pat-
terns for Service Oriented Architectures (SOA) [Erl, 2009]. Most proposed patterns are presented
in an informal way, using a combination of textual description and a graphical notations in order
to make them easy to read and understand [Gamma et al., 1995,Gregor and Bobby, 2003,Erl, 2009].
However, using these descriptions makes patterns ambiguous and may lack details. Therefore, several
researches have proposed the formalization of these patterns. Since the most famous ones are those pro-
posed by Gamma [Gamma et al., 1995], most researches refer to these patterns [Zhu and Bayley, 2010]



Lecture Notes in Computer Science: Authors’ Instructions 3

[Taibi and Ngo, 2003,Dong et al., 2007,Kim and Carrington, 2009]. These researches use several for-
mal techniques to define pattern specifications like the Balanced Pattern Specification Language
(BPSL) [Taibi and Ngo, 2003], TLA [Dong et al., 2007] and Object-Z [Kim and Carrington, 2009]
[Dong et al., 2007]. All these research address object-oriented design patterns, however in our re-
search work we are interested in SOA design patterns and we are based on patterns defined by Erl
[Erl, 2009]. Erl presents his patterns with an informal proprietary notation. So, in our work, we propose
to model SOA design patterns with the SoaML standard language and we focus on their structural
and behavioral features.

4 Conclusions

In this paper, we introduce a formal architecture-centric design approach supporting modeling and
formalizing message-oriented SOA design patterns. The modeling phase allows to represent SOA design
patterns with a graphical standard notation using the SoaML language. The formalization phase
allows to formally specify both structural and behavioral features of these patterns at a high level
of abstraction using the Event-B method. So far, we have implemented the elaborated specifications
under the Rodin platform. We also illustrated our approach through a pattern example within the
”Service messaging patterns” category. Currently, the transition from the SoaML modeling to the
formal specification is achieved manually, we are working on automating this phase by implementing
transformation rules.

5 Acknowledgments

This paper is done with the support of the Ministry of Higher Education and Scientific Research of
Tunisia within the Tunisian-French scientific cooperation (DGRS/CNRS).

References

[Abrial, 2010] Abrial, J.-R. (2010). Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition.

[Abrial et al., 2010] Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., and Voisin, L. (2010).
Rodin: An Open Toolset for Modelling and Reasoning in Event-B. Int. J. Softw. Tools Technol. Transf.,
12(6):447–466.

[Dong et al., 2007] Dong, J., Alencar, P. S. C., Cowan, D. D., and Yang, S. (2007). Composing pattern-based
components and verifying correctness. J. Syst. Softw., 80:1755–1769.

[Erl, 2009] Erl, T. w. a. c. (2009). SOA Design Patterns (The Prentice Hall Service-Oriented Computing
Series from Thomas Erl). Prentice Hall PTR, 1 edition.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

[Gregor and Bobby, 2003] Gregor, H. and Bobby, W. (2003). Enterprise Integration Patterns - Designing,
Building, and Deploying Messaging Solutions. Addison Wesley.

[Kim and Carrington, 2009] Kim, S.-K. and Carrington, D. A. (2009). A formalism to describe design patterns
based on role concepts. Formal Asp. Comput., 21(5):397–420.

[OMG, 2012] OMG (2012). Service oriented architecture Modeling Language (SoaML) Specification. Technical
report.

[Taibi and Ngo, 2003] Taibi, T. and Ngo, D. C. L. (2003). Formal specification of design pattern combination
using BPSL. Information and Software Technology, 45(3):157 – 170.

[Zhu and Bayley, 2010] Zhu, H. and Bayley, I. (2010). Laws of pattern composition. In Proceedings of the
12th international conference on Formal engineering methods and software engineering, ICFEM’10, pages
630–645, Berlin, Heidelberg. Springer-Verlag.


