
HAL Id: hal-00759826
https://hal.science/hal-00759826

Submitted on 3 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random matrices over a DVR and LU factorization
Xavier Caruso

To cite this version:
Xavier Caruso. Random matrices over a DVR and LU factorization. Journal of Symbolic Computa-
tion, 2015, 71, pp.98-123. �10.1016/j.jsc.2014.12.001�. �hal-00759826�

https://hal.science/hal-00759826
https://hal.archives-ouvertes.fr

Random matrix over a DVR and LU factorization

Xavier Caruso

December 3, 2012

Abstract

Let R be a discrete valuation ring (DVR) and K be its fraction field. If M is a matrix over R admitting

a LU decomposition, it could happen that the entries of the factors L and U do not lie in R, but just in K.

Having a good control on the valuations of these entries is very important for algorithmic applications. In

the paper, we prove that in average these valuations are not too large and explain how one can apply this

result to provide an efficient algorithm computing a basis of a coherent sheaf over A1
K from the knowledge

of its stalks.

Contents

1 Some statistics related to LU decomposition 2

1.1 Some useful tools . 2

1.2 Proof of the main results . 5

1.3 Generalization to block LU decomposition . 7

2 LU decomposition over a DVR: algorithmic issues 8

2.1 Loss of precision in LU decomposition . 9

2.2 Simultaneous PLU decompositions . 15

2.3 Modules over K[X] and sheaves over A1
K . 19

Throughout the paper, we fix a ring R equipped with a discrete valuation vR : R → N ∪ {∞}. We

assume that vR is normalized so that it takes the value 1 and we fix an element π ∈ R such that vR(π) = 1.

We also assume that R is complete with respect to the distance defined by vR. The residue field of R and

its fraction field are denoted by k and K respectively. The valuation vR extends uniquely to K and we

continue to denote this extension by vR. We finally set q = Card k and assume that q is finite. Two typical

examples of this are (1) R = Zp (the ring of p-adic integers) equipped with the usual p-adic valuation and

(2) R = k[[x]] (the ring of power series) where k is a finite field.

If d is a positive integer, we denote by Ω the ring of square matrices of size d with coefficients in R.

It is a compact additive group whose Haar measure is denoted by µ. We assume that µ is normalized so

that (Ω, µ) is a probability space (i.e. µ(Ω) = 1). Thus, it makes sense to study some statistics on Ω.

Surprinsingly, the literature around this subject seems to be very poor. Nevertheless related questions were

already addressed by Abdel-Ghaffar in [1] and Evans in [4]: the main result of [1] is the computation of the

law of the random variable “valuation of the determinant” (in the case where R is a power series ring but

his argument works for a more general discrete valuation ring) whereas, in [4], Evans studies the random

variable “valuation of the elementary divisors”.

In this paper, we are mainly interested in the random variable VL: “valuation of the L-part in the

LU decomposition”. We give several estimations of its law, its expected value and its standard deviation.

Roughly speaking, we prove that E[VL] = logq d+O(1) and σ(VL) = O(1) where the notation O(1) refers

to a quantity bounded by a universal constant. We also bound from above the probability that VL deviates

from its expectation. For more precise statements, we refer to Theorem 1.1, Theorem 1.2 and Corollary 1.3

in the introduction of §1.

In §2, we move to algorithmic applications. Firstable, we propose in §2.1 a stable algorithm to compute

a LU decomposition of a matrix over R (unfortunately standard Gauss elimination is far for being stable)

1

and analyze closely the losses of precision it generates in average (which turn out to be optimal in some

sense). §2.2 is devoted to a study of the notion of “simultaneous PLU decomposition”, which will play an

important role for our next (and main) application presented in §2.3. This application is of geometric nature.

We let X = A1
K be the affine line over K . Recall that a coherent subsheaf of F ⊂ Od

X (where d is some

integer) is determined by the data of all its stalks Fx ⊂ O
d
X,x at all closed points x ∈ X . Furthermore, we

know that all such sheavesF as above admit a global basis. In §2.3, we describe an algorithm that computes

a basis of F knowing all its stalks and, once again, analyze its stability (which will turn out to be rather

good).

1 Some statistics related to LU decomposition

IfA is a (commutative) ring, we shall denote byMd(A) the ring of square d×d matrices. Recall that we have

endowed Ω = Md(R) with its Haar measure. Choosing a matrix at random with respect to this measure

is just choosing independently each entry at random with respect to the Haar measure on R. Furthermore,

since R is complete, every element x ∈ R can be written uniquely as an infinite sum x =
∑∞

i=0 aiπ
i where

the coefficients ai’s are taken in a fixed setR ⊂ R of representatives of elements of k (i.e. the restriction to

R of the canonical projection R → k is bijective) and conversely, any sum
∑∞

i=0 aiπ
i as above converges

and then defines an element in R. With this description, generating a random element (with respect to the

Haar measure) of R is just choosing at random all coefficients ai’s inR independently and uniformly.

We shall say that a matrix M ∈ Md(K) admits a LU decomposition if it can be factorized as a product

L(M) · U(M) where:

• L(M) is a unit1 lower triangular matrix with coefficients in K , and

• U(M) is a upper triangular matrix with coefficients in K .

We underline that, even if M has coefficients in R, we do not require that L(M) and U(M) belong to

Md(R). Here are some well known facts: (1) an invertible matrix M admits a LU decomposition if and

only if all its principal minors do not vanish and (2) when it exists, a LU decomposition is unique (i.e. the

matrices L(M) and U(M) are uniquely determined). We will consider L and U as two partially defined

functions on Md(K). For ω ∈ Ω such that L(ω) is defined, let us denote by VL(ω) the opposite of the

smallest valuation of an entry of L(ω). The aim of this section is to study the random variable VL. Here are

the main results we will prove.

Theorem 1.1. Setting

E(q, d) =

∞
∑

v=1

[

1− (1 − q−v)d
]

(1)

we have E(q, d) − 1
q−1 < E[VL] 6 E(q, d).

Furthermore, the distance between E(q, d) and logq d is bounded by 1
log(2) (and by 1 if q > 3).

Theorem 1.2. For all positive real number ℓ, we have:

P
[

|VL − logq d−
1
2 | > ℓ+ 1

2

]

6
q

q − 1
· q−ℓ ·

(

2 + ℓ · log q
)

.

Corollary 1.3. The standard deviation of VL is bounded by an explicit universal constant (which can be

chosen equal to 6.5).

1.1 Some useful tools

This subsection gathers some preliminaries to the proof of Theorem 1.1, Theorem 1.2 and Corollary 1.3.

We first recall some basic facts about LU decomposition, then introduce the random variables Vi,j’s (which

will play a crucial role in the sequel) and finally prove several important properties of them.

1It means that all diagonal entries are equal to 1.

2

1.1.1 Cramer’s rule for LU decomposition

Let M ∈ Md(K). A useful formula for our purpose is an analogue of Cramer’s rule which gives a closed

expression of the entries of L(M) as a quotient of two determinants. This formula appears for instance in

[6], §1.4; let us recall it briefly. If I and J are two subsets of {1, . . . , d}, we denote by MI,J the submatrix

of M obtained by deleting all columns and rows whose index are not in I and J respectively. The i-th
principal minor is then the determinant of the matrix MI,I where I = {1, . . . , i}; we will denote it by

δi(M). With these notations, we have:

if i > j : L(M)i,j =
detMI,J

δj(M)
where I = {1, . . . , j − 1, i} and J = {1, . . . , j} (2)

if i 6 j : U(M)i,j =
detMI,J

δi−1(M)
where I = {1, . . . , i} and J = {1, . . . , i− 1, j}. (3)

The proof of these formulas is not difficult. For Formula (2), note that L(M)I,J ·U(M)J,J = MI,J provided

that J has the particular shape J = {1, . . . , j}; then, passing to the determinant, we get detL(M)I,J ·
detU(M)J,J = detMI,J and the desired relation follows by combining these equalities for I = J and

I = {1, . . . , j − 1, i}. The proof of Formula (3) is similar.

1.1.2 The random variables Vi,j

The aim of this paragraph is to define a collection of mututally independent random variables Vi,j : Ω →
N∪{∞} (1 6 i 6 j 6 d); they will be very useful in the sequel to study VL. We first construct a collection

of random variables Xi,j : Ω→ R (1 6 i 6 j 6 d). The construction goes by induction on j. We start with

a matrix ω in Ω. We first define X1,1(ω) to be the top left entry of ω. We then enter in the second round (i.e.

j = 2). As before, we begin by letting X1,2(ω) denote the (1, 2)-th entry of ω but, before defining W2,2(ω)
we do the two following modifications on the matrix ω:

• if the valuation of X1,2(ω) is less than the valuation of X1,1(ω), we swap the two first columns of ω
and, then

• we clear the (1, 2)-th entry of ω by adding to its second column a suitable multiple of its first column

(note that it is always possible because if the top left entry — which serves as pivot — vanishes, so

does the (1, 2)-th entry).

Doing these operations, the coefficient of Ω in position (2, 2) may have changed and we define X2,2(ω) to

be the new (2, 2)-th entry of ω. The general induction step works along the same ideas. Assume that, after

the (j − 1)-th step, we have ended up with a matrix ω such that ωi′,j′ = 0 when i′ < j′ < j. We define

Xi,j(ω) by induction on i by applying the following process successively for i = 1, 2, . . . , j − 1:

• first, we set Xi,j(ω) to the (i, j)-th entry of (the current) ω;

• second, if the valuation of Xi,j(ω) is less than the valuation of the (i, i)-th entry of (the current) ω,

we swap the first row of ω with its i-th one;

• third, we clear the (i, j)-th entry of ω by adding to its j-th column a suitable multiple of its first

column.

We finally let Xj,j(ω) denote the j-th diagonal entry of (the current) ω. For all (i, j) with 1 6 i 6 j 6 d,

we also set Vi,j = vR(Xi,j) and Vi = Vi,i. The Vi,j ’s take values in N ∪ {∞} and they are finite almost

everywhere. Algorithm 1 summarizes the construction of the Vi,j ’s.

Proposition 1.4. The random variables Xi,j (1 6 i 6 j 6 d) are uniformely distributed and mutually

independent.

Proof. Set I = { (i, j) | 1 6 i 6 j 6 d }. Suppose we are given a family x = (xi,j)(i,j)∈I of elements of

R. We consider the following set:

Ω(x) =
{

ω ∈ Ω | Xi,j(ω) = xi,j , ∀(i, j) ∈ I
}

.

3

Algorithm 1: The construction of the random variables Vi,j’s

Notation: :⋆ ωi,j denotes the (i, j)-th entry of ω
:⋆ ωj denotes the j-th row of ω

1 for j from 1 to d do

2 for i from 1 to j − 1 do

3 Vi,j ← vR(ωi,j);
4 if vR(ωi,j) < vR(ωi,i) then swap ωj and ωi;

5 if ωi,i 6= 0 then ωj ← ωj −
ωi,j

ωi,i
· ωi;

6 Vj,j ← vR(ωj,j);

Set vi,j = vR(xi,j) and for all i, let ji denote the first index in {1, . . . , d + 1 − i} such that vi,i−1+ji is

equal to min(vi,i, vi,i+1, . . . , vi,d). This sequence of integers (ji) is the code of a certain permutation σ of

{1, . . . , d} defined by the following rule. We write all the integers between 1 and d. We define σ(1) to be the

j1-th written integer (that is j1) and we erase it. We then define σ(2) to be the j2-th integer which remains

written (that is j2 is j2 < j1 and j2 +1 otherwise), we erase it and we continue. Let Ix denote the subset of

{1, . . . , d}2 consisting of couples (i, j) such that i > σ−1(j). One can check that it has cardinality
d(d−1)

2 .

Consider the function fx : Ω(x)→ RIx mapping ω to the family (ωi,j)(i,j)∈Ix . Following the construction

of the Xi,j’s, one can check that fx is a bijection.

Now, we globalize the previous construction. Let U be a subset of RI containing a distinguished element

x and such that Iy = Ix for all y ∈ U . With this assumption, the collection of functions fy’s (y varying in

U) defines a bijection between Ω(U) = {ω ∈ Ω | (Xi,j(ω))(i,j)∈I ∈ U } and U × RIx . It is morever easy

to check that this bijection preserves the measure; in other words

P[(Xi,j)(i,j)∈I ∈ U] = µ(U) (4)

where µ denotes the Haar measure on RI . But, since the function vR is locally constant on R\{0}, any

open subset U ⊂ (R\{0})I can be written as a disjoint union of subsets U ′ on which the function y 7→ Iy
is constant. Therefore the equality (4) holds for all these U . Since furthemore the complement of (R\{0})I

in RI is a measure-zero set, the equality (4) holds for all open subset U of RI .

Corollary 1.5. The random variables Vi,j (1 6 i 6 j 6 d) are mutually independent and they all follow a

geometric law of parameter 1− q−1 (i.e. they take value v with probability (1− q)qv−1).

Proof. Clear after Proposition 1.4.

Another interest of the Vi,j’s is that they are closely related to VL. The following Proposition precises

this relationship.

Proposition 1.6. We have max(V1, V2, . . . , Vd)− vR(det) 6 VL 6 max(V1, . . . , Vd−1) (recall that Vi =
Vi,i by definition).

Proof. Let ω ∈ Ω. To avoid confusion, agree to call Tj(ω) the matrix ω computed by Algorithm 1 (run with

ω as input) after the j-th iteration of the main loop and reserv the notation ω for the matrix we have started

with. It follows from the construction that Tj(ω) has the following particular shape: if i′ < j′ 6 j, then

the (i′, j′)-th entry of ωj vanishes. Moreover, clearly, Tj(ω) is obtained from ω by performing successive

elementary operations on the first j columns. Therefore, if J = {1, . . . , j} and if I is a subset of {1, . . . , d}
of cardinality J , we have detωI,J = ± det(ωj)I,J . In particular these two determinants have the same

valuation. Fix a couple (i, j) such that 1 6 j 6 i 6 d and set I = {1, . . . , j − 1, i}, J = {1, . . . , j}. From

Formula (2) and what we have said before, we derive:

vR(L(ω)i,j) = vR(detTj(ω)I,J)− vR(det Tj(ω)J,J)

= vR(Tj(ω)i,j)− vR(Tj(ω)j,j) = vR(Tj(ω)i,j)− Vj(ω).

Since all coefficients of ωj lie in R, so does its determinant. It follows that vR(Tj(ω)i,j) > 0 and conse-

quently that vR(L(ω)i,j) > −Vj(ω), which proves the second inequality. To establish the first one, note

4

that ω and Tj(ω) share the same determinant up to a sign. Thus there must exist an index i, necessar-

ily not less than j, such that vR(Tj(ω)i,j) 6 vR(detω). For this particular i, we have vR(L(ω)i,j) 6

vR(detω)− Vj(ω) and then VL(ω) > Vj(ω)− vR(detω). The conclusion follows.

Remark 1.7. In the same way, we can prove that the valuation of the i-th minor of ω ∈ Ω is equal to
∑j

i=1 min(Vi,i(ω), Vi,i+1(ω), . . . , Vi,j(ω)). Combining this with Corollary 1.5, one can easily recover

Abdel-Ghaffar’s formula
∑d

i=1
1

qi−1 (see Theorem 3 of [1]) giving the expected value of the random vari-

able “valuation of the determinant”.

1.2 Proof of the main results

1.2.1 Estimation of the expected value

This subsection is devoted to the proof of Theorem 1.1.

Estimation of the expected value of VL Let V = max(V1, V2, . . . , Vd). The event “V < v” occurs if

and only if Vi,i < v for all index i, and Corollary 1.5 shows that it happens with probability (1 − q−v)d.

The expected value of V is then equal to
∑∞

v=1 P[V > v] =
∑∞

v=1

[

1− (1− q−v)d
]

that is exactly E(q, v).
On the other hand, Proposition 1.6 implies that E[V]− E[vR(det)] 6 E[VL] 6 E[V]. Moreover, by Abdel-

Ghaffar’s Theorem, we know that the expected value of vR(det) is given by
∑d

i=1
1

qi−1 and hence is less

that
∑d

i=1
1
qi <

∑∞
i=1

1
qi = 1

q−1 . The first part of Theorem 1.1 is proved.

Estimation of E(q, v) Consider the function f : x 7→ 1 − (1 − q−x)d. It is decreasing on the interval

[0,∞) and therefore one can write:
∫ ∞

0

f(x)dx > E(q, d) >

∫ ∞

1

f(x)dx > −1 +

∫ ∞

0

f(x)dx.

Doing the substitution y = 1− q−x, we get:

∫ ∞

0

f(x)dx =
1

log q
·

∫ 1

0

1− yd

1− y
dy =

1

log q
·

∫ 1

0

(1 + y + y2 + · · ·+ yd−1)dy =
Hd

log q

where Hd = 1 + 1
2 + · · · + 1

d is the harmonic series. It is well known that γ + log d 6 Hd 6 1 + log d
where γ is the Euler’s constant. Therefore E(q, d) is almost equal to logq d, the error term being bounded

by a universal constant. The second part of Theorem 1.1 follows.

Some additional remarks We would like first to emphasize that the difference E(q, d)− logq d does not

converge to 0 when q and/or d goes to infinity. Indeed the following Lemma shows that, when logq d is far

from an integer and q is large, E(q, d) might be closer to the integral part of logq d than to logq d itself.

Lemma 1.8. For all q qnd d,

∣

∣E(q, d)− [logq d]
∣

∣ <
q

q − 1
· q−dist(logq d,N)

where [logq d] and dist(logq d,N) denotes respectively the integral part and the distance to N of logq d.

Proof. We claim that the function f : x 7→ 1− (1 − q−x)d satisfies:

1−
qx

d
6 f(x) 6

d

qx
, for all x > 0. (5)

Indeed, the second inequality directly comes from the standard inequality (1+t)d 6 1+td whereas the first

one is a consequence of AM-GM inequality applied with the numbers dq−x and 1− q−x, 1− q−x, . . . , 1−
q−x (d times). If v0 = [logq d], we then get v0 +

∑v0
v=1

qv

d 6 E(q, d) 6 v0 +
∑∞

v=v0+1
d
qv , which gives:

−
q

q − 1
·
qv0

d
6 E(q, d)− v0 6

q

q − 1
·

d

qv0+1
.

The Lemma follows from this.

5

Let us end this paragraph by a last remark: the sum E(q, d) can also be exactly computed. Indeed, we

have:

E(q, d) =
∞
∑

v=1

1− (1− q−v)d =
∞
∑

v=1

d
∑

k=1

(−1)k−1

(

d

k

)

q−vk =
d
∑

k=1

(−1)k−1

(

d

k

)

·
1

qk − 1
.

Nevertheless, this expression does not yield the order of magnitude of E(q, d); indeed, each term in the

latter sum (the one over k) can individualy be very large whereas the sum itself grows rather slowly.

1.2.2 Estimation of the law of VL

We now start the proof of Theorem 1.2. The strategy is quite clear: we use Corollary 1.5 and Proposition

1.6 to bound from below and from above the distribution function of VL. First, let us investigate the con-

sequences of the inequality VL 6 V (where we recall that we have set V = max(V1, . . . , Vd)). For all

(nonnegative) real number x, it implies that:

P[VL < x] > P[V < x] =

d
∏

i=1

P[Vi < x] > (1− q−x)d > 1− d · q−x. (6)

It is a bit more tricky to use the other inequality VL > V − vR(det) because vR(det) and the Vi’s are

certainly not independent (cf Remark 1.7). Nevertheless, one can pick two nonnegative real numbers x and

t and consider the event Ex,t : “V > x+ t and vR(det) 6 t”. It is clear that V − vR(det) is always greater

than x when Ex,t occurs. Thus we have:

P[VL 6 x] 6 P[V − vR(det) 6 x] 6 P[Ex,t] 6 1− P[V 6 x+ t]− P[vR(det) > t]. (7)

Moreover we know that P[V 6 x + t] 6 (1 − q−x−t)d and from Abdel-Ghaffar’s result (see [1]), we

derive P[Vd > t] 6
q−t+2

q−1 . Indeed, Abdel-Ghaffar Theorem states that for all integer v, the equality

P[vR(det) 6 v] = (1 − q−v−1)(1 − q−v−2) · · · (1 − q−v−d) holds. In particular P[vR(det) 6 v] >

1 −
∑d

i=1 q
−v−i > 1 − q−v

q−1 . Taking v = [t], we get the claimed result. Putting these inputs in (7), we

obtain:

P[VL 6 x] 6 1− (1− q−x−t)d −
q−t+2

q − 1
.

This estimation being true for all t, one can optimize it on t. For simplicity, let us define u = 1 − q−x−t;

the variable u now varies in [1− q−x, 1], and for all u in this range, one have P[VL > v] > 1− f(u) where

f(u) = ud+dλ(1−u), λ = qx+2

d(q−1) . Assume that λ < 1. A quick study of f shows that it is minimal when

u = u0 = λ1/(d−1). Moreover, one can check (using AG-MG inequality for instance) that u0 always lies in

the interval [1− q−x, 1]. It follows that P[VL 6 x] > 1− f(u0) = 1− λ · (d− (d− 1)u0). We can further

simplify this formula and write a bound depending only on λ. For this, remark that λ > (1 + log λ
d−1)

d−1.

Raising to the power d− 1, we find u0 > 1 + log λ
d−1 and then:

P[VL 6 x] 6 λ(1 − logλ) where λ =
qx+2

d(q − 1)
. (8)

We are now ready to prove Theorem 1.2. Let ℓ be a positive real number and define v0 = logq d −
1
2 .

Applying Formulas (6) and (8) with x = v0 + (ℓ+ 1
2) and x = v0 − (ℓ+ 1

2) respectively, we find:

P[VL > v0 + (ℓ+ 1
2)] 6 q−ℓ

and P[VL 6 v0 − (ℓ+ 1
2)] 6

q

q − 1
· q−ℓ ·

(

1− log
(q

q − 1

)

+ ℓ · log q
)

6
q

q − 1
· q−ℓ · (1 + ℓ · log q).

Theorem 1.2 follows by adding these two inequalities. Corollary 1.3 can be now easily deduced. Indeed,

note that the function v 7→ E((VL − v)2) is maximal when v is equal to the expected value of VL and the

6

value taken at this optimal point is the variance of VL. It is then enough to bound the expected value of

(VL − v0)
2, which can be done as follows:

E[(VL − v0)
2] =

∫ ∞

0

P
[

(VL − v0)
2
> x

]

· dx

6
1

4
+

∫ ∞

0

P
[

(VL − v0)
2
> (ℓ+ 1

2)
2
]

· (2ℓ+ 1) · dℓ

6
1

4
+

q

q − 1
·

∫ ∞

0

q−ℓ · (2 + ℓ · log q) · (2ℓ+ 1) · dℓ

=
1

4
+

q

q − 1
·
(3

log q
+

8

log2 q

)

.

The standard deviation of VL is then always less than σ(q) =
√

1
4 + q

q−1 · (
3

log q + 8
log2 q

). The function σ

is decreasing on [2,∞) and then bounded from above by its value at 2 (which is < 6.5). Note furthemore

that when q goes to infinity, σ(q) = 1
2 +O(1

log q).

1.3 Generalization to block LU decomposition

Let d = (d1, . . . , dr) be a tuple of positive integers such that d1 + · · · + dr = d. By definition, a block

LU decomposition of type d of a matrix M ∈ Md(K) is a factorization M = Ld(M) · Ud(M) where

Ld(M) and Ud(M) are respectively block unit lower triangular and block upper triangular with respect to

the partition d:

Ld(M) =

Id1 0 · · · 0

⋆ Id2

. . .
...

...
. . .

. . . 0
⋆ · · · ⋆ Idr

and Ud(M) =

⋆ · · · · · · ⋆

0
. . .

...
...

. . .
. . .

...

0 · · · 0 ⋆

where the s-th block has size ds and, for an integer n, In denotes the identity matrix of size n. Of course, a

block LU decomposition of type (1, 1, . . . , 1) is nothing but a standard LU decomposition and every matrix

M ∈Md(K) admits a block LU decomposition of type (d), which is simply M = Id ·M . As in the standard

case, a LU decomposition of type d is unique (when it exists) — which justifies the notations Ld(M) and

Ud(M) — and, an invertible matrix M admits such a decomposition if and only if, for all i ∈ {1, . . . , s},
its di-th principal minor does not vanish. For d as before and ω ∈ Ω, we let VL,d denote the opposite of

the smallest valuation of an entry of Ld(ω). This defines a random variable VL,d : Ω → N ∪ {∞} for

each d. The aim of this subsection is to study them. Following the same strategy as in the standard case

(i.e. d = (1, . . . , 1)), our first task is to establish a link between VL,d and the random variables Vi,j defined

in §1.1.2. To shorten notations, we set Is = {d1 + · · · + ds−1 + 1, . . . , d1 + · · · + ds} and recall that if

M ∈ Md(K) and I, J ⊂ {1, . . . , d}, we denote by MI,J the submatrix of M consisting of entries whose

row index and column index are in I and J respectively. For all s ∈ {1, . . . , t}, we further introduce:

Vd,s =
∑

i∈Is

min(Vi,i, Vi,i+1, . . . , Vi,d1+···+ds
).

Corollary 1.5 learns us that the Vd,s’s are mutually independant for s varying between 1 et r (and d remains

fixed). The following Lemma shows that their laws are also precisely known.

Lemma 1.9. For all s ∈ {1, . . . , r} and all integer v, we have:

P[Vd,s 6 v] = (1− q−v−1)(1 − q−v−2) · · · (1− q−v−ds).

Proof. Throughout this proof, we set a = d1 + · · · + ds−1, b = d1 + . . . + ds and, for i ∈ {1, . . . , ds}
and i′ = b + 1 − i, Wi = min(Vi′,i′ , Vi′,i′+1, . . . , Vi′,b). It follows from Corollary 1.5 that Wi follows a

geometric law of parameter (1− q−i) and furthermore that the Wi’s (1 6 i 6 ds) are mutually independant.

For all ℓ ∈ {1, . . . , ds}, define moreover Sℓ = W1 + · · · + Wℓ. Clearly Sds
= Vd,s. We will prove by

induction on the couple (ℓ, v) (lexicographically ordered) that:

P[Sℓ 6 v] = (1− q−v−1)(1− q−v−2) · · · (1− q−v−ℓ).

7

For ℓ = 1, the statement is true. Assume now that it is true for all (ℓ′, v′) with ℓ′ < ℓ or ℓ′ = ℓ and v′ < v.

The strategy is to decompose the event “Sℓ 6 v” in two parts according to the vanishing or the nonvanishing

of Wds−ℓ+1. Clearly, if Wds−ℓ+1 = 0, we have Sℓ = Sℓ−1. On the other hand, if we know for sure that

Wds−ℓ+1 does not vanish, one can subtract 1 to it and get this way a new random variable which still follows

of a geometric law with the same parameter. Hence, one can write:

P[Sℓ 6 v] = P[Wds−ℓ+1 = 0] · P[Sℓ−1 6 v] + P[Wds−ℓ+1 > 0] · P[Sℓ 6 v − 1]

= (1− q−ℓ) · P[Sℓ−1 6 v] + q−ℓ · P[Sℓ 6 v − 1].

Replacing P[Sℓ−1 6 v] and P[Sℓ 6 v − 1] by their values (coming from the induction hypothesis), we get

the desired result.

Remark 1.10. Alternatively, one can notice that Vd,s follows the same law as the variable “determinant of

a random matrix of size ds” and then conclude by Abdel-Ghaffar’s Theorem. Actually the proof we have

presented above is very inspired by Abdel-Ghaffar’s one.

Proposition 1.11. We have max(Vd,1, . . . , Vd,r)− vR(det) 6 VL,d 6 max(Vd,1, . . . , Vd,r).

Proof. We follow the lines of the proof of Proposition 1.6. To avoid confusion, we begin by letting Tj(ω)
denote the matrix ω computed by Algorithm 1 (run with ω as input) after the j-th iteration of the main loop.

Pick some s ∈ {1, . . . , r} and set j(s) = d1+ . . .+ds. We are going to prove the two following statements

from which the Proposition will follow directly:

• the determinant of the square ds × ds matrix Tj(s)(ω)Is,Is has valuation Vd,s(ω);

• for all t ∈ {s, . . . , r}, we have the identity Ld(ω)It,Is · Tj(s)(ω)Is,Is = Tj(s)(ω)It,Is .

The first assertion is easily proved. Indeed, by construction, the submatrix Tj(s)(ω){1,...,j(s)},{1,...,j(s)} is

lower triangular and that its i-th diagonal entry has valuation min(Vi,i, Vi,i+1, . . . , Vi,j(s)). To prove the

second assertion, we first remark that, up to replacing ω by ω + πN for a sufficiently large integer N , one

may assume that ω is invertible. All the matrices Tj(s)(ω)Is,Is are then also invertible. Consider the matrix

L ∈ Md(K) whose i-th column is the i-th column of Tj(s)(ω) where s is the unique such that i ∈ Is. It is

apparently lower block triangular with respect to the partition d. Furthermore, noting that, for i ∈ Is, the

i-th column of Tj(s)(ω) is a linear combination of the first j(s) columns of ω, we see that L−1 · ω is upper

block triangular. Hence, if D is the diagonal block matrix:

D =

Tj(1)(ω)I1,I1
. . .

Tj(r)(ω)Ir ,Ir

the factorization ω = (LD−1) · (DL−1ω) is the LU decomposition of type d of ω. Therefore Ld(ω) =
LD−1. Our claim follows directly from this.

From Lemma 1.9, we easily derive that q−v 6 P[Vd,s > v] 6 q
q−1 · q

−v. Arguing then as in §1.2, one

can prove analogues of the results we have shown before concerning the random variable VL: the expected

value of VL,d is equal to logq s+O(1), its standard deviation is a O(1) (where the notation O(1) stands for

a quantity bounded by a universal constant which can be made explicit) and, actually, we even have a more

precise (but also more technical) estimation of its law in the spirit of Theorem 1.2.

2 LU decomposition over a DVR: algorithmic issues

LU decomposition is a very basic and important tool when we are doing algorithmics involving matrices,

and especially matrices over a complete DVR. But unfortunately, on some particular inputs, computing it

may cause important numerical instability; it is the case for instance if the top left entry of the input matrix

has a very large valuation (compared to the other entries). The first aim of this second section, is to study

this phemonemon; more precisely, following the ideas of §1, we will design a new algorithm to compute

LU decomposition (see Algorithm 2) and show that the set of unpleasant inputs for which it is numerically

unstable is very small.

8

In particular, we may expect that if Algorithm 2 is called as a subroutine by an other probabilistic

algorithm, it will not never generate important losses of precision. In §§2.2 and 2.3, we will illustrate this

idea on a particular example: we will propose a probabilistic stable algorithm (based on LU decomposition)

whose aim is to compute a basis of a coherent over A1
K (where K is the fraction field of a complete DVR)

from the knowledge of all its stalks.

We keep the general notations of §1: let R be a discrete valuation ring whose valuation vR : R →
N ∪ {∞} is assumed to be surjective. Let π be an element of R of valuation 1. Let k (resp. K) denote the

residue field (resp. the fraction field) of R and set q = Card k. We recall that vR extends uniquely to K and

that, in a slight abuse of notations, we continue to denote by vR this extended map. We recall also that we

have set Ω = Md(R) and that this space is endowed with its Haar measure. For ω ∈ Ω, denote by Wi(ω)
the valuation of the i-th principal minor of ω and set W = max(W1, . . . ,Wd). Thanks to Abdel-Ghaffar’s

Theorem (see [1]), the law of the Wi’s is known: P[Wi 6 v] = (1 − q−v−1)(1 − q−v−2) · · · (1 − q−v−i)

for all v > 0 and i ∈ {1, . . . , d}. From this, we derive P[Wi > v] 6 q−v

q−1 and then:

P[W > v] 6 d ·
q−v

q − 1
(9)

for all nonnegative integer v. Adding all these probabilities, one finds E[W] = logq d + O(1) where, as

usual, the notation O(1) refers to a quantity bounded by a universal constant.

2.1 Loss of precision in LU decomposition

By Formula (2), we know that the entries of L(M) can be all expressed as the quotient of one minor by one

principal minor. Noting that if x and y are both known with precision O(πN) and if y has valuation v, the

quotient x
y is known with precision at least O(πN−2v), one may expect that a good algorithm computing

the LU factorization of ω would shrink the initial precision by a factor π2·W (M).

Unfortunately, a quick experiment shows that the naive algorithm based on usual Gauss elimination

generates losses of precision much more important than that. For example, on a random input matrix

M ∈M25(Z5) given with precision O(5N), it outputs a matrix L which is in average known up to precision

O(5N−c) where c ≃ 10 whereas the mean value of 2 ·W (M) is only ≃ 2 · logq d = 4. For matrices of size

d = 125, the deviation is amplified: we find c ≃ 50... to be compared to 2 · logq d = 6.

2.1.1 A first simple solution

Our starting remark is the following: it follows from Cramer like formulae (2) that if M are M ′ are two

matrices in Md(R) congruent modulo πN (for some positive integer N) such that W (M) < N , that

W (M ′) = W (M) and

Li,j(M) ≡ Li,j(M
′) (mod πN−2·Wi(M))

for all i, j ∈ {1, . . . , d} with i > j. In particular, under the previous assumptions, we have L(M) ≡ L(M ′)
(mod πN−2·W (M)). This result suggests the following method to compute L(M) with a correct precision

when M is a matrix known with precision O(πN):

• we lift M to a matrix M ′ known with precision O(πN ′

) for some N ′ > N ;

• we compute W (M ′) and L(M ′) with our favorite algorithm (e.g. Gauss elimination)2;

• we answer L(M) = L(M ′) +O(πN−2·W (M ′)).

By what we have said before, our answer L(M) is always correct. Furthemore, if N ′ is sufficiently large,

then L(M ′) will be known with precision at least O(πN−2·W (M ′)) and L(M) itself will be known with

precision O(πN−2·W (M ′)).
It then remains to find a suitable value for N ′. Of course, it will strongly depend on the algorithm we use

to compute L(M ′). Let us study a bit the case of Gauss elimination. Since the successive pivots appearing

during the elimination have valuations W1(M
′),W2(M

′), . . . ,Wd(M
′) and since we are only dividing by

pivots, the maximal loss of precision is bounded from above by 2·(W1(M
′)+· · ·+Wd(M

′)). In other terms,

2Generally, these two computations can be done simultaneously. It happens in particular if one uses Gauss elimination.

9

using Gauss elimination, one can certainly compute L(M) with precision O(πN−2·(W1(M
′)+···+Wd(M

′))).
As a consequence, it is enough to choose N ′ so that:

N ′ −N > 2 ·
(

W1(M) + · · ·+Wd(M)−W (M)
)

.

However, at the very beginning, we have not computed the Wi(M)’s yet. So we cannot figure out at this

moment what is the best value of N ′ (i.e. the smallest one satisfying the above inequality). Nevertheless,

we know that in average Wi(M
′) ≃ 1

q and W (M) ≃ logq d. To begin with, we can then try to take

N ′ = N + ⌈ 2dq ⌉ and see what happens: we do the computation with this particular N ′, we determine the

Wi(M)’s, if the above inequality is fulfilled, we are done, otherwise, we determine the right N ′ and redo

the computation. Actually, it could happen — but it is very rare — that the first precision O(πN ′

) does not

allow us to determine some of the Wi(M)’s; in that case, we just guess a new larger N ′, try with it and

continue like this until it works.

Let us finally analyze the complexity of this method in the favorable case where N ′ = N+ 2d
q is enough.

In order to fix notations, we assume moreover that doing basic operations (i.e. additions, substractions,

multiplications and divisions) in R with precision πN requires O((N log q)α) bit operations where α is

some constant3, necessarily greater than or equal to 1. Since the complexity of Gauss elimination is O(d3)
operations in the base ring, our method needs:

O
(

d3 · (N + d
q)

α · logα q
)

bit operations. If d≪ qN , it is quite nice. However, if the opposite situation when d≫ qN , the dominant

term in the above complexity is d3+α, which is very large and actually not really acceptable for many

practical applications.

2.1.2 A stable algorithm to compute LU decomposition

In this subsection, we propose and study a different method to compute LU decomposition which has the

advantage of not requiring to increase the precision at any time and whose complexity is comparable to

Gauss elimination. Our algorithm is strongly inspired by the constructions of §1 and especially those of

§1.1.2. Here is it:

Algorithm 2: A stable algorithm to compute the L-part of the LU decomposition

Input: :A matrix M of size d× d known with precision O(πN)
Output: :The L-part of the LU decomposition of M

Notations: :⋆ d is the dimension of the matrix M
:⋆ Ai,j denotes the (i, j)-th entry of a matrix A
:⋆ Aj denotes the j-th row of A

1 ω←M ;

2 L← identity matrix of size d× d;

3 for j from 1 to d do

4 for i from 1 to j − 1 do

5 if vR(ωi,j) < vR(ωi,i) then swap ωj and ωi;

6 if ωi,i 6= 0 then s←
ωi,j

ωi,i
lifted to precision O(πN); ωj ← ωj − s · ωi;

7 v←
∑j

k=1 vR(ωk,k);

8 for i from j + 1 to d do Li,j ←
ωi,j

ωj,j
+O(πN−v−max(0,vR(ωj,j)−vR(ωi,j)));

9 return L;

A first important remark related to Algorithm 2 is the following: at each step, all entries of ω are known

with precision O(πN). Indeed, ω itself is updated only on line 6 and the corresponding computation does

not affect the precision (because s has been lifted modulo πN previously).

3In usual situations, one can take α = 1 + ε for all positive real number ε.

10

Correctness of Algorithm 2 We fix an integer j ∈ {1, . . . , d} and focus on the matrix ω computed by

the algorithm after the j-th iteration of the main loop. It is clear that it is obtained from M by performing a

sequence of elementary operations on its j first columns. Thus, for all i > j, we have L(M)i,j =
detω

(j)
I,J

detω
(j)
J,J

where I = {1, . . . , j − 1, i} and J = {1, . . . , j}. On the other hand, by construction, ω
(j)
I,J and ω

(j)
J,J are

two upper triangular matrices modulo πN . Their determinants are then congruent to the product of their

diagonal entries modulo πN . Therefore:

L(M)i,j =
ω
(j)
1,1 · · ·ω

(j)
j−1,j−1 · ω

(j)
i,j +O(πN)

ω
(j)
1,1 · · ·ω

(j)
j−1,j−1 · ω

(j)
j,j +O(πN)

.

Of course, the value of this quotient is
ω

(j)
i,j

ω
(j)
j,j

up to some precision. To compute this precision, it is easier to

work with relative precision (i.e. the difference between the absolute precision and the valuation); indeed,

we know that the relative precision of a quotient is equal to the minimum between the relative precisions

of the numerator and the numerator. In our case, if we set v = vR(ω
(j)
1,1) + · · · + vR(ω

(j)
j,j) and w =

vR(ω
(j)
i,j)− vR(ω

(j)
j,j), the relative precision of the numerator (resp. the denominator) is N − (v + w) (resp.

N − v). Thus, the relative precision of the quotient is N − v−max(0, w) and its absolute precision is then

N − v + min(0, w) (since its valuation is w). The value Li,j computed by Algorithm 2, together with its

precision, are then correct.

Precision issues Keeping the previous notations, one certainly havew > −v and thenN−v+min(0, w) >
N − 2v. In other words, the (i, j)-th entry of the matrix L returned by the Algorithm 2 is known with pre-

cision at least O(pN−2Vj(M)) (recall that Vj(M) denotes the valuation of ωj,j at the end of the j-th loop,

i.e. our previous v). The maximal loss of precision is then bounded above by 2 ·max(V1(M), . . . , Vd(M)).
By the results of §1, we know that the mean of this upper bound is close to 2 · logq d, that is the value we

expected.

2.1.3 Algorithm 2 and Hermite normal form

Let us denote by H ′(M) the matrix ω computed at the end of the execution of Algorithm 2. It worths

remarking that H ′(M) has a lot of things to do with the Hermite normal form of M . Let us first agree on

the definition of the Hermite normal form of M : throughout this paper, it will refer to the unique lower

triangular matrix whose diagonal entries are powers of π and which is right-equivalent to M (it means that

H(M) is obtained from M by multiplying on a right by a unimodular matrix). We will denote it by H(M).

Proposition 2.1. Let M ∈Md(R) known with precision πN . We assume that all diagonal entries of H ′(M)
are not congruent to 0 modulo πN and, for all j ∈ {1, . . . , d}, we write H ′

j,j(M) = pvjuj where vj is a

nonnegative integer and uj is a unit. For all i, j ∈ {1, . . . , d}, we then have:

if i < j : Hi,j(M) = 0
if i = j : Hi,j(M) = πvj

if i > j : Hi,j(M) ≡ u−1
j ·H

′
i,j(M) (mod πN−vj).

Remark 2.2. Keeping the notations of the Proposition, it is clear that uj is only known modulo πN−vj . The

congruence of the Proposition is then, by nature, the best one can expect.

Proof. Let W ′(M) be the matrix W ′ computed by Algorithm 2. One can easily check that W ′(M) is

unimodular and moreover that H ′(M) = M ·W ′(M). Consequently the Hermite normal form of M is

equal to the Hermite normal form of H ′(M).
On the other hand, we know that H ′(M) has a very particular shape: firstly, it is lower triangular modulo

πN and secondly, by assumption, its diagonal entries are not divisible by πN . Thus, H(M) is obtained from

H ′(M) by clearing one by one its entries lying above the diagonal and by dividing its j-th column by uj .

But, if Hi,j(M) = πNvi,j (for some pair (i, j) with i < j), one clears the (i, j)-th entry of H ′(M) by

doing the following elementary operation on columns: H ′
j(M)← H ′

j(M)− πN−vu−1
i vi,jH

′
i(M). Hence

clearings do not affect the value of H ′
i,j(M) modulo πN−vj . The Proposition follows easily from this

observation.

11

2.1.4 The notion of L’V’ decomposition

The L-part of the LU decomposition has of course very nice abstract properties but unfortunately does not

behave very well regarding to precision. Indeed, as we have seen before, if a matrix M is known modulo

πN , it is not true that L(M) is known with the same precision. But, beyond that, the precision data attached

to L(M) is not uniform in the sense that all entries of L(M) are not known with the same precision. In

order to tackle this problem, we introduce the following definition.

Definition 2.3. Let M ∈ Md(R) and N be a positive integer. A L’V’ decomposition of M modulo πN is

a couple of d × d matrices (L′, V ′) such that L′ ≡ MV ′ (mod πN) and L′ and V ′ are lower triangular

modulo πN and upper triangular modulo πN respectively.

If there exists a diagonal entry of L′ which is congruent to 0 modulo πN , (L′, V ′) is said to be degener-

ate. Otherwise, it is nondegenerate.

Remark 2.4. It is easy to see that if (L′, V ′) is nondegenerate, then all diagonal entries of V ′ are not

congruent to 0 modulo πN as well.

It is not difficult to modify Algorithm 2 so that it computes a L’V’ decomposition modulo πN ; we end

up this way with Algorithm 3. On the other hand, it is worth noting that L’V’ decomposition is closely

Algorithm 3: An algorithm to compute a L’V’ decomposition

Input: :A matrix M of size d× d known with precision O(πN)
Output: :A L’V’ decomposition of M modulo πN

1 ω←M ;

2 L′, V ′← two new matrices of size d× d;

3 W ′← identity matrix of size d× d;

4 for j from 1 to d do

5 for i from 1 to j − 1 do

6 if vR(ωi,j) < vR(ωi,i) then swap ωj and ωi; swap W ′
j and W ′

i ;

7 if ωi,i 6= 0 then

8 s←
ωi,j

ωi,i
lifted to precision O(πN);

9 ωj ← ωj − s · ωi; W ′
j ←W ′

j − s ·W ′
i ;

10 L′
j ← ωj ; V ′

j ←W ′
j ;

11 return L′, V ′;

related to LU decomposition. The following proposition makes this statement precise.

Proposition 2.5. Let M ∈ Md(R), N be a positive integer and (L′, V ′) be a nondegenerate L’V’ decom-

position of M modulo πN . Then M admits a LU decomposition and for all (i, j) with 1 6 i < j 6 d, one

have:

Li,j(M) ≡
L′
i,j

L′
j,j

(mod πN−vj−max(0,vR(L′

j,j)−vR(L′

i,j)))

with vj =
∑j−1

k=1 vR(L
′
k,k)− vR(V

′
k,k).

Proof. Left to the reader (the arguments are very similar to those detailed in §2.1.2).

Of course, executing first Algorithm 3 and then applying the result of Proposition 2.5 is almost the same

than running directly Algorithm 2. Nevertheless splitting Algorithm 2 in two parts can be very useful for

some applications (we will see an example of this in §2.1.5) because, as we have already said before, the

pair (L′, V ′) is generally easier to manipulate than L(M) since it carries a flat precision (and, in addition,

it consists of two integral matrices if M is itself integral).

2.1.5 Complexity and Hafner-McCauley’s algorithm

It is easily seen that the asymptotic complexity of Algorithm 2 is O(d3) (operations in the base ring R)

where d denotes the size of the input matrix. It is then similar to the complexity of usual Gauss elimination

12

whereas it is true that our Algorithm 2 runs a little bit more slowly because it basically makes more swaps

and copies.

When precision is not an issue (e.g. when we are working over an exact ring), Hafner and McCauley

showed in [5] how to reduce the computation of the LU decomposition to matrix multiplication and got

this way a nice recursive algorithm that computes the LU decomposition of a matrix in only O(dω) oper-

ations where ω is the exponent for matrix multiplication4. The aim of this subsection is to extend Hafner-

McCauley’s algorithm in our setting where we want to take care of precision.

A preliminary result about Algorithm 3 Roughly speaking, Algorithm 3 clears the entries of ω lying

above the diagonal in the colexigographic order. We would like to study what happens if we decide to clear

these entries in a different order.

Definition 2.6. Let a < b be two positive integers and set Ia,b = {(i, j) ∈ N
2 | a 6 i < j 6 b}. A total

order 4 on Ia,b is nice if:

• for 1 6 i 6 i′ < j 6 d, one always have (i, j) 4 (i′, j), and

• for all (i, j) and (i′, j′) ∈ Ia,b such that j 6 i′, one have (i, j) 4 (i′, j′).

Remark 2.7. It is easy to check that the colexicographic order on Ia,b is nice. However, it is not the only

one: the lexicographic order, for instance, is nice as well. One can also build recursively nice orders on Ia,b
as follows. Fix an integer c between a and b and pick 41 and 42 two nice orders defined on Ia,c and Ic+1,b

respectively. Consider also a third order 43 defined on the cartesian product {a, . . . , c} × {c + 1, . . . , b}
and satisfying the first condition of Definition 2.6. Now define a new order 4 on Ia,b by agreeing that

Ia,c 4 {a, . . . , c} × {c+ 1, . . . , b} 4 Ic+1,b
5 and furthermore that 4 agrees with 41, 42 and 43 on Ia,c,

Ic+1,b and {a, . . . , c} × {c+ 1, . . . , b} respectively. A quick check then shows that 4 is nice as well.

If 4 is a nice order on I1,d = {(i, j) ∈ N
2 | 1 6 i < j 6 d}, let us agree to use the expression “to

execute Algorithm 3 with respect to 4” to mean that we execute this algorithm but, instead of running

through all (i, j) ∈ I1,d according to the colexicographic order, we run through these pairs according to 4

and execute line 10 when i = j − 1.

Proposition 2.8. When they are called on the same input, Algorithm 3 and Algorithm 3 executed with

respect to a nice order return the same answer.

Proof. Easy check.

Description of the algorithm Suppose that we are given a matrix M ∈ Md(R) known with precision

O(πN). The basic idea (which comes from Hafner and McCauley) is to obtain a recursive algorithm to

compute the LU decomposition and, doing this, to replace as much as possible elementary operations on

rows by matrix multiplication. Moreover, in order to avoid many problems related to precision, it would be

really better to work with L’V’ decomposition instead of LU decomposition. Actually, for the purpose of

the recursion, we will not just need the matrices L′ and V ′ but also H ′ (which is the matrix ω at the end of

the execution; see §2.1.3) and W ′. The prototype of the algorithm we want to design is then:

LV : M 7→ (L′, V ′, H ′,W ′).

Proposition 2.8, together with the recursive construction of a nice order detailed in Remark 2.7 suggests the

following strategy for a recursive implementation of LV:

1. we start the computation of a L’V’ decomposition of M but stop it after d′ columns for some d′ < d
(e.g. d′ = [d2]);

2. we clear all the entries in the d′× (d− d′) top right corner of the matrix ω we have ended up after the

first step;

4Nowadays, the best known value for ω is 2.376 but, unfortunalety, the corresponding algorithm due to Coppersmith and Winograd

(see [3]) is not efficient in practice (even for very large d) because the constant hidden in the O is quite large. A good compromise is

to use classical Strassen’s algorithm whose asymptotic complexity is a little bit worse — exactly O(dlog2 7) — but which is easy to

implement and works very well in practice.
5By this inequality, we mean that elements in Ia,c are all less than those in {a, . . . , c}×{c+1, . . . , b} and, in the same way, that

the latter elements are less than any pair in Ic+1,b.

13

3. we finally compute a L’V’ decomposition of the (d− d′)× (d− d′) bottom right corner of ω.

It turns out that the first step can be computed in a recursive way. Precisely, we decompose M as a block

matrix

M =
(

M1 M2

M3 M4

)

(where M1 has size d′ × d′)

we call recursively the routine LV on the input M1 and then recover the matrices L′, V ′ and ω (as they have

to be just after the first step) using the following formulas:

V ′ =
(V ′

1 0
0 I

)

; L′ = MV ′ =
(L′

1 M2

M3 · V
′
1 M4

)

; ω =
(H ′

1 M2

M3 ·W
′
1 M4

)

where the quadruple (L′
1, V

′
1 , H

′
1,W

′
1) is the output of the recursive call of LV. Last but not least: remark

furthermore that, proceeding this way, we are replacing elementary operators (on the columns of M3) by

matrix multiplication (by V ′
1 and W ′

1). It is exactly the benefit we were looking for!

Let us now focus on step 2. With the notations above, it consists in clearing all the entries of M2

(using eventually the diagonal entries of H ′
1 as pivots). Of course, this can be done just by running the

corresponding part of Algorithm 3. Nevertheless, we do not want to proceed exactly along these lines but

we would like instead to use a recursive version of this algorithm in order to take advantage again of the

complexity of the matrix multiplication. Writing such a recursive version is actually very similar to what

we have done before. In order to have more coherent notations, let us rename H ′
1 and M2 to X and Y

respectively and write:

X =
(X1 0
X3 X4

)

; Y =
(Y1 Y2

Y3 Y4

)

.

Note that X1 and X4 are then lower triangular modulo πN . We can then proceed recursively along the

following lines:

1. we clear Y1 using X1 as pivot;

2. we clear Y2 using the new X1 as pivot;

3. we clear Y3 using X4 as pivot;

4. we clear Y4 using the new X4 as pivot.

Each of these steps can be done recursively. As in the previous case, we just need to be careful and let

our recursive routine return not only the new matrix X gotten after clearing Y but also the transformation

matrix T such that (X Y) · T ≡ (X ′ 0) where X ′ is the new X mentionned previously. Indeed, this

matrix is needed to update X and Y after each step.

A brief study of complexity Let us denote T ′(d) the complexity of the clearing algorithm we have just

described (i.e. the number of elementary operations on R performed by this algorithm when the size of

the input matrices is d) and by T (d) the complexity of our complete recursive algorithm computing a LV

decomposition. From the description of these algorithms, we find:

T (d) = 2 · T (d2) + T ′(d2) +O(dω) (10)

T ′(d) = 4 · T ′(d2) +O(dω) (11)

where we recall that ω is the exponant of the complexity of matrix multiplication. Since a d × d matrix

have d2 entries, one certainly have ω > 2. For simplicity, we assume that ω > 2 (we recall that the

fastest asymptotic algorithm known today corresponds to ω ≃ 2.376). It is then a classical exercise to

deduce from the recursion formula (11) that T ′(d) = O(dω). Knowing this, equation (10) becomes T (d) =
2 · T (d2) +O(dω) and then yields T (d) = O(dω) as expected.

14

Algorithm 4: Computing the L-part of the LU decomposition of type d

Input: :A partition d = (d1, . . . , ds) of a positive integer d
:A matrix M ∈Md(R) known with precision O(πN)

Output: :The matrix Ld(M)

1 ω←M ;

2 L← zero matrix of size d× d;

3 s← 1; j0 ← 0;

4 for j from 1 to d do

5 for i from 1 to j − 1 do

6 if vR(ωi,j) < vR(ωi,i) then swap ωj and ωi;

7 if ωi,i 6= 0 then s←
ωi,j

ωi,i
lifted to precision O(πN); ωj ← ωj − s · ωi;

8 if j = j0 + ds then

9 for j′ from j0 + 1 to j0 + ds do Lj′ ←
1

ωj′,j′
· ωj′ ;

10 for j′ from j0 + 1 to j0 + ds do Lj′ ← Lj′ −
∑j0+ds

i′=j′+1 Li′,j′ · Li′ ;

11 v←
∑j0

k=1 vR(ωk,k);

12 for j′ from j0 + 1 to j0 + ds and i′ from j0 + 1 to d do set precision of Li′,j′ to O(πN−2v);
13 j0 ← j0 + ds; s← s+ 1;

14 return L;

2.1.6 Block LU decomposition

The results of §2.1.2 extend to block LU decomposition using §1.3. Indeed, a close look of the proof of

Proposition 1.11 shows that one can compute the block LU decomposition of type d = (d1, . . . , dr) of a

matrix M ∈Md(R) using a slight modification of Algorithm 2 which consists in updating the matrix L (on

line 8) only if j is equal to some d1 + · · ·+ ds and clearing the entries of L below the diagonal of the s-th

block just after this update (cf Algorithm 4). Furthermore, if the input M is known up to precision O(πN),
the precision of the matrix L returned by Algorithm 4 is at least O(πN−2·VL,d(M)). In average, the loss of

precision is then bounded by 2 · E[VL,d] ≃ 2 · logq s.

All other results proved previously for classical LU decomposition (relation with Hermite normal form,

notion of L’V’ decomposition, Hafner-McCauley’s improvement) also extend almost verbatim to block LU

decomposition. We will not explain it in details here (but let the exercise to the reader).

2.2 Simultaneous PLU decompositions

As we have already said before, a LU decomposition may fail to exist for some particular matrices. Nev-

ertheless, it is well known that all matrices over a DVR admit a PLU decomposition (recall that a PLU

decomposition of a matrix M is a factorization M = PLU where P is a permutation matrix and L and U
are as before) and, in general, that several matrices P are possible.

Assume now that we do not pick just one matrix, but a (finite) family of matrices (M1, . . . ,Mn). The

question we would like to address is the following: does there exist a “simultaneous PLU decomposition”

of the Mi’s, that is PLU decomposition of each Mi with the same matrix P . If we want as before P to be a

permutation matrix, the answer is negative in general. However, if we relax this condition and require only

that P is invertible (which is enough for certain applications, see §2.3 for a concrete example), the answer

is positive (at least if the base field is infinite).

The aim of this section is to study this notion of “simultaneous (block) PLU decomposition” over a base

field which is the fraction field of a discrete valuation ring.

2.2.1 The basic result

Let (M1, . . . ,Mn) be a family of square d × d matrices over K and fix a partition d = (d1, . . . , ds) of d.

There exists an obvious probabilistic algorithm to compute a simultaneous block PLU decomposition (of

type d) of the Mi’s: we choose P at random and compute the block LU decomposition of the P−1Mi’s.

15

The aim of this paragraph is to prove that this algorithm works quite well in the following sense: not only

it finds very quickly a matrix P that does the job, but it furthermore finds quickly a matrix P for which all

entries of P , P−1 and the Li’s are kwown with a good precision and do not have a too small valuation. Our

precise result can be stated as follows.

Theorem 2.9. Let n be some positive integer. Suppose that for all m ∈ {1, . . . , n} we are given a matrix

Mm ∈ Md(K) together with a finite sequence dm = (dm,1, . . . , dm,rm) of positive integers whose sum

equals d. Let ε be a real number in (0, 1) and take v an integer > logq(
r1+···+rn

q−1)− logq ε. Then, a random

matrix ω ∈ Ω satisfies the following conditions with probability at least 1− ε:

• ω is invertible in Md(K) and ω−1 ∈ π−vMd(R);

• for allm ∈ {1, . . . , n}, the matrix ωMm admit a block LU decomposition of type dm andLd
m
(ωMm) ∈

π−vMd(R);

Moreover if the Mm’s all lie in Md(R), are invertible in this ring and are only known with precision O(πN),
one can furthermore require (without changing the probability) that, on each input ωMm, Algorithm 4

outputs Ldm
(ωMm) with precision at least O(πN−2v).

Remark 2.10. It is also possible to bound the loss of precision if we drop the hypothesis of inversibility of

the Mm’s. The valuations of their determinants then enter into the scene. (The exercise is left to the reader.)

Proof. Let us begin by proving the first assertion. Replacing eventuallyMm by Mm+πN for a large integer

N , one may assume that all Mm’s are invertible in Md(K). Furthermore, since multiplying Mm (1 6 m 6

n) on the right by an upper triangular matrix with coefficients in R does not change the matrix Ldm
(ωMm)

for any ω ∈ Md(K), one can even safely assume that all Mm’s are invertible in Md(R) = Ω. For all

m ∈ {1, . . . , n} and all s ∈ {1, . . . , rm}, define Wd,s,m : Ω → N ∪ {∞} by Wd
m
,s,m(ω) = Vd,s(ωMm)

(where Vd,s is the random variable defined in §1.3) and set:

W = max(vR(det),Wd1,1,1
, . . . ,Wd1,1,r1−1,Wd2,2,1

, . . . ,Wd2,2,r2−1, . . . ,Wd
n
,n,1, . . . ,Wd

n
,n,rn−1).

Since Mm is invertible in Ω, Lemma 1.9 implies that

P[Wd
m
,m,s 6 v] = (1− q−v−1) · · · (1− q−v−ds) 6 1−

q−v

q − 1

for all m, s and v. Furthermore by Adbel-Khaffar’s Theorem (see Theorem 1 of [1]) we also know the law

of the random variable vR(det); we have P[vR(det) 6 v] = (1 + q−v−1)(1 + q−v−2) · (1 + q−v−d). Let

us simplify this Formula and just remember that P[vR(det) 6 v] > 1− (q−v−1+ q−v−2+ · · ·+ q−v−d) >

1− q−v

q−1 . We can now estimate the law of W as follows:

P[W > v] 6 P[vR(det) > v] +
∑

16m6n
16s<rm

P[Wm,i > v] 6 q−v ·
(r1 + · · ·+ rn − n

q − 1
+

1

q − 1

)

6 ε.

Proposition 1.11 shows that Ld
m
(ωMm) ∈ π−W (ω)Md(R) for all ω ∈ Ω and all m ∈ {1, . . . , n} and, on

the other hand, it is clear that ω−1 ∈ π−W (ω)Md(R) because vR(detω) 6 W (ω). It is enough to conclude

the proof.

The second assertion (concerning precision) is now clear.

Remark 2.11. One may wonder if the bound logq(
r1+···+rn

q−1)− logq ε is sharp. Actually, it cannot be for any

data of (M1, . . . ,Mn). Indeed, an integer v satisfies the required conditions of Theorem 2.9 for the families

(M, . . . ,M) and (d, . . . , d) (n times) if and only if it satisfies the same conditions for the family reduced

to the unique matrix M . So if M1 = · · · = Mn and d1 = . . . = dn, one can certainly improve the bound

logq(
rn
q−1) − logq ε by removing the facteur n in the first log. Nevertheless, by using similar methods as

those of §1, one can prove, first, that the result of Theorem 2.9 fails if v ≪ logq(
max(r1,...,rn)

q−1)− logq ε and,

second, that if M1, . . . ,Mn are themselves chosen randomly, it even fails for v ≪ logq(
r1+···+rn

q−1)− logq ε
(i.e. the given bound is sharp).

16

2.2.2 A slight generalization

For the application we have in mind (see §2.3), we will need a slight generalization of Theorem 2.9 where

the matrices M1, . . . ,Mn on the one hand and the matrix ω on the other hand are not defined over the same

field. Let K̃ be a finite extension of K . A classical result asserts that the valuation vR extends uniquely

to K̃ . Let R be the ring of integers of K̃, that is the subset of K̃ consisting of elements with nonnegative

valuation. Set finally:

Π(q) = q ·
∞
∏

i=1

(1− q−i).

It is easy to check that q − 1− 1
q−1 < Π(q) < q − 1.

Theorem 2.12. Let n be some positive integer. Suppose that for all m ∈ {1, . . . , n} we are given a matrix

Mm ∈ Md(K̃) together with a finite sequence dm = (dm,1, . . . , dm,rm) of positive integers whose sum

equals d. Let ε be a real number in (0, 1) and take v an integer > logq(
r1+···+rn

Π(q))− logq ε. Then, a random

matrix ω ∈ Ω satisfies the following conditions with probability at least 1− ε:

• ω is invertible in Md(K) and ω−1 ∈ π−vMd(R);

• for allm ∈ {1, . . . , n}, the matrix ωMm admit a block LU decomposition of type d andLdm
(ωMm) ∈

π−vMd(R̃);

Moreover if the Mm’s all lie in Md(R), are invertible in this ring and are only known with precision O(πN),
one can furthermore require (without changing the probability) that, on each input ωMm, Algorithm 4

outputs Ld
m
(ωMm) with precision at least O(πN−2v).

Remark 2.13. Once again (see Remark 2.10), one can bound the loss of precision as well if we drop the

hypothesis of inversibility of the Mm’s and put into the machine the valuations of all detMm.

We now start the proof of Theorem 2.12; it will occupy the rest of this subsection. As in the proof

of Theorem 2.9, we start with the first assertion and assume that Mm is invertible in Md(R̃) for all m.

However, in our new settings, this fact no longer implies that ωMm runs over Md(R) when ω runs over

Md(R). Thus, we can no longer work with the random variables ω 7→ Vd
m
,i(ωMm) and we need to

modify a bit our strategy. Actually, since we just want to bound from above — and not from below — the

valuation of the matrices Ld
m
(ωMm), we can argue first assuming that m is fixed and then add probabilities.

Moreover, by the proof of Proposition 1.11 (see also Formula (2) when dm = (1, . . . , 1)), bounding the

valuation of Ldm
(ωMm) reduces to bounding the valuation of the (dm,1 + . . . + dm,s)-th minor of ωMm

for all s ∈ {1, . . . , rm − 1}. Thus we first fix m ∈ {1, . . . , n} and s ∈ {1, . . . , rm − 1} and look for

an upper bound for the valuation of the jm(s)-th minor of ωMm where, by definition, jm(s) = dm,1 +
· · · + dm,s. For 1 6 i 6 jm(s), we are going to define a random variable Wi : Ω → 1

eN ∪ {∞}

where e is the ramification index of K̃/K (i.e. the index of vR(K
⋆) is vR(K̃

⋆)). The construction of the

Wi’s is achieved by applying the classical algorithm of LU decomposition. We pick ω ∈ Ω and first set

M (1) = (ωMm){1,...,rm},{1,...,rm} ∈ Mr(R̃). Let j be the first index for which vR(M
(1)
1,j) is minimum

among the valuations of all entries of the first line of M (1). Let M (2) be the matrix obtained from M (1) by

swapping the j-th column with the first one and by clearing all the entries of the first row (expect the first

one) by pivoting, i.e. adding to each column (expect the first one) a suitable multiple of the first one. The

matrix M (2) looks like

⋆ 0 · · · 0
⋆ · · · · · · ⋆
...

...

⋆ · · · · · · ⋆

.

We now continue this process: we select the first index j > 2 for which vR(M
(2)
2,j) is minimal, we obtain

M (3) by putting the j-th column in the second position and clearing all the other entries on the second row.

Repeating this again and again, we obtain a finite sequence M (1), . . . ,M (jm(s)) of matrices and the last one

is lower triangular. For i ∈ {1, . . . , jm(s)}, we define Wi(ω) as the valuation of the i-th diagonal entry of

M (jm(s)) (or equivalently of M (j) for some j > i). It is clear that the determinant of the jm(s)-th principal

minor of ωMm is equal to W1(ω) + W2(ω) + · · · + Wjm(s)(ω). We need to determine the law and the

correlations between the Wi’s. We begin by a Lemma.

17

Lemma 2.14. Let f : R̃d → R̃r be a surjective map. Then

P
[

f(x) ∈ πvR̃r |x ∈ Rd
]

6 q−rv

for all nonnegative integer v.

Proof. Let k̃ denote the residue field of R̃; it is a finite extension of k. Since f is surjective, it induces a

surjective k̃-linear map f̄ : k̃d → k̃r over the residue field. Moreover, the image of f̄ is generated over k̃ by

f̄(kd). Thus dimk f̄(k
d) = dimk̃ f̄(k̃

d) = r. This fact implies the existence of a k-linear map ḡ : k̃r → kr

such that the composite ḡ ◦ f̄ : kd → kr is surjective. Let g : R̃r → Rr be any R-linear lifting of ḡ.

The R-linear morphism h = g ◦ f : Rd → Rr induces a surjection over the residue field and thus is itself

surjective. Furthermore, it is clear that h(x) is divisible by πv if f(x) is. Hence, for x staying in Rd, we

have P[f(x) ∈ πvR̃r] 6 P[h(x) ∈ πvRr] and we are reduced to prove the Lemma with f replaced by h.

(In other words, we may assume that K̃ = K .)

By the structure Theorem for finitely generated modules over a principal domain (recall that R is a

principal domain), there exists a basis (e1, . . . , ed) of Rd such that the first (d − r) vectors e1, . . . , ed−r

form a basis of kerh. Now, using that h is surjective, we easily see that a vector x =
∑d

i=0 xiei ∈ Rd

satisfies h(x) ∈ πvRr if and only if xi is divisible by πv for all i > d− r. But, the probability that such an

event occurs is q−rv and we are done.

Corollary 2.15. For all integers v1, . . . , vjm(s), we have:

P[Wi > vi, ∀i] 6

jm(s)
∏

i=1

q−(r+1−i)vi .

Proof. For ω ∈ Ω and i ∈ {1, . . . , jm(s)}, we denote by ωi the i-th row of ω (and consider it as a vector

of Rd) and by M (i)(ω) the matrix defined above. Let F (1) be the submatrix of Mm consisting of its first

jm(s) columns and let f (1) : R̃d → R̃jm(s) be the R̃-linear map whose matrix is tF (1). The fact that Mm

is invertible implies that f (1) is surjective. Lemma 2.14 applied to f (1) yields:

P[W1 > v1] 6 q−jm(s)v1 . (12)

Now remember that M (2)(ω) is obtained from M (1)(ω) by performing a sequence of elementary operations

on columns. It then exists a matrix P (1)(ω) such that M (2)(ω) = M (1)(ω) · P (1)(ω). Clearly P (1)(ω)
depends only on ω1 and we will denote it P (1)(ω1) in the sequel. Set F (2)(ω1) = F (1) · P (1)(ω1) and let

f (2)(ω1) : R̃
d → R̃jm(s) denote the map whose matrix is tF (2)(ω1). It is surjective and one can then apply

Lemma 2.14 to the composite prjm(s)−1 ◦ f
(2)(ω1) where prjm(s)−1 : R̃jm(s) → R̃jm(s)−1 is the projection

on the first coordinates. It gives P[W2 > v2 | ω1 = x1] 6 q−(jm(s)−1)v2 for all x1 ∈ Rd. Integrating now

over x1 and using (12), we get

P[W1 > v1 and W2 > v2] 6 q−jm(s)v1 · q−(jm(s)−1)v2 .

The Corollary follows by repeating jm(s) times the previous argument.

If we denote by δs,m(ω) the valuation of the determinant of the jm(s)-th principal minor of ωMm,

Corollary 2.15 allows us to do the following computation:

P[δs,m > v] 6
∑

v1,...,vjm(s)>0
v1+···+vjm(s)=v+1

P[Wi > vi, ∀i] 6
∑

v1,...,vjm(s)>0
v1+···+vjm(s)=v+1

q−(v1+2v2+···+jm(s)vjm(s))

= q−v−1
∑

v2,...,vjm(s)>0
v2+···+vjm(s)6v+1

q−(v2+2v3+···+(jm(s)−1)vjm(s))

6 q−v−1
∑

v2,...,vjm(s)>0

q−(v2+2v3+···+(jm(s)−1)vjm(s))

= q−v−1 ·

(

∞
∑

v2=0

q−v2

)

·

(

∞
∑

v3=0

q−2v3

)

· · ·

(

∞
∑

vjm(s)=0

q−(jm(s)−1)vjm(s)

)

= q−v−1 · (1 − q−1)−1(1 − q−2)−1 · · · (1− q−jm(s)+1)−1
6 q−v · Π(q)−1.

18

It is time now to free s and m: summing the above estimation over all possible s and m, we find that

δ(ω) = maxs,m δs,m(ω) is greater than v — which implies that Ld(ωMm) does not lie in π−vMd(R
′) —

with probability at most (r1 + · · · + rn − n) · q−v · Π(q)−1 and consequently that ω does not satisfy the

conditions of the first statement of Theorem 2.12 with probability at most:

q−v ·

(

1

q − 1
+

r1 + · · ·+ rn − n

Π(q)

)

6 q−v ·
r1 + · · ·+ rn

Π(q)
.

Hence if v is chosen > logq(
r1+···+rn

Π(q)) − logq(ε), this probability is less than ε: the first part of Theorem

2.12 is proved.

The second part now follows easily: indeed, we know that, on the inputωMm, the Algorithm 2 decreases

the precision by a factor that cannot exceed π2maxi Vi(ωMm) and so, a fortiori, by a factor that cannot exceed

π2δ(M) where δ is the random variable defined above. The conclusion follows from this.

Remark 2.16. The bound of Theorem 2.12 is sharp if M1, . . . ,Mn are chosen randomly among all square

d×d matrices with coefficients in R. However, it is not true in general and it is even not true if M1, . . . ,Mn

are chosen randomly among all matrices over R̃. Indeed, in that case, using results of §1, one can prove

that, in average, the better possible bound for v is given by:

[K̃ : K]−1 ·
(

logq(
r1+...+rn

Π(q))− logq(ε)
)

+O(1)

with an extra factor [K̃ : K]−1, which can be very small.

2.3 Modules over K[X] and sheaves over A1
K

Let X denote an affine curve over K and A = K[X] be the ring of regular functions over X . It is well

known that the category of coherent sheaves over X is equivalent to that of finitely generated modules over

A. In particular, the data of a submodule M ⊂ Ad (for some fixed integer d) is equivalent to the data of a

coherent subsheafM ⊂ Od
X . Nevertheless, these two objects are of different nature and we would like to

represent them in two different ways:

• a submodule M ⊂ Ad by a matrix of generators

• a subsheafM ⊂ Od
X by the data of the stalkMx ⊂ O

d
X,x for each closed point x ∈ X (note that

this inclusion is not trivial for only a finite number of points x).

Since these objects are supposed to be equivalent, it is natural to ask if one can find an efficient way to go

from one representation to the other. Actually going from the global description to the local one is quite

easy: it suffices to localize at each point x. Contrariwise, going in the opposite direction is not so obvious

and will be discuss now.

From now on, we assume for simplicity that X is the affine line A1
K (and leave to the reader the exercise

to extend our constructions to a more general setting). With this extra assumption, the ring A is nothing but

the ring of univariate polynomials with coefficients in K .

2.3.1 Rephrasing our problem in concrete terms

For all irreducible polynomials P ∈ K[X], let AP denote the completion of A for the P -adic topology, that

is AP = lim
←−r

A/P rA. Concretely AP can be identified with a ring of power series with coefficients in the

residue field KP = A/PA in one indeterminate XP . This variable XP should be thought as “X − aP ”

where aP is a (fixed) root of P in KP . Under the identification AP ≃ KP [[XP]], the natural embedding

A→ AP is just the Taylor expansion at aP :

F (X) 7→

∞
∑

i=0

F (i)(aP)

i!
·X i

P .

Let P1, . . . , Pn be the minimal polynomials of a1 . . . , an respectively and, for simplicity, set Am = APm
.

The question we have addressed earlier is then equivalent to the following: given, for all m ∈ {1, . . . , n}, a

19

submoduleMm ⊂ Ad
m free of maximal rank, how can one find explicitely a A-moduleM⊂ Ad such that

Am ⊗M =Mm (as a submodule of Ad
m) for all m and AP ⊗M = Ad

P for all other P ?

One can actually rephrase again this question in very concrete terms by taking basis everywhere. Indeed,

if B is A or one of the Am’s, any free submodule of Bd of rank d can certainly be represented by a square

d × d matrix with coefficients in B: the module is recovered from the matrix by taking the span of its

column vectors. Note furthermore that two matrices G and H defines the same module if and only if there

exists an invertible matrix P with coefficients in B such that G = HP ; if this property holds, we shall

say that G and H are right-equivalent. Since all our base rings are principal domains, we know that any

matrix G ∈ Md(B) admits a factorization G = MDN where M and N are two invertible matrices, D is

diagonal and each diagonal entry of D divides the next one. Up to replacing G by a right-equivalent matrix,

one can furthermore assume that N is the identity matrix, i.e. that G has the particular form G = MD.

Moreover, if B is one of the Am’s, it is safe to assume that the diagonal entries of D are all some powers of

the variable Xm since all nonvanishing element of Am can be written as a product of an invertible element

with a power of Xm. In that case the data of D is then reduced to that of a nondecreasing sequence of

integers n1 6 . . . 6 nd.

With all these remarks, our question becomes:

Problem 2.17. Given for all m, an invertible matrix Mm ∈ Md(Am) and a nondecreasing sequence of d
integers em,1 6 · · · 6 em,d, how can one construct explicitely a couple (M,D) of matrices over A such

that:

i) the matrix M is invertible in Md(A) ;

ii) the matrix D is diagonal and each of its diagonal entry divides the next one ;

iii) for all m ∈ {1, . . . , n}, the matrix MD is right-equivalent to MmDm over Am where Dm =
Diag(X

em,1
m , . . . , X

em,d
m) ;

iv) for all irreducible polynomial P ∈ K[X] which is not one of the Pm’s, the matrix MD is right-

equivalent to the identity matrix over AP .

2.3.2 The answer

We consider, for all m ∈ {1, . . . , n}, an invertible matrix Mm ∈Md(Am) together with a nondecreasing se-

quence of d integers em,1 6 · · · 6 em,d. Our aim is to construct a couple (M,D) satisfying the Conditions

i), ii), iii) and iv) above. Firstable, we define the matrix D as follows:

D = Diag(P
e1,1
1 · · ·P en,1

n , . . . , P
e1,d
1 · · ·P

en,d
n).

It clearly satisfies Condition ii).

Lemma 2.18. Let M ∈Md(A).
a) Assume that, for all m ∈ {1, . . . , n}, the matrix M considered as an element of Md(Am) (via the

natural embedding A → Am) is congruent to Mm modulo X
em,d+1
m . Then, the couple (M,D) satisfies

Condition iii).

b) Assume moreover that M is invertible in Md(A). Then the couple (M,D) satisfies Conditions i), ii),

iii) and iv).

Proof. Note that in the ring Am, the polynomial Pm is equal to the product of Xm by a unit whereas all

other Pm′ ’s (for m′ 6= m) are invertible. We deduce from this that D is right-equivalent to Dm over Mm.

Hence, our first hypothesis implies that MD is right-equivalent to a matrix congruent to MmDm modulo

X
em,d+1
m . In other words, there exists a matrix Q ∈ GLd(Mm) such that MD is right equivalent to:

MmDm +X
em,d+1
m Q = MmDm ·

[

Id +Xm · Diag(X
em,d−em,1
m , . . . , X

em,d−em,d−1
m , 1) ·Q

]

where Id is of course the identity matrix. The last factor (the one between brackets) is a matrix over Am

congruent to identity modulo Xm. It is therefore invertible. It follows that MD is right-equivalent to

MmDm, and part a) of the Lemma is proved.

20

We assume now that M is invertible. Then, clearly, Condition i) holds. Moreover, we have already seen

that Conditions ii) are iii) are fulfilled. It is then enough to prove Condition iv). Let P ∈ K[X] be an

irreducible polynomial different from all the Pm’s. All Pm’s are then invertible in AP and, consequently,

so is the matrix D. Since M is itself invertible, the product MD belongs to GLd(AP) and is then right-

equivalent to the identity matrix.

It is actually not difficult to produce a matrix M satisfying the assumption of the Lemma 2.18.a). Indeed,

the identificationAm/X
em,d+1
m Am ≃ A/P

em,d+1
m A shows that the congruenceM ≡Mm (mod X

em,d+1
m)

is equivalent to M ≡M ′
m (mod P

em,d+1
m) for a certain matrix M ′

m ∈Md(A). Hence, finding a convenient

M is just a direct application of the Chinese Remainder Theorem (recall that all Pm’s are irreducible and

pairwise distinct polynomials).

Producing a matrix M satisfying also the second assumption of Lemma 2.18 is a bit more tricky but

can be achieved using block LU decomposition. For m ∈ {1, . . . , n}, let rm be the numbers of differents

values taken by the sequence (em,1, . . . , em,d) and let dm,s (1 6 s 6 rm) denote the number of times this

sequence takes its i-th smallest value. We then have:

em,1 = · · · = em,dm,1 < em,dm,1+1 = em,dm,1+2 = · · · < em,dm,1+dm,2 < em,dm,1+dm,2+1 = · · ·

Assume now for a moment that all Mm’s admit a block LU factorization Mm = LmUm of type dm =
(dm,1, . . . , dm,rm). Since Mm is invertible, so is Um. Let Vm be the matrix obtained from Um by mul-

tiplying its (i, j)-th entry by X
em,j−em,i

m (note that the exponent is always nonnegative when the (i, j)-th
entry of Um does not vanish). Obviously, Vm is again upper triangular and its diagonal entries are equal to

those of Um. Thus Um and Vm share the same determinant and Vm is invertible. Moreover, we check that

MmDm = LmDmVm, from what we derive that MmDm is right-equivalent to LmDm. Since all Lm’s are

unit lower triangular, there certainly exists a unit lower triangular matrix L ∈Md(A) which is congruent to

Lm modulo X
em,d+1
m for all m. Such a matrix is apparently invertible and also satisfies the assumption in

part a) of Lemma 2.18. We can then simply take M = L.

Now let us go back to the general case where some Mm might not have a block LU decomposition of

type dm. In that case, we denote by Mm(0) ∈ Md(Km) the image of Mm under the canonical projection

Am → Am/PmAm = Km (or, equivalently, Am ≃ Km[[Xm]] → Km). The coefficients of Mm(0) then

all lie in Km, which is a finite extension of K . We can therefore apply Theorem 2.12 which implies in

particular the existence of a matrix ω ∈ GLd(K) such that ω ·Mm(0) has a block LU decomposition of

type dm for all m. Lemma 2.19 below shows that this decomposition lifts to a LU decomposition of type

dm of ωMm.

Lemma 2.19. Let L be a finite extension of K . Pick M ∈ Md(L[[Y]]) and denote by M(0) its image in

Md(L) under the projection L[[Y]] → L, Y 7→ 0. Assume that M(0) is invertible and admits a block LU

decomposition of type d for a certain partition d of d. Then M also does.

Proof. Write d = (d1, . . . , dr) and set as usual j(s) = d1 + · · ·+ ds for all s ∈ {1, . . . , r}. It is enough to

check that, for all s, the j(s)-th principal minor of M , say δs(M), is invertible in L[[Y]]. But, L[[Y]] being

a local ring, δs(M) is invertible if and only if its image δs(M)(0) is. Now remark that this image is nothing

but the corresponding minor of M(0): in other words δi(M)(0) = δi(M(0)). The invertibility of M(0)
together with the fact that it has a block LU decomposition of type d shows that δi(M(0)) is invertible in L
and we are done.

We are now in position to argue as above. For all m, write ωMm = LmUm the block LU decomposition

of Mm of type d. By the Chinese Remainder Theorem, there exists a unit lower triangular matrix L with

coefficients in A such that L ≡ Lm (mod X
em,d+1
m) for all m. The matrix M = ω−1L then satisfies the

two assumptions of Lemma 2.18. Hence, it satisfies also the conclusions of this Lemma and we have solved

our problem. Algorithm 5 summarizes the different steps of the proposed solution. Of course, if ω is not

invertible or one of the ωMm’s does not admit a block LU decomposition of the required type, Algorithm 5

fails. If it happens, we simply rerun the algorithm again and again until it works: it follows from Theorem

2.12 that we will get the desired answer quite fast.

Let us analyze quickly how much precision is loss in average by this method. In order to fix ideas, let

us assume that the entries of the matrix Mm are explicitely given as polynomials in Km[Xm] (eventually

modulo X
em,d+1
m) and that all these polynomials are known with precision O(πN) for some integer N . For

21

Algorithm 5: A solution to Problem 2.17

1 D← Diag(P
e1,1
1 · · ·P

en,1
n , . . . , P

e1,d
1 · · ·P

en,d
n);

2 ω← a random matrix in Md(R);
3 for m from 1 to n do

4 compute dm = (dm,1, . . . , dm,rm);
5 Lm← Ld

m
(ωMm) (computed by Algorithm 4);

6 L← a unit lower triangular matrix in Md(A) such that L ≡ Lm (mod X
em,d+1
m) for all m;

7 return (ω−1L,D);

simplicity, we assume moreover that Mm(0) has coefficients in the ring of integers Rm of Km and that it

is invertible in Md(Rm)6. Set as before jm(s) = dm,1 + . . .+ dm,s and, for all admissible pair (m, s), let

denote by Dm,s the determinant of the jm(s)-th principal minor of ωMm. Define also δ(ω) to the maximum

of all vR(Dm,s(0)) when m and s run over all the possibilities. By the proof of Theorem 2.12, we know

that δ(ω) is less than

v = logq(
2

Π(q)) + logq(r1 + · · ·+ rn)

with probability at least 1
2 . In many concrete situations, it is not easy to compute exactly the rm’s but it

will nevertheless in general quite simple to estimate them. Indeed, going back to the definition, it is clear

that rm is less than both d and em,d and these latter quantites are natural parameters on which we will in

general have a good control (cf [2], §3.2 for a concrete example). From now on, we assume that all matrices

Mm computed on line 5 satisfy this estimation. If this property does not hold, we simply agree to rerun

Algorithm 5 until the desired property holds.

The next step is to measure the size of the denominators appearing in the following nonconstant co-

efficients. In order to do this, we introduce a new parameter w by requiring that all matrices Mm have

coefficients in the ring Rm,w defined as the image of Rm[Xm

πw] in the quotient ring Km[Xm]/X
em,d+1
m .

Clearly Dm,s belongs to Rm,w for all (m, s) and, by we have said before, it has a representant whose con-

stant coefficient has a valuation less than v. Its inverse D−1
m,s then belongs to π−v · Rm,v+w and is known

up to an element of πN−2v ·Rm,v+w. All entries of Lm will consequently be known with this precision.

It remains to analyze the line 6 of Algorithm 5. Note that the matrix L we want to compute can be

expressed in terms of the Lm’s by the formula L = C1L
′
1 + · · ·+ CnL

′
n where:

• L′
m is a matrix with coefficients in K[X] whose reduction modulo P

ed,m+1
m corresponds to Lm via

the natural isomorphism:

K[X]/P
ed,m+1
m

∼
−→ Km[Xm]/X

ed,m+1
m , F (X) 7→

ed,m
∑

i=0

F (i)(am)

i!
·X i

m (13)

• Cm is a polynomial congruent to 1 modulo P
ed,m+1
m and divisible by P

ed,m′+1

m′ for all m′ 6= m.

In order to bound the loss of precision as we would like to do, we assume for simplicity that all Pm’s

are entirely known. We introduce again two new parameters. The first one is an integer v1 for which we

require that the image of R[X]/P
ed,m+1
m under the isomorphism (13) contains πv1 · · ·Rm[Xm]/X

ed,m+1
m

for all m. The second parameter is the integer v2 defined as the opposite of the smallest valuation of

a coefficient of the unique polynomial Cm of degree <
∑n

m=1(ed,m + 1) degPm satisfying the above

condition. Now, remember that we have proved that Lm are known up to an element of πN−2v ·Rm,v+w. It

is then a fortiori known up to an element of πN−2v−e(v+w) where e = max(e1,d, . . . , en,d). Inverting the

isomorphism (13), we find that L′
m is certainly known modulo πN−2v−em,d(v+w)−v1 . Finally the formula

L = C1L
′
1 + . . . + CnL

′
n shows that L is known with precision O(πN−2v−e(v+w)−v1−v2) (recall that we

have assumed that the Pm’s — and consequently the Cm’s — are known with infinite precision). The total

loss of precision of Algorithm 5 is then bounded by 2v + e(v + w) + v1 + v2.

Remark 2.20. The parameters v1 and v2 are not easy to estimate in general. One can nevertheless keep in

mind the following: v1 measures the ramification of the roots am of the Pm’s and v2 measures the distance

6Otherwise, we would need to take in account the valuation of detMm(0) as in Remarks 2.10 and 2.13.

22

between these roots. For instance, to be more precise, one can easily prove that if all am lie in the ring

of integers of an unramified extension K ′ of K then one can just take v1 = 0. If in addition the am’s are

pairwise distinct in the residue field of K ′ (which is the same as to be distinct in the residue field of K since

K ′/K is unramified), one can also take v2 = 0. In that very particular case, the computation of line 6 does

not generate any loss of precision. We refer to [2] for a quite different example where the constants v1 and

v2 do not vanish but stay nevertheless under control.

Here is a final important remark. Algorithm 5 still works if, instead of computing (the L-part) of the

block LU decomposition of ωMm, we compute a unit lower triangular (and not block unit lower triangular)

Lm such that there exists a block upper triangular (with respect to d) matrix Um with the property that

Mm = LmUm. Indeed, the knowledge of these Lm’s is enough to compute L (which need to be only unit

lower triangular) and then to conclude using Lemma 2.18. This remark is important because Algorithm 4

spends some time in line 10 in clearing entries in order to make the computed matrix L block unit lower

triangular instead of simply unit lower triangular. In other words, commenting the line 10 in Algorithm 4

speeds up the execution of Algorithm 5 but do not have any influence on its correctness.

References

[1] K. Abdel-Ghaffar, The determinant of random power series matrices over finite fields, Linear Algebra

Appl. 315, 139–144

[2] X. Caruso, D. Lubicz, Semi-simplifiée modulo p des représentations semi-stables : une approche algo-

rithmique, en préparation

[3] D. Coppersmith, S. Winograd, Matrix Multiplication via Arithmetic Progressions, SIAM Journal of

Comp. 11 (1982), 472–492

[4] S. Evans, Elementary divisors and determinants of random matrices over a local field, Stochastic Pro-

cess. Appl. 102, 89–102

[5] J.L. Hafner, K.S. McCauley, Asymptotically fast triangularization of matrices over rings, SIAM Journal

of Comp. 20 (1991), 1068–1083

[6] A. Householder, The Theory of Matrices in Numerical Analysis, 1975

23

