Charles Verron

George Drettakis

Procedural audio modeling for particle-based environmental effects

We present a sound synthesizer dedicated to particlebased environmental effects, for use in interactive virtual environments. The synthesis engine is based on five physically-inspired basic elements which we call sound atoms, that can be parameterized and stochastically distributed in time and space. Based on this set of atomic elements, models are presented for reproducing several environmental sound sources. Compared to pre-recorded sound samples, procedural synthesis provides extra flexibility to manipulate and control the sound source properties with physically-inspired parameters. In this paper, the controls are used to simultaneously modify particle-based graphical models, resulting in synchronous audio/graphics environmental effects. The approach is illustrated with three models, that are commonly used in video games: fire, wind, and rain. The physically-inspired controls simultaneously drive graphical parameters (e.g., distribution of particles, average particles velocity) and sound parameters (e.g., distribution of sound atoms, spectral modifications). The joint audio/graphics control results in a tightly-coupled interaction between the two modalities that enhances the naturalness of the scene.

Introduction

In the last two decades advances in all fields of computer graphics (i.e., modeling, animation, rendering and more recently imaging) has resulted in impressive advances in realism, even for real-time virtual environments. Paradoxically, sound in virtual environments is still usually based on pre-recorded sound samples. Procedural sound synthesis is an attractive alternative to increase the sense of realism in interactive scenes [START_REF] Farnell | Designing sound[END_REF]. Compared to pre-recorded sounds, it allows interactive manipulations that would be difficult (if not impossible) otherwise. In particular, procedural audio parameters can be linked to motion parameters of graphics objects [START_REF] Hahn | Integrating sounds and motions in virtual environments[END_REF][START_REF] Limpens | Expressive Sound Synthesis for Animations[END_REF] to enhance the sound/graphics interactions. Nevertheless, the use of sound synthesis is still limited in current video games, probably because of three major challenges that are difficult to fulfill simultaneously: synthesis quality should be equivalent to pre-recorded sounds, synthesis should offer flexible controls to sound designers, and its computational cost should satisfy real-time constraints.

Sound modeling

Graphics modeling

Figure 1: Environmental sound synthesis for particle-based environmental effects. A mapping between graphics and sound parameters allows tightly-coupled audio/graphics interactions.

Parametric sound synthesis techniques can be decomposed into two main families: physical models, aiming at simulating the physics of sound sources, and signal models aiming at reproducing perceptual effects independently of the source [START_REF] Schwarz | Corpus-based concatenative synthesis[END_REF]. For environmental sounds, physical approaches are of great interest. Some authors have successfully used physical models to reproduce specific environmental sounds such as wind [START_REF] Dobashi | Real-time rendering of aerodynamic sound using sound textures based on computational fluid dynamics[END_REF] fire [START_REF] Chadwick | Animating fire with sound[END_REF] rolling [START_REF] Stoelinga | Time-domain modeling and simulation of rolling objects[END_REF] or liquids [START_REF] Zheng | Harmonic fluids[END_REF]. Nevertheless, the physics of these phenomena is often complicated. It requires the knowledge of various objects' characteristics and their possible interactions with surrounding gases, liquids and solids. A purely physical approach for sound synthesis is currently impossible in video games, due to the difficulty of 1 designing a general physical model for a wide variety of environmental sounds, in addition to the high computational cost. On the other hand, studies on environmental sounds [START_REF] Mcdermott | Sound Texture Perception via Statistics of the Auditory Periphery: Evidence from Sound Synthesis[END_REF] suggest that synthetic signals matching relatively simple properties could give good results in terms of perceived realism.

In the computer graphics community, many models have been proposed for generating environmental effects (deformable objects, liquids, smoke, etc.) leading to impressive results (see e.g., [START_REF] Nealen | Physically based deformable models in computer graphics[END_REF] for a review). Depending on the approach, the computation cost is sometimes too high to satisfy real-time constraints. An efficient technique was introduced in [START_REF] Reeves | Particle Systems -a Technique for Modeling a Class of Fuzzy Objects[END_REF] to simulate "fuzzy" phenomena like fire and smoke, by using dynamic collections of particles. The designer has access to meaningful parameters (e.g., number of particles, mean velocity) to control stochastic processes that define the evolution of particles over time. Recent efficient GPU and parallel implementations allow the generation of up to millions of particles in real time [START_REF] Kolb | Hardware-based simulation and collision detection for large particle systems[END_REF][START_REF] Reynolds | Big fast crowds on PS3[END_REF]. Physical information is also included to model realistic movements of particles, and particle interactions [START_REF] Nealen | Physically based deformable models in computer graphics[END_REF]. The approach has been successfully applied for a wide range of phenomena [START_REF] Sims | Particle animation and rendering using data parallel computation[END_REF][START_REF] Muller | Particle-based fluid simulation for interactive applications[END_REF][START_REF] Bell | Particle-based simulation of granular materials[END_REF][START_REF] Clavet | Particle-based viscoelastic fluid simulation[END_REF] (e.g., water, clouds, smoke, electricity, explosions, crowds, magic etc.) and is still very popular in current video games [START_REF] Lander | The ocean spray in your face[END_REF][START_REF] Berg | Building an advanced particle system[END_REF]. Curtis Roads noticed that particle systems share many similarities with granular sound synthesis, which models a sound as a collection of short audio grains distributed in time and space [START_REF] Roads | Introduction to granular synthesis[END_REF]. To our knowledge this similarity has not yet been exploited to propose a sound synthesizer dedicated to particle-based environmental effects.

In this paper we propose a signal-based synthesis approach, and focus on the perceptual control of the generated sounds. Since most particle systems in games are based on simple stochastic laws, the associated sound models should not rely on physical solvers delivering collision detection, fluid dynamics, etc. Instead, we follow a "physically informed" synthesis approach [START_REF] Cook | Real Sound Synthesis for Interactive Applications[END_REF][START_REF] Farnell | Designing sound[END_REF] and propose an efficient implementation, based on an atomic representation, suitable for several types of phenomena and in particular rain, fire and wind. This approach results in plausible sound quality and has the advantage of fulfilling real-time constraints. Furthermore, the sound models offer intuitive controls to sound designers, making the synthesizer suitable for practical artistic scenarios. A mapping is described to connect the sound synthesis parameters to particle systems and produce relevant audio/graphics interactions. The approach is illustrated in figure 1. It has been validated with several examples (see the online videos accompanying this paper [22]) in a realtime implementation.

The paper is divided into three parts. First we propose sound synthesis models based on five classes of atoms, and their parameterization to simulate rain, fire and wind effects. Then the real-time synthesis and spatialization pipeline is described. In the third part, we show how the sound models are connected to particles systems for producing multimodal environmental effects.

Synthesis models

In his pioneering work on synthesis and classification of environmental sounds [START_REF] Gaver | What in the world do we hear? an ecological approach to auditory event perception[END_REF] Gaver proposed three main categories depending on the physics of the source: vibrating solids, gasses and liquids. Even if these sounds refer to a wide range of physical phenomena, their acoustic morphology calls for common signal characteristics, allowing for a granularlike synthesis approach. Five "sound atoms" were defined in [START_REF] Verron | Controlling a spatialized environmental sound synthesizer[END_REF] as primitives to reproduce a variety of environmental sounds in the three categories defined by Gaver. In this paper, we rely on this set of atoms to reproduce the micro structure of rain, fire and wind sounds.

Rain sound model

Rain sounds result from drops falling on different surfaces (leaves, solid floor, water...) producing a wide variety of impact sounds [START_REF] Farnell | Designing sound[END_REF]. Depending on the surface hit by the drops, three main types of impacts may be distinguished. Drops falling on water produce bubble sounds [START_REF] Van Den | Physically-based models for liquid sounds[END_REF] that can be simulated by a chirped sinusoid (the chirped impact atom) with amplitude a and exponential decay α:

x 1 (t) = a sin 2π t 0 f (ν)dν e -αt
where the instantaneous frequency f varies linearly over time.

Alternatively, drops falling on resonant surfaces (e.g., plates, windows...) trigger an oscillating system with fixed resonant frequencies. The resulting harmonic impact sounds can be simulated by a modal impact atom

x 2 (t) = M m=1 a m sin 2πf m t e -αmt
where f m are the modal frequencies of the impacted object and M is the number of simulated components. The amplitudes a m depend on the excitation point, and the decay factors α m are characteristic of the material [START_REF] Aramaki | Controlling the perceived material in an impact sound synthesizer[END_REF].

Drops falling on rigid or deformable objects (e.g., stone, leaves) that exhibit a noisy response (high modal density) tend to produce a brief noisy sound which is perceptually different from bubbles and sinusoidal impacts. Such sounds are efficiently reproduced by a noisy impact atom, which is a sum of 8 contiguous subbands of noise s i (t), evenly spaced on the Equivalent Rectangular Bandwidth (ERB) scale, with amplitude a i and exponential decay α i :

x 3 (t) = 8 i=1 a i s i (t)e -αit
Additionally, an equalized noise atom is used to create a rain background noise

x 4 (t) = 32 i=1 a i (t)s i (t)
where s i (t) are 32 contiguous subbands of noise evenly spaced on the ERB scale, with amplitudes a i (t). This allows the simulation of a huge number of simultaneous drops with a low computational cost. The 32-subband amplitudes are extracted from rain sound samples with the method described in [START_REF] Verron | Analysis/synthesis and spatialization of noisy environmental sounds[END_REF]. The rain sample is passed through a 32 ERB subband filterbank, then a i is set as the time average energy in subband i.

Atoms x 1 , x 2 , x 3 and x 4 produce the basic microstructure of the rain sound model. They are distributed over time and space to simulate a wide diversity of rain situations. Three user controls GainW ater, GainSolids and GainLeaves specify the maximum level of drops falling on water, solids and leaves respectively. Similarly RateW ater, RateSolids and RateLeaves set the probability of falling drops per unit-time (i.e., per frame). An additional user control GainBackground sets the global gain of the rain background noise.

For real-time synthesis, the synthesis parameters are initialized for a population of 100 chirped impacts with different frequencies and amplitude, following the laws proposed in [START_REF] Van Den | Physically-based models for liquid sounds[END_REF]. Similarly, the initial parameters of 100 noisy and/or modal impacts are set to precomputed values, previously extracted from rain sound samples so as to reproduce "plausible" drop sounds. At run-time, impacts are synthesized in real time from their initial synthesis parameters. Integration of the rain user controls within the synthesis process is illustrated by the following pseudocode:

1: function processRain 2:
for each frame l do 3: 4:

// Drops 5:

if rand()< RateW ater then 6:

triggerOneChirpedImpact(rand().GainW ater) 7:

if rand()< RateSolids then 8:

triggerOneModalImpact(rand().GainSolids) 9:

if rand()< RateLeaves then 10:

triggerOneNoisyImpact(rand().GainLeaves) 11: 12:

// Background noise 13:

for subband i = 1 → 32 do 14: a = a i . GainBackground 15:

setEqualizedNoise subband(i, a) 16:

end for 17: 18:

end for 19: end function where rand() is a random number uniformly distributed between 0 and 1, the three trigger functions synthesize impacts with the given amplitude, and setEqualizedNoise subband(i, a) synthesizes the i th subband of the equalized noise atom with amplitude a.

Fire sound model

The fire sound is synthesized as a combination of noisy impact atoms to simulate crackling, and equalized noise to simulate the combustion (flames) noise.

Noisy impact parameters (i.e., subband amplitudes and decays) were defined to approximate real crackling sounds. Due to the complexity of these signals which are noisy and non-stationary, manual intervention was required to set the range of plausible parameters (as for noisy raindrop sounds). Five prototype spectral envelopes with eight ERB subbands were extracted from real-world crackling sound examples, along with three amplitude decays representing three categories of crack sizes: big, medium and small. For simplicity, a single decay is used in the eight subbands of each noisy impact.

To reproduce combustion noise, the 32 subband amplitudes a i of the equalized noise are extracted from a fire sound sample (as described in [START_REF] Verron | Analysis/synthesis and spatialization of noisy environmental sounds[END_REF]) and averaged over time to get a constant spectral envelope.

For real-time synthesis, 100 noisy impacts are initialized with one of the precomputed parameter sets. Then the user controls GainCrackling and RateCrackling to set respectively the maximum gain and the probability of crackling per unit-time. The user-control GainCombustion sets the gain of the combustion noise. A low frequency noise b(t) is also introduced to modulate the energy in the first four subbands, to increase the variations of the sound and continuously reproduce changing flame sizes. This modulation can be efficiently achieved by filtering a white noise by a low-pass filter with a very low cutoff frequency (around 1Hz) as suggested in [START_REF] Farnell | Designing sound[END_REF]. The following pseudo-code illustrates the fire synthesis process:

1: function processFire 2:
for each frame l do 3: 4:

// Crackling 5:

if rand()< RateCrackling then 6:

triggerOneNoisyImpact(rand().GainCrackling) 7: 8:

// Combustion noise 9:

b(l) =lowPass(rand()) // random modulation 10:

for subband i = 1 → 4 do 11: a = a i . GainCombustion . (1 + b(l)) 12:
setEqualizedNoise subband(i, a) 13:

end for 14:

for subband i = 5 → 32 do 15: a = a i . GainCombustion 16:

setEqualizedNoise subband(i, a) 17:

end for 18: 19:

end for 20: end function

Wind sound model

A signal model based on time-varying bandpass filters for simulating wind sounds was proposed in [START_REF] Farnell | Designing sound[END_REF]. We adapted this model to our architecture, producing a wind sound by the addition of several band-limited noises that simulate wind resonances. Each band-limited noise atom is defined by its timevarying spectral envelope:

X 5 (f) = A(t) if |f -F (t)| < B(t) 2 A(t)e -α(t) |f -F (t)|-B(t) 2 otherwise
where F (t) is the center frequency, A(t) the gain, B(t) the bandwidth and α(t) the filter slope. The amplitude A and center frequency F of each atom are set in real time by a single user control W indSpeed as follows:

A(t) = A i . W indSpeed . 1 + b(t -τ i)
where A i and τ i are constant values (different for each atom i) that represent the relative amplitude and propagation time to the listener, and

F (t) = C i . A(t) + F i
where F i and C i are respectively the frequency offset and deviation constants. This way, the center frequency and amplitude of the band-limited components are proportional to the W indSpeed user control. The modulation b(t) is a low frequency noise with a cutoff frequency around 1 Hz, that introduces plausible variations in the wind sound, as described for the fire combustion noise.

To reproduce different types of wind sounds, from broadband (e.g., wind in the trees) to narrowband phenomena (e.g., wind whistling in a window) the bandwidth and slope of each atom can be adapted intuitively by the sound designer via the W indT ype user control. This control linearly interpolates between several preset values previously created for

[α i , B i , A i , τ i , C i , F i].
The sound of rustling leaves in the trees is also simulated, as a combination of noisy impacts and equalized noise (to simulate a huge number of leaves) parameterized with the method described above for rain background noise. By default RateW indLeaves and GainW indLeaves (i.e., rate and gain of noisy impacts and equalized noise) are set proportionally to W indSpeed. The general synthesis process is illustrated by the following pseudo-code:

1: function processWind 2:
for each frame l do 3: 4:

// Wind band-limited noises 5:

b(l) =lowPass(rand()) // random modulation 6:

for each noise i do 7: with 3D audio modules in the frequency domain, following the efficient approach described in [START_REF] Verron | A 3D Immersive Synthesizer for Environmental Sounds[END_REF]. The complete synthesis/spatialization pipeline is depicted in figure 2 and each part of the process is described in more detail below.

[α i , B i , A i , τ i , C i , F i] = 8: interpolatePresets(i,W indT ype) 9: A = A i . W indSpeed . (1 + b(l -τ i)) 10: F = C i . A

Time-frequency synthesis

The synthesis of each source is realized by blocks in the frequency domain. At each block l, an approximation of the short-time Fourier transform of the atoms is built by summing the deterministic S l D or stochastic S l S contributions. Real and imaginary parts of the deterministic shorttime spectrum (STS) are computed by convolving the theoretical ray spectrum formed by the M sinusoidal components of amplitude a l m , frequency f l m and phase Φ l m , with the "spectral motif" W which is the Fourier transform of the synthesis window w[n] as described in [START_REF] Rodet | Spectral envelopes and inverse fft synthesis[END_REF]:

S l D [k] = M m=1 a l m e jΦ l m W (k N -f l m) (1)
N being the number of frequency bins (i.e., the synthesis window size) and k the discrete frequency index (i.e., W [k] = W (k N)). We use two synthesis window sizes N in parallel to produce the impulsive impacts (N = 128) and the continuous atoms (N = 1024). The real and imaginary parts of the stochastic STS are computed by summing the subband spectral envelopes of the atoms, multiplying by two noise sequences, and circularly convolving the result with the spectral motif W . The final STS X l [k] is obtained for each source by summing the deterministic and stochastic contributions in the frequency domain.

Integrated spatialization

The architecture of the synthesizer is designed for easily extending the perceived width of sound sources. Rain, fire and wind sounds are formed by a collection of secondary sources spatialized around the listener. Two approaches are used to distribute the synthesized atoms into secondary sources STS. Impulsive atoms (i.e., chirped, modal and noisy impacts) correspond to phenomena typically localized in space (i.e., raindrop sounds and fire crackling). For this reason, each of them is integrated into one single STS. On the other hand, continuous noisy atoms (i.e., band-limited and equalized noises) correspond to naturally diffuse phenomena (i.e., rain background noise, fire combustion noise and wind band-limited noises). Consequently, decorrelated copies of these atoms are integrated into all the secondary sources STS, producing a diffuse noise around the listener. The decorrelation is achieved by using different sequences of noise when building the stochastic component of each atom.

A supplementary STS, common for all sources is provided for the reverberation, which is efficiently implemented by a multichannel Feedback Delay Network [START_REF] Jot | Digital delay networks for designing artificial reverberators[END_REF]. Spatialization of each secondary source is based on a multichannel encoding/decoding scheme (see [START_REF] Verron | A 3D Immersive Synthesizer for Environmental Sounds[END_REF] for more details). The C-channel encoding consists in applying real-valued spatial gains (g 1 , . . . , g C) to the STS X l i [k], simulating the position (θ l i , Ψ l i) of the i th point source. The gains are computed with an amplitude-based panning approach such as VBAP [START_REF] Pulkki | Virtual sound source positioning using vector base amplitude panning[END_REF] or Ambisonics [START_REF] Malham | 3-d sound spatialization using ambisonic techniques[END_REF][START_REF] Daniel | Représentation de Champs Acoustiques, Application à la Transmission et à la Reproduction de Scènes Sonores Complexes dans un Contexte Multimédia[END_REF]. The encoded multichannel STS are then summed together, channel by channel, producing a single block Y l with Figure 2: Architecture of the synthesis/spatialization engine. Deterministic and stochastic components of the atoms are added in the frequency domain to form a collection of spectra (STS) that are spatialized around the listener (spatial encoding/decoding with C intermediate channels). Inverse fast Fourier transform (IFFT) and overlap-add (OLA) are performed to get the multichannel signal for an arbitrary setup of P loudspeakers (or headphones). A supplementary short-time spectrum is dedicated to the reverberation, common for all sources in the scene and implemented by a Feedback Delay Network (FDN) in the time domain (1 input channel, P output channels).

C channels:

Y l c [k] = I i=1 g c (θ l i , Ψ l i)X l i [k]
where g c is the c th position-dependent gain and I is the total number of sources. Spatial decoding performs linear combinations of the channels of Y l to get the signals for the P loudspeakers. It depends on the chosen panning method and on the loudspeaker setup. Finally, the decoded channels are inverse fast Fourier transformed and overlap-added to reconstruct the synthetic signals x p [n] for the P output channels:

x p [n] = ∞ l=-∞ g p (θ l i , Ψ l i)w[n-lL] s l D [n-lL]+s l S [n-lL]
where s l D and s l S are the sum of all atomic components (deterministic and stochastic) at block l and L is the synthesis hop size. For rendering over headphones (P = 2) we use Head Related Transfer Functions (HRTF) from the Listen1 database to simulate C = 18 virtual loudspeakers in the spatial decoding stage.

Coupling with particle systems

The advantage of sound modeling compared to sample-based approaches lies in the flexibility of transformations offered by the synthesis parameters. Stochastic control of sound atoms were defined in section 3 to provide high-level physically-inspired manipulation of the rain, fire and wind phenomena.

Here we present the mapping of audio and graphics parameters for particle-based effects.

Principles of particle systems

At each frame of the animation sequence, the basic steps of a particle system are as follows [START_REF] Reeves | Particle Systems -a Technique for Modeling a Class of Fuzzy Objects[END_REF]: new particles are generated with a set of attributes, particles that have existed for a certain amount of time are destroyed, and remaining particles are transformed and moved according to their dynamic attributes. Initial attributes of particles are their position, velocity and acceleration, along with their size, color, transparency, shape and lifetime. To change the dynamics and appearance of the particle system, the designer has access to a set of controls that affect the mean m and maximum deviation δ of particle initial attributes. Typically, a particle attribute p ∈ R N is defined as:

p = m + rand().δ
where m and δ ∈ R N (respectively the mean and maximum deviation) are the designer controls, while rand() is a random number uniformly distributed between -1 and 1. Simple uniform stochastic processes have the advantage of being intuitive to manipulate.

As an example, if the designer sets m = [10, 0, 0] and δ = [0.5, 0.5, 0.5] for the initial position parameter, then the particles are randomly created inside a unit cube centered at [10, 0, 0]. With these simple principles, particle systems are used as real-time building components for a wide range of environmental phenomena. The size and shape of each particle can be designed to approximate individual raindrops to simulate complex rain environments [START_REF] Garg | Photorealistic rendering of rain streaks[END_REF][START_REF] Wang | Real-time rendering of realistic rain (msr-tr-2006-102)[END_REF][START_REF] Tatarchuk | Artist-directable real-time rain rendering in city environments[END_REF][START_REF] Tariq | Rain[END_REF][START_REF] Puig-Centelles | Creation and control of rain in virtual environments[END_REF]. Similarly, flame and smoke particles are used to simulate fire [START_REF] Gundersen | Level of Detail for Physically Based Fire[END_REF][START_REF] Horvath | Directable, highresolution simulation of fire on the GPU[END_REF][START_REF] Zhaohui | Realistic fire simulation: A survey[END_REF] and leaf-like particles to simulate wind [START_REF] Yi | Ticker Tape: A Scalable 3D Particle System with Wind and Air Resistance[END_REF].

Audio/graphics controls

To decrease computational cost, particle systems often do not provide collision detection for individual particles. For this reason we do not use such information for coupling audio and graphics, and focus on high-level manipulations of sound and graphics components. This approach leads to flexible audio/graphics controls that are suitable for practical artistic scenarios.

Rain Intensity In our implementation, rain is produced by particles with initial positions randomly distributed at the top of the virtual world (concentric circles around the player) with vertical initial velocities. The RainIntensity parameter dynamically controls the number of graphics particles (raindrops) emitted by the particle system per unit-time (particle spawn rate). A linear mapping between RainIntensity and the rain sound parameters provides a simple way to match graphics and sound rendering. Specifically, RainIntensity is linked to the raindrop rate via RateW ater, RateSolids and RateLeaves, along with their gain GainW ater, GainSolids and GainLeaves. It also controls the background noise level via GainBackground (see section 3.1). For more flexibility the mapping can be edited by the sound designer to achieve the desired result (piece-wise linear mapping, exponential, etc.).

The expected number of drops falling on water, leaves or solids can be set separately, which allows the specification of zones with different characteristics (e.g., more water or more foliage).

Fire Intensity For the fire simulation, a bunch of flame-like and smoke-like particles are projected above the fireplace, with varying initial positions and velocities. F ireIntensity controls the spawn rate of these particles (i.e., the expected number of particles per unit-time). Simultaneously, we map this parameter to control in real time the rate and gain of crackling via RateCrackling and GainCrackling and the gain of flame noise via GainCombustion (see section 3.2). As for the rain, the mapping can be edited by the designer to adjust the desired behavior. The joint audio/graphics control is illustrated in figure 3. Wind Speed In our system, wind is simulated by leaf-like particles moving around the player. The parameter W indSpeed controls the spawn rate and velocity over the lifetime of the particles. Additionally, it controls the wind sound model by changing the resonance frequency and amplitude of the band-limited noise atoms (see section 3.3). To improve the simulation, the trees in the scene are also slightly moved with the same average wind speed.

Implementation

An interactive scene with rain, fire and wind was designed to illustrate the audio/graphics interactions (see figure 4). We used the UDK2 game engine for graphics rendering, while sound rendering was performed with our custom synthesis/spatialization engine (see section 4) implemented as a Max3 external library. Network communication between the graphics and sound engines was realized with the UD-KOSC4 library [START_REF] Hamilton | UDKOSC : An Immersive Musical Environment[END_REF][START_REF] Hamilton | Multi-modal musical environments for mixed-reality performance[END_REF], allowing the two engines to run on separate machines. High-level audio/graphics controls were edited by the designer and saved as automation parameters in the game engine. At runtime, these controls and the position of sound sources relative to the player are sent in real time (via UD-KOSC functions) to the sound engine (see figure 5). sends high-level designer controls (e.g., fire intensity and position) at the frame rate Fr = 30 Hz. For specific effects, the audio engine may also compute modulation parameters (e.g., flame energy) that are sent back to update the graphics.

Graphics Engine Sound Engine

Spatial sound distribution

We use two approaches for simulating spatial properties of sound sources in the virtual environment: localized volumetric sound sources, such as fire or wind in the trees are simulated as collections of point-like sources while completely diffuse sources like background wind and rain are created as collections of plane waves attached to the listener. These two strategies are illustrated in figure 6. Point-like sources and plane waves are both simulated with the technique described in section 4.

To compose a scene, the sound designer attaches localized sources to objects in the virtual environment. Several point-like sources can be attached together to form a volumetric source (e.g., a fire, wind in a tree). The location of each point-like source is continuously updated according to the listener position and orientation. The source-player distance d is simulated by a gain 1 d that attenuates the direct sound (not the reverberation). On the other hand, diffused sources (surrounding sounds) are simulated as a sum of eight plane waves, automatically distributed around the player. The plane wave analogy comes from the fact that surrounding sounds are virtually at an infinite distance from the listener and thus have no distance attenuation. The eight plane waves incident directions are evenly positioned on a horizontal circle, and their gain is weighted according to the desired source width as proposed in [START_REF] Verron | A 3D Immersive Synthesizer for Environmental Sounds[END_REF]. Surrounding sounds are attached to the player, i.e., they follow the player's position and orientation (all plane waves have a fixed orientation in the player's coordinate system). Consequently their position (orientation and distance) does not need to be updated in real time, saving some computation time compared to volumetric sources.

Several controls allow the sound designer to adjust the perceived width of volumetric and surrounding sounds (please see [START_REF] Verron | A 3D Immersive Synthesizer for Environmental Sounds[END_REF] for more details on the width gain computation). RainW idth sets the angular distribution of rain components around the listener: individual raindrops are randomly distributed in the plane waves, while background noise is duplicated. F ireW idth sets the spatial distribution of crackling and combustion noise among their pointlike sources. Finally W indW idth sets the spreading of band-limited noises in the wind plane waves.

Conclusion and future work

Atomic signal modeling of environmental sounds has been presented for the generation of audio in interactive applications. The proposed synthesizer is able to generate realistic sounds evoking a wide variety of phenomena existing in our natural environment. It provides an accurate tool to sonify complex scenes composed of several sound sources in 3D space. The position and the spatial extension of each source are dynamically controllable. High-level intuitive controls have been presented for simultaneous transformations of sound and graphics in interactive applications. Our approach results in a strong interaction between graphics and sound which increases the immersion in the scene. Demonstration videos are available online [22].

The main limitation of this study is the absence of a fully automatic analysis method to extract the synthesis parameters from recorded sounds. Currently the sound designer can modify the parameters of the sound models to approximate target sounds. Further research is needed to automatically decompose a given sound sample (provided by the sound designer) as a set of atomic elements. This decomposition would allow independent control of atom distribution in time and space, for high-level transformation of the original sound.

Automatic generation of soundscapes is another interesting research direction. For the moment, synthesis parameters (i.e., RainIntensity, FireIntensity and WindSpeed) are manually controlled by the designer, which allows him to produce the desired behavior. It would be interesting to provide a fully automatic weather system, where the correlation between each element could be specified by simple rules.

As an example, the wind speed would influence fire intensity, rain intensity would be inversely proportional to fire intensity, etc. The synthesizer proposed in this paper is a good starting point for such research.

Figure 3 :

 3 Figure 3: Audio/graphics high-level control of a fire.The control Intensity changes the rate and gain of noisy impacts, and the combustion noise of the fire sound model. Simultaneously, it controls the flame/smoke particle spawn rate for the graphics simulation.

Figure 4 :

 4 Figure 4: Interactive scene with fire, wind and rain. Graphics are generated with UDK 2 and audio with custom external libraries implemented for Max 3 . Bidirectional communication between the audio and graphics engines is set with UDKOSC 4 .

Figure 5 :

 5 Figure 5: Audio/graphics interactions. The graphics engine

Figure 6 :

 6 Figure 6: Spatial distribution of sound sources in the virtual environment. Left: localized sounds (e.g., fire) are produced as a collection of point sources (spherical waves) represented as white circles. Right: diffuse sounds (e.g, rain and wind backgrounds) are simulated by plane waves with fixed incoming directions surrounding the player.

Table 1 :

 1 In summary the rain, fire and wind models require five classes of sound atoms, whose low-level parameters are listed in table 1. These atoms are the core components of the environmental sound synthesizer.Rain, fire and wind sounds are created as a combination of time-frequency atoms x(t). Each atom is modeled as a sum of sinusoidal and noisy components, noted respectively s D (t) and s S (t). This allows the use of efficient synthesis algorithms based on the inverse fast Fourier transform (IFFT) to generate the atoms. Additionally, IFFT synthesis is combined a 1 ...a 8] subband amplitudes [α 1 ...α 8] subband decays The five classes of atoms used for the sound synthesis models, with their respective parameters.

		+ F i
	11:	setBandlimitedNoise(A, F, α i , B i)
	12:	end for
	13:	
	14:	// Rustling leaves
	15:	if rand()< RateW indLeaves then
	16:	triggerOneNoisyImpact(rand().GainW indLeaves)
	17:	for subband i = 1 → 32 do
	18:	a = a i . GainW indLeaves
	19:	setEqualizedNoise subband(i, a)
	20:	end for
	21:	
	22:	end for
	23: end function
	4 Spatialized synthesis engine

[

http://www.ircam.fr/equipes/salles/listen

www.UDK.com

www.cycling74.com

https://ccrma.stanford.edu/wiki/UDKOSC

Acknowledgements

This work was partially funded by the EU IP project VERVE (www.verveconsortium.org). Part of this work has been done during the first author's Ph.D. [45] at Orange Labs and CNRS-LMA. We thank G. Pallone, M. Aramaki, R. Kronland-Martinet and C. Gondre for fruitful contributions to this work, and the anonymous reviewers for helpful comments.