
HAL Id: hal-00759818
https://hal.science/hal-00759818v2

Submitted on 29 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Procedural audio modeling for particle-based
environmental effects

Charles Verron, George Drettakis

To cite this version:
Charles Verron, George Drettakis. Procedural audio modeling for particle-based environmental effects.
133rd AES Convention, Oct 2012, San Francisco, United States. �hal-00759818v2�

https://hal.science/hal-00759818v2
https://hal.archives-ouvertes.fr

Procedural audio modeling for particle-based environmental effects

Charles Verron, George Drettakis
REVES-INRIA, Sophia-Antipolis, France

Draft for 133rd AES Convention, October 2012

1 abstract

We present a sound synthesizer dedicated to particle-
based environmental effects, for use in interactive vir-
tual environments. The synthesis engine is based
on five physically-inspired basic elements which we
call sound atoms, that can be parameterized and
stochastically distributed in time and space. Based
on this set of atomic elements, models are pre-
sented for reproducing several environmental sound
sources. Compared to pre-recorded sound samples,
procedural synthesis provides extra flexibility to ma-
nipulate and control the sound source properties
with physically-inspired parameters. In this pa-
per, the controls are used to simultaneously mod-
ify particle-based graphical models, resulting in syn-
chronous audio/graphics environmental effects. The
approach is illustrated with three models, that are
commonly used in video games: fire, wind, and
rain. The physically-inspired controls simultaneously
drive graphical parameters (e.g., distribution of par-
ticles, average particles velocity) and sound parame-
ters (e.g., distribution of sound atoms, spectral modi-
fications). The joint audio/graphics control results in
a tightly-coupled interaction between the two modal-
ities that enhances the naturalness of the scene.

2 Introduction

In the last two decades advances in all fields of com-
puter graphics (i.e., modeling, animation, rendering
and more recently imaging) has resulted in impres-
sive advances in realism, even for real-time virtual
environments. Paradoxically, sound in virtual envi-
ronments is still usually based on pre-recorded sound
samples. Procedural sound synthesis is an attractive
alternative to increase the sense of realism in interac-
tive scenes [1]. Compared to pre-recorded sounds, it
allows interactive manipulations that would be diffi-
cult (if not impossible) otherwise. In particular, pro-
cedural audio parameters can be linked to motion

parameters of graphics objects [2, 3] to enhance the
sound/graphics interactions. Nevertheless, the use of
sound synthesis is still limited in current video games,
probably because of three major challenges that are
difficult to fulfill simultaneously: synthesis quality
should be equivalent to pre-recorded sounds, synthe-
sis should offer flexible controls to sound designers,
and its computational cost should satisfy real-time
constraints.

Interactive
multimodal
3D scene

Image
rendering

Sound
rendering

Mapping
High-level
designer
controls

Synthesis
parameters
Particle Rate

Velocity
Trajectory

...

 Synthesis
parameters

 Atom Rate
Gain

Frequency
...

Sound modeling

Graphics modeling

Figure 1: Environmental sound synthesis for particle-based

environmental effects. A mapping between graphics and sound

parameters allows tightly-coupled audio/graphics interactions.

Parametric sound synthesis techniques can be de-
composed into two main families: physical models,
aiming at simulating the physics of sound sources,
and signal models aiming at reproducing perceptual
effects independently of the source [4]. For environ-
mental sounds, physical approaches are of great in-
terest. Some authors have successfully used physical
models to reproduce specific environmental sounds
such as wind [5] fire [6] rolling [7] or liquids [8]. Nev-
ertheless, the physics of these phenomena is often
complicated. It requires the knowledge of various ob-
jects’ characteristics and their possible interactions
with surrounding gases, liquids and solids. A purely
physical approach for sound synthesis is currently
impossible in video games, due to the difficulty of

1

designing a general physical model for a wide vari-
ety of environmental sounds, in addition to the high
computational cost. On the other hand, studies on
environmental sounds [9] suggest that synthetic sig-
nals matching relatively simple properties could give
good results in terms of perceived realism.

In the computer graphics community, many mod-
els have been proposed for generating environmen-
tal effects (deformable objects, liquids, smoke, etc.)
leading to impressive results (see e.g., [10] for a re-
view). Depending on the approach, the computa-
tion cost is sometimes too high to satisfy real-time
constraints. An efficient technique was introduced
in [11] to simulate “fuzzy” phenomena like fire and
smoke, by using dynamic collections of particles.
The designer has access to meaningful parameters
(e.g., number of particles, mean velocity) to control
stochastic processes that define the evolution of par-
ticles over time. Recent efficient GPU and parallel
implementations allow the generation of up to mil-
lions of particles in real time [12, 13]. Physical in-
formation is also included to model realistic move-
ments of particles, and particle interactions [10]. The
approach has been successfully applied for a wide
range of phenomena [14, 15, 16, 17] (e.g., water,
clouds, smoke, electricity, explosions, crowds, magic
etc.) and is still very popular in current video games
[18, 19]. Curtis Roads noticed that particle systems
share many similarities with granular sound synthe-
sis, which models a sound as a collection of short
audio grains distributed in time and space [20]. To
our knowledge this similarity has not yet been ex-
ploited to propose a sound synthesizer dedicated to
particle-based environmental effects.

In this paper we propose a signal-based synthe-
sis approach, and focus on the perceptual control of
the generated sounds. Since most particle systems
in games are based on simple stochastic laws, the as-
sociated sound models should not rely on physical
solvers delivering collision detection, fluid dynamics,
etc. Instead, we follow a “physically informed” syn-
thesis approach [21, 1] and propose an efficient imple-
mentation, based on an atomic representation, suit-
able for several types of phenomena and in particular
rain, fire and wind. This approach results in plausi-
ble sound quality and has the advantage of fulfilling
real-time constraints. Furthermore, the sound mod-
els offer intuitive controls to sound designers, making
the synthesizer suitable for practical artistic scenar-
ios. A mapping is described to connect the sound
synthesis parameters to particle systems and produce
relevant audio/graphics interactions. The approach
is illustrated in figure 1. It has been validated with
several examples (see the online videos accompanying

this paper [22]) in a realtime implementation.
The paper is divided into three parts. First we

propose sound synthesis models based on five classes
of atoms, and their parameterization to simulate
rain, fire and wind effects. Then the real-time syn-
thesis and spatialization pipeline is described. In the
third part, we show how the sound models are con-
nected to particles systems for producing multimodal
environmental effects.

3 Synthesis models

In his pioneering work on synthesis and classifica-
tion of environmental sounds [23] Gaver proposed
three main categories depending on the physics of the
source: vibrating solids, gasses and liquids. Even if
these sounds refer to a wide range of physical phe-
nomena, their acoustic morphology calls for com-
mon signal characteristics, allowing for a granular-
like synthesis approach. Five “sound atoms” were
defined in [24] as primitives to reproduce a variety
of environmental sounds in the three categories de-
fined by Gaver. In this paper, we rely on this set of
atoms to reproduce the micro structure of rain, fire
and wind sounds.

3.1 Rain sound model

Rain sounds result from drops falling on different sur-
faces (leaves, solid floor, water...) producing a wide
variety of impact sounds [1]. Depending on the sur-
face hit by the drops, three main types of impacts
may be distinguished. Drops falling on water pro-
duce bubble sounds [25] that can be simulated by
a chirped sinusoid (the chirped impact atom) with
amplitude a and exponential decay α:

x1(t) = a sin
(
2π

∫ t

0

f(ν)dν
)
e−αt

where the instantaneous frequency f varies linearly
over time.

Alternatively, drops falling on resonant surfaces
(e.g., plates, windows...) trigger an oscillating sys-
tem with fixed resonant frequencies. The resulting
harmonic impact sounds can be simulated by a modal
impact atom

x2(t) =

M∑
m=1

am sin
(
2πfmt

)
e−αmt

where fm are the modal frequencies of the impacted
object and M is the number of simulated compo-
nents. The amplitudes am depend on the excitation

2

point, and the decay factors αm are characteristic of
the material [26].

Drops falling on rigid or deformable objects (e.g.,
stone, leaves) that exhibit a noisy response (high
modal density) tend to produce a brief noisy sound
which is perceptually different from bubbles and si-
nusoidal impacts. Such sounds are efficiently repro-
duced by a noisy impact atom, which is a sum of 8
contiguous subbands of noise si(t), evenly spaced on
the Equivalent Rectangular Bandwidth (ERB) scale,
with amplitude ai and exponential decay αi:

x3(t) =

8∑
i=1

aisi(t)e
−αit

Additionally, an equalized noise atom is used to
create a rain background noise

x4(t) =

32∑
i=1

ai(t)si(t)

where si(t) are 32 contiguous subbands of noise
evenly spaced on the ERB scale, with amplitudes
ai(t). This allows the simulation of a huge number
of simultaneous drops with a low computational cost.
The 32-subband amplitudes are extracted from rain
sound samples with the method described in [27].
The rain sample is passed through a 32 ERB sub-
band filterbank, then ai is set as the time average
energy in subband i.

Atoms x1, x2, x3 and x4 produce the basic
microstructure of the rain sound model. They
are distributed over time and space to simulate a
wide diversity of rain situations. Three user con-
trolsGainWater, GainSolids andGainLeaves spec-
ify the maximum level of drops falling on water,
solids and leaves respectively. Similarly RateWater,
RateSolids and RateLeaves set the probability of
falling drops per unit-time (i.e., per frame). An addi-
tional user control GainBackground sets the global
gain of the rain background noise.

For real-time synthesis, the synthesis parameters
are initialized for a population of 100 chirped impacts
with different frequencies and amplitude, following
the laws proposed in [25]. Similarly, the initial pa-
rameters of 100 noisy and/or modal impacts are set
to precomputed values, previously extracted from
rain sound samples so as to reproduce “plausible”
drop sounds. At run-time, impacts are synthesized
in real time from their initial synthesis parameters.
Integration of the rain user controls within the syn-
thesis process is illustrated by the following pseudo-
code:

1: function processRain

2: for each frame l do
3:
4: // Drops
5: if rand()< RateWater then
6: triggerOneChirpedImpact(rand().GainWater)

7: if rand()< RateSolids then
8: triggerOneModalImpact(rand().GainSolids)

9: if rand()< RateLeaves then
10: triggerOneNoisyImpact(rand().GainLeaves)

11:
12: // Background noise
13: for subband i = 1→ 32 do
14: a = ai . GainBackground
15: setEqualizedNoise subband(i, a)
16: end for
17:
18: end for
19: end function

where rand() is a random number uniformly dis-
tributed between 0 and 1, the three trigger func-
tions synthesize impacts with the given amplitude,
and setEqualizedNoise subband(i, a) synthesizes the
ith subband of the equalized noise atom with ampli-
tude a.

3.2 Fire sound model

The fire sound is synthesized as a combination of
noisy impact atoms to simulate crackling, and equal-
ized noise to simulate the combustion (flames) noise.

Noisy impact parameters (i.e., subband ampli-
tudes and decays) were defined to approximate real
crackling sounds. Due to the complexity of these sig-
nals which are noisy and non-stationary, manual in-
tervention was required to set the range of plausible
parameters (as for noisy raindrop sounds). Five pro-
totype spectral envelopes with eight ERB subbands
were extracted from real-world crackling sound ex-
amples, along with three amplitude decays represent-
ing three categories of crack sizes: big, medium and
small. For simplicity, a single decay is used in the
eight subbands of each noisy impact.

To reproduce combustion noise, the 32 subband
amplitudes ai of the equalized noise are extracted
from a fire sound sample (as described in [27]) and
averaged over time to get a constant spectral enve-
lope.

For real-time synthesis, 100 noisy impacts are
initialized with one of the precomputed parameter
sets. Then the user controls GainCrackling and
RateCrackling to set respectively the maximum
gain and the probability of crackling per unit-time.
The user-control GainCombustion sets the gain of
the combustion noise. A low frequency noise b(t)
is also introduced to modulate the energy in the
first four subbands, to increase the variations of the
sound and continuously reproduce changing flame

3

sizes. This modulation can be efficiently achieved
by filtering a white noise by a low-pass filter with a
very low cutoff frequency (around 1Hz) as suggested
in [1]. The following pseudo-code illustrates the fire
synthesis process:

1: function processFire
2: for each frame l do
3:
4: // Crackling
5: if rand()< RateCrackling then
6: triggerOneNoisyImpact(rand().GainCrackling)

7:
8: // Combustion noise
9: b(l) =lowPass(rand()) // random modulation

10: for subband i = 1→ 4 do
11: a = ai . GainCombustion . (1 + b(l))
12: setEqualizedNoise subband(i, a)
13: end for
14: for subband i = 5→ 32 do
15: a = ai . GainCombustion
16: setEqualizedNoise subband(i, a)
17: end for
18:
19: end for
20: end function

3.3 Wind sound model

A signal model based on time-varying bandpass fil-
ters for simulating wind sounds was proposed in
[1]. We adapted this model to our architecture,
producing a wind sound by the addition of several
band-limited noises that simulate wind resonances.
Each band-limited noise atom is defined by its time-
varying spectral envelope:

X5(f)=

{
A(t) if |f − F (t)|< B(t)

2

A(t)e−α(t)
(
|f−F (t)|−B(t)

2

)
otherwise

where F (t) is the center frequency, A(t) the gain,
B(t) the bandwidth and α(t) the filter slope. The
amplitude A and center frequency F of each atom are
set in real time by a single user control WindSpeed
as follows:

A(t) = Ai . WindSpeed .
(
1 + b(t− τi)

)
where Ai and τi are constant values (different for
each atom i) that represent the relative amplitude
and propagation time to the listener, and

F (t) = Ci . A(t) + Fi

where Fi and Ci are respectively the frequency off-
set and deviation constants. This way, the center
frequency and amplitude of the band-limited compo-
nents are proportional to the WindSpeed user con-
trol. The modulation b(t) is a low frequency noise

with a cutoff frequency around 1 Hz, that introduces
plausible variations in the wind sound, as described
for the fire combustion noise.

To reproduce different types of wind sounds, from
broadband (e.g., wind in the trees) to narrowband
phenomena (e.g., wind whistling in a window) the
bandwidth and slope of each atom can be adapted
intuitively by the sound designer via the WindType
user control. This control linearly interpolates be-
tween several preset values previously created for
[αi, Bi, Ai, τi, Ci, Fi].

The sound of rustling leaves in the trees is also
simulated, as a combination of noisy impacts and
equalized noise (to simulate a huge number of leaves)
parameterized with the method described above for
rain background noise. By default RateWindLeaves
and GainWindLeaves (i.e., rate and gain of noisy
impacts and equalized noise) are set proportionally
to WindSpeed. The general synthesis process is il-
lustrated by the following pseudo-code:

1: function processWind
2: for each frame l do
3:
4: // Wind band-limited noises
5: b(l) =lowPass(rand()) // random modulation
6: for each noise i do
7: [αi, Bi, Ai, τi, Ci, Fi] =
8: interpolatePresets(i,WindType)
9: A = Ai . WindSpeed . (1 + b(l − τi))

10: F = Ci . A+ Fi

11: setBandlimitedNoise(A,F, αi, Bi)
12: end for
13:
14: // Rustling leaves
15: if rand()< RateWindLeaves then
16: triggerOneNoisyImpact(rand().GainWindLeaves)

17: for subband i = 1→ 32 do
18: a = ai . GainWindLeaves
19: setEqualizedNoise subband(i, a)
20: end for
21:
22: end for
23: end function

In summary the rain, fire and wind models require
five classes of sound atoms, whose low-level parame-
ters are listed in table 1. These atoms are the core
components of the environmental sound synthesizer.

4 Spatialized synthesis engine

Rain, fire and wind sounds are created as a com-
bination of time-frequency atoms x(t). Each atom
is modeled as a sum of sinusoidal and noisy com-
ponents, noted respectively sD(t) and sS(t). This al-
lows the use of efficient synthesis algorithms based on
the inverse fast Fourier transform (IFFT) to generate
the atoms. Additionally, IFFT synthesis is combined

4

Atom Parameters

Modal impact
am initial amplitudes

αm decays

fm frequencies

Noisy impact
[a1...a8] subband amplitudes

[α1...α8] subband decays

Chirped impact
f0 initial frequency

σ linear frequency shift

α decay

Band-limited noise

F (t) center frequency

B(t) bandwidth

α(t) filter slope

A(t) amplitude

Equalized noise [a1(t)...a32(t)] amplitudes

Table 1: The five classes of atoms used for the sound synthesis models, with their respective parameters.

with 3D audio modules in the frequency domain, fol-
lowing the efficient approach described in [28]. The
complete synthesis/spatialization pipeline is depicted
in figure 2 and each part of the process is described
in more detail below.

Time-frequency synthesis The synthesis of each
source is realized by blocks in the frequency domain.
At each block l, an approximation of the short-time
Fourier transform of the atoms is built by summing
the deterministic SlD or stochastic SlS contributions.
Real and imaginary parts of the deterministic short-
time spectrum (STS) are computed by convolving
the theoretical ray spectrum formed by the M si-
nusoidal components of amplitude alm, frequency f lm
and phase Φlm, with the “spectral motif” W which is
the Fourier transform of the synthesis window w[n]
as described in [29]:

SlD[k] =

M∑
m=1

alme
jΦl

mW (
k

N
− f lm) (1)

N being the number of frequency bins (i.e., the syn-
thesis window size) and k the discrete frequency in-
dex (i.e., W [k] = W (kN)). We use two synthesis
window sizes N in parallel to produce the impul-
sive impacts (N = 128) and the continuous atoms
(N = 1024). The real and imaginary parts of the
stochastic STS are computed by summing the sub-
band spectral envelopes of the atoms, multiplying by
two noise sequences, and circularly convolving the re-
sult with the spectral motif W . The final STS X l[k]
is obtained for each source by summing the determin-
istic and stochastic contributions in the frequency
domain.

Integrated spatialization The architecture of
the synthesizer is designed for easily extending the
perceived width of sound sources. Rain, fire and
wind sounds are formed by a collection of secondary
sources spatialized around the listener. Two ap-
proaches are used to distribute the synthesized atoms
into secondary sources STS. Impulsive atoms (i.e.,
chirped, modal and noisy impacts) correspond to
phenomena typically localized in space (i.e., raindrop
sounds and fire crackling). For this reason, each of
them is integrated into one single STS. On the other
hand, continuous noisy atoms (i.e., band-limited and
equalized noises) correspond to naturally diffuse phe-
nomena (i.e., rain background noise, fire combus-
tion noise and wind band-limited noises). Conse-
quently, decorrelated copies of these atoms are inte-
grated into all the secondary sources STS, producing
a diffuse noise around the listener. The decorrelation
is achieved by using different sequences of noise when
building the stochastic component of each atom.

A supplementary STS, common for all sources is
provided for the reverberation, which is efficiently
implemented by a multichannel Feedback Delay Net-
work [30]. Spatialization of each secondary source is
based on a multichannel encoding/decoding scheme
(see [28] for more details). The C-channel encod-
ing consists in applying real-valued spatial gains
(g1, . . . , gC) to the STS X l

i [k], simulating the position
(θli,Ψ

l
i) of the ith point source. The gains are com-

puted with an amplitude-based panning approach
such as VBAP [31] or Ambisonics [32, 33]. The en-
coded multichannel STS are then summed together,
channel by channel, producing a single block Y l with

5

Figure 2: Architecture of the synthesis/spatialization engine. Deterministic and stochastic components of the atoms are added

in the frequency domain to form a collection of spectra (STS) that are spatialized around the listener (spatial encoding/decoding

with C intermediate channels). Inverse fast Fourier transform (IFFT) and overlap-add (OLA) are performed to get the multi-

channel signal for an arbitrary setup of P loudspeakers (or headphones). A supplementary short-time spectrum is dedicated to

the reverberation, common for all sources in the scene and implemented by a Feedback Delay Network (FDN) in the time domain

(1 input channel, P output channels).

C channels:

Y lc [k] =

I∑
i=1

gc(θ
l
i,Ψ

l
i)X

l
i [k]

where gc is the cth position-dependent gain and I
is the total number of sources. Spatial decoding
performs linear combinations of the channels of Y l

to get the signals for the P loudspeakers. It de-
pends on the chosen panning method and on the
loudspeaker setup. Finally, the decoded channels are
inverse fast Fourier transformed and overlap-added
to reconstruct the synthetic signals xp[n] for the P
output channels:

xp[n] =

∞∑
l=−∞

gp(θ
l
i,Ψ

l
i)w[n−lL]

(
slD[n−lL]+slS [n−lL]

)
where slD and slS are the sum of all atomic compo-
nents (deterministic and stochastic) at block l and L
is the synthesis hop size. For rendering over head-
phones (P = 2) we use Head Related Transfer Func-
tions (HRTF) from the Listen1 database to simulate
C = 18 virtual loudspeakers in the spatial decoding
stage.

5 Coupling with particle sys-
tems

The advantage of sound modeling compared to
sample-based approaches lies in the flexibility of
transformations offered by the synthesis parameters.
Stochastic control of sound atoms were defined in sec-
tion 3 to provide high-level physically-inspired ma-
nipulation of the rain, fire and wind phenomena.
Here we present the mapping of audio and graphics
parameters for particle-based effects.

5.1 Principles of particle systems

At each frame of the animation sequence, the basic
steps of a particle system are as follows [11]: new par-
ticles are generated with a set of attributes, particles
that have existed for a certain amount of time are
destroyed, and remaining particles are transformed
and moved according to their dynamic attributes.
Initial attributes of particles are their position, ve-
locity and acceleration, along with their size, color,

1http://www.ircam.fr/equipes/salles/listen

6

transparency, shape and lifetime. To change the dy-
namics and appearance of the particle system, the
designer has access to a set of controls that affect the
mean m and maximum deviation δ of particle initial
attributes. Typically, a particle attribute p ∈ RN is
defined as:

p = m+ rand().δ

where m and δ ∈ RN (respectively the mean and
maximum deviation) are the designer controls, while
rand() is a random number uniformly distributed be-
tween -1 and 1. Simple uniform stochastic processes
have the advantage of being intuitive to manipulate.
As an example, if the designer sets m = [10, 0, 0] and
δ = [0.5, 0.5, 0.5] for the initial position parameter,
then the particles are randomly created inside a unit
cube centered at [10, 0, 0].

With these simple principles, particle systems are
used as real-time building components for a wide
range of environmental phenomena. The size and
shape of each particle can be designed to approxi-
mate individual raindrops to simulate complex rain
environments [34, 35, 36, 37, 38]. Similarly, flame and
smoke particles are used to simulate fire [39, 40, 41]
and leaf-like particles to simulate wind [42].

5.2 Audio/graphics controls

To decrease computational cost, particle systems of-
ten do not provide collision detection for individual
particles. For this reason we do not use such in-
formation for coupling audio and graphics, and fo-
cus on high-level manipulations of sound and graph-
ics components. This approach leads to flexible au-
dio/graphics controls that are suitable for practical
artistic scenarios.

Rain Intensity In our implementation, rain is pro-
duced by particles with initial positions randomly
distributed at the top of the virtual world (concen-
tric circles around the player) with vertical initial
velocities. The RainIntensity parameter dynami-
cally controls the number of graphics particles (rain-
drops) emitted by the particle system per unit-time
(particle spawn rate). A linear mapping between
RainIntensity and the rain sound parameters pro-
vides a simple way to match graphics and sound
rendering. Specifically, RainIntensity is linked
to the raindrop rate via RateWater, RateSolids
and RateLeaves, along with their gain GainWater,
GainSolids and GainLeaves. It also controls the
background noise level via GainBackground (see
section 3.1). For more flexibility the mapping can be
edited by the sound designer to achieve the desired
result (piece-wise linear mapping, exponential, etc.).

The expected number of drops falling on water, leaves
or solids can be set separately, which allows the spec-
ification of zones with different characteristics (e.g.,
more water or more foliage).

Fire Intensity For the fire simulation, a bunch
of flame-like and smoke-like particles are projected
above the fireplace, with varying initial positions and
velocities. FireIntensity controls the spawn rate of
these particles (i.e., the expected number of particles
per unit-time). Simultaneously, we map this param-
eter to control in real time the rate and gain of crack-
ling via RateCrackling and GainCrackling and the
gain of flame noise via GainCombustion (see section
3.2). As for the rain, the mapping can be edited by
the designer to adjust the desired behavior. The joint
audio/graphics control is illustrated in figure 3.

time (s)

fr
eq

(H
z)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
20

500

2k

6k

20k

−80

−60

−40

−20

0dB

Intensity IntensityIntensity

si
gn
al

Figure 3: Audio/graphics high-level control of a fire.

The control Intensity changes the rate and gain of noisy

impacts, and the combustion noise of the fire sound model.

Simultaneously, it controls the flame/smoke particle spawn

rate for the graphics simulation.

Wind Speed In our system, wind is simulated by
leaf-like particles moving around the player. The pa-
rameter WindSpeed controls the spawn rate and ve-
locity over the lifetime of the particles. Additionally,
it controls the wind sound model by changing the res-
onance frequency and amplitude of the band-limited
noise atoms (see section 3.3). To improve the simu-
lation, the trees in the scene are also slightly moved
with the same average wind speed.

7

Figure 4: Interactive scene with fire, wind and rain. Graph-

ics are generated with UDK2 and audio with custom external

libraries implemented for Max3. Bidirectional communication

between the audio and graphics engines is set with UDKOSC4.

5.3 Implementation

An interactive scene with rain, fire and wind was
designed to illustrate the audio/graphics interac-
tions (see figure 4). We used the UDK2 game engine
for graphics rendering, while sound rendering was
performed with our custom synthesis/spatialization
engine (see section 4) implemented as a Max3 ex-
ternal library. Network communication between the
graphics and sound engines was realized with the UD-
KOSC4 library [43, 44], allowing the two engines to
run on separate machines. High-level audio/graphics
controls were edited by the designer and saved as
automation parameters in the game engine. At run-
time, these controls and the position of sound sources
relative to the player are sent in real time (via UD-
KOSC functions) to the sound engine (see figure 5).

Graphics
Engine

 Sound
Engine

High-level controls

Modulations
Fr ~ 30 Hz Fr ~ 170 Hz

Figure 5: Audio/graphics interactions. The graphics engine

sends high-level designer controls (e.g., fire intensity and

position) at the frame rate Fr = 30 Hz. For specific effects,

the audio engine may also compute modulation parameters

(e.g., flame energy) that are sent back to update the graphics.

5.4 Spatial sound distribution

We use two approaches for simulating spatial prop-
erties of sound sources in the virtual environment:
localized volumetric sound sources, such as fire or
wind in the trees are simulated as collections of
point-like sources while completely diffuse sources
like background wind and rain are created as collec-
tions of plane waves attached to the listener. These
two strategies are illustrated in figure 6. Point-like
sources and plane waves are both simulated with the
technique described in section 4.

To compose a scene, the sound designer attaches
localized sources to objects in the virtual environ-
ment. Several point-like sources can be attached to-
gether to form a volumetric source (e.g., a fire, wind
in a tree). The location of each point-like source is
continuously updated according to the listener po-
sition and orientation. The source-player distance
d is simulated by a gain 1

d that attenuates the di-
rect sound (not the reverberation). On the other
hand, diffused sources (surrounding sounds) are sim-
ulated as a sum of eight plane waves, automatically
distributed around the player. The plane wave anal-
ogy comes from the fact that surrounding sounds are
virtually at an infinite distance from the listener and
thus have no distance attenuation. The eight plane
waves incident directions are evenly positioned on a
horizontal circle, and their gain is weighted according
to the desired source width as proposed in [28]. Sur-
rounding sounds are attached to the player, i.e., they
follow the player’s position and orientation (all plane
waves have a fixed orientation in the player’s coor-
dinate system). Consequently their position (orien-
tation and distance) does not need to be updated in
real time, saving some computation time compared
to volumetric sources.

Several controls allow the sound designer to ad-
just the perceived width of volumetric and surround-
ing sounds (please see [28] for more details on the
width gain computation). RainWidth sets the an-
gular distribution of rain components around the lis-
tener: individual raindrops are randomly distributed
in the plane waves, while background noise is du-
plicated. FireWidth sets the spatial distribution of
crackling and combustion noise among their point-
like sources. Finally WindWidth sets the spreading
of band-limited noises in the wind plane waves.

2www.UDK.com
3www.cycling74.com
4https://ccrma.stanford.edu/wiki/UDKOSC

8

Figure 6: Spatial distribution of sound sources in the

virtual environment. Left: localized sounds (e.g., fire) are

produced as a collection of point sources (spherical waves)

represented as white circles. Right: diffuse sounds (e.g, rain

and wind backgrounds) are simulated by plane waves with

fixed incoming directions surrounding the player.

6 Conclusion and future work

Atomic signal modeling of environmental sounds has
been presented for the generation of audio in inter-
active applications. The proposed synthesizer is able
to generate realistic sounds evoking a wide variety of
phenomena existing in our natural environment. It
provides an accurate tool to sonify complex scenes
composed of several sound sources in 3D space. The
position and the spatial extension of each source are
dynamically controllable. High-level intuitive con-
trols have been presented for simultaneous transfor-
mations of sound and graphics in interactive appli-
cations. Our approach results in a strong interac-
tion between graphics and sound which increases the
immersion in the scene. Demonstration videos are
available online [22].

The main limitation of this study is the absence of
a fully automatic analysis method to extract the syn-
thesis parameters from recorded sounds. Currently
the sound designer can modify the parameters of the
sound models to approximate target sounds. Fur-
ther research is needed to automatically decompose a
given sound sample (provided by the sound designer)
as a set of atomic elements. This decomposition
would allow independent control of atom distribu-
tion in time and space, for high-level transformation
of the original sound.

Automatic generation of soundscapes is another
interesting research direction. For the moment, syn-
thesis parameters (i.e., RainIntensity, FireIntensity
and WindSpeed) are manually controlled by the de-
signer, which allows him to produce the desired be-
havior. It would be interesting to provide a fully
automatic weather system, where the correlation be-
tween each element could be specified by simple rules.

As an example, the wind speed would influence fire
intensity, rain intensity would be inversely propor-
tional to fire intensity, etc. The synthesizer proposed
in this paper is a good starting point for such re-
search.

Acknowledgements

This work was partially funded by the EU IP project
VERVE (www.verveconsortium.org). Part of this
work has been done during the first author’s Ph.D.
[45] at Orange Labs and CNRS-LMA. We thank G.
Pallone, M. Aramaki, R. Kronland-Martinet and C.
Gondre for fruitful contributions to this work, and
the anonymous reviewers for helpful comments.

References

[1] A. Farnell, Designing sound, MIT Press, 2010.

[2] J .K. Hahn, H. Fouad, L. Gritz, and J. W. Lee,
“Integrating sounds and motions in virtual envi-
ronments,” Presence: Teleoperators and Virtual
Environments, vol. 7, no. 1, pp. 67–77, 1998.

[3] C. Picard Limpens, Expressive Sound Synthe-
sis for Animations, Ph.D. thesis, Université de
Nice, Sophia Antipolis, 2009.

[4] D. Schwarz, “Corpus-based concatenative syn-
thesis,” Signal Processing Magazine, IEEE, vol.
24, no. 2, pp. 92–104, 2007.

[5] Y. Dobashi, T. Yamamoto, and T. Nishita,
“Real-time rendering of aerodynamic sound us-
ing sound textures based on computational fluid
dynamics,” ACM Transactions on Graphics
(Proc. SIGGRAPH 2003), vol. 22, no. 3, pp.
732–740, 2003.

[6] J. N. Chadwick and D. L. James, “Animating
fire with sound,” ACM Transactions on Graph-
ics (Proc. SIGGRAPH 2011), vol. 30, no. 4,
2011.

[7] C. Stoelinga and A. Chaigne, “Time-domain
modeling and simulation of rolling objects,”
Acustica united with Acta Acustica, vol. 93, no.
2, pp. 290–304, 2007.

[8] C. Zheng and D. L. James, “Harmonic flu-
ids,” ACM Transaction on Graphics (Proc. SIG-
GRAPH 2009), vol. 28, no. 3, pp. 37:1–37:12,
2009.

9

[9] J. H. McDermott and E. P. Simoncelli, “Sound
Texture Perception via Statistics of the Audi-
tory Periphery: Evidence from Sound Synthe-
sis,” Neuron, vol. 71, no. 5, pp. 926–940, 2011.

[10] A. Nealen, M. Müller, R. Keiser, E. Boxer-
man, and M. Carlson, “Physically based de-
formable models in computer graphics,” Com-
puter Graphics Forum, vol. 25, no. 4, pp. 809–
836, 2006.

[11] W. T. Reeves, “Particle Systems - a Technique
for Modeling a Class of Fuzzy Objects,” ACM
Trans. Graph., vol. 2, pp. 91–108, April 1983.

[12] A. Kolb, L. Latta, and C. Rezk-Salama,
“Hardware-based simulation and collision detec-
tion for large particle systems,” in Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics hardware, 2004, pp. 123–
131.

[13] C. Reynolds, “Big fast crowds on PS3,” in Pro-
ceedings of the 2006 ACM SIGGRAPH sympo-
sium on Videogames, 2006, pp. 113–121.

[14] K. Sims, “Particle animation and rendering
using data parallel computation,” Computer
Graphics (Siggraph 90 proceedings), vol. 24, pp.
405–413, September 1990.

[15] M. Muller, D. Charypar, and M. Gross,
“Particle-based fluid simulation for interactive
applications,” in Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 2003.

[16] N. Bell, Y. Yu, and P. J. Mucha, “Particle-based
simulation of granular materials,” in Eurograph-
ics/ACM SIGGRAPH Symposium on Computer
Animation, 2005.

[17] S. Clavet, P. Beaudoin, and P. Poulin,
“Particle-based viscoelastic fluid simula-
tion,” in Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on
Computer animation, 2005.

[18] J. Lander, “The ocean spray in your face,”
Game Developer Magazine, July 1998.

[19] J. V. der Berg, “Building an advanced parti-
cle system,” Game Developer Magazine, March
2000.

[20] C. Roads, “Introduction to granular synthesis,”
Computer Music Journal, vol. 12, no. 2, pp. 11–
13, 1988.

[21] P. R. Cook, Real Sound Synthesis for Interactive
Applications, A. K Peters Ltd., 2002.

[22] http://www-sop.inria.fr/reves/Basilic/

2012/VD12/.

[23] W. W. Gaver, “What in the world do we hear?
an ecological approach to auditory event percep-
tion,” Ecological Psychology, vol. 5(1), pp. 1–29,
1993.

[24] C. Verron, M. Aramaki, R. Kronland-Martinet,
and G. Pallone, “Controlling a spatialized en-
vironmental sound synthesizer,” in Proceedings
of the 2009 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, 2009.

[25] K. van den Doel, “Physically-based models for
liquid sounds,” in Proceedings of ICAD 04-
Tenth Meeting of the International Conference
on Auditory Display, 2004.

[26] M. Aramaki, M. Besson, R. Kronland-Martinet,
and S. Ystad, “Controlling the perceived ma-
terial in an impact sound synthesizer,” IEEE
Transactions on Audio, Speech, and Language
Processing, vol. 19, no. 2, pp. 301–314, 2011.

[27] C. Verron, M. Aramaki, R. Kronland-Martinet,
and G. Pallone, “Analysis/synthesis and spatial-
ization of noisy environmental sounds,” in Pro-
ceedings of ICAD 09 - 15th International Con-
ference on Auditory Display, 2009.

[28] C. Verron, M. Aramaki, R. Kronland-Martinet,
and G. Pallone, “A 3D Immersive Synthesizer
for Environmental Sounds,” IEEE Transactions
on Audio, Speech, and Language Processing, vol.
18, no. 6, pp. 1550–1561, 2010.

[29] X. Rodet and P. Depalle, “Spectral envelopes
and inverse fft synthesis,” in Proceedings of the
93rd AES Convention, 1992.

[30] J.-M. Jot and A. Chaigne, “Digital delay net-
works for designing artificial reverberators,” in
Proceedings of the 90th AES Convention, 1991.

[31] V. Pulkki, “Virtual sound source positioning us-
ing vector base amplitude panning,” JAES, vol.
45(6), pp. 456–466, 1997.

[32] D.G. Malham and A. Myatt, “3-d sound spa-
tialization using ambisonic techniques,” Comp.
Music Jour., vol. 19(4), pp. 58–70, 1995.

[33] J. Daniel, Représentation de Champs Acous-
tiques, Application à la Transmission et à la Re-
production de Scènes Sonores Complexes dans

10

un Contexte Multimédia, Ph.D. thesis, Univer-
sité Paris 6, 2000.

[34] K. Garg and S. K. Nayar, “Photorealistic ren-
dering of rain streaks,” ACM Transactions on
Graphics (Proc. SIGGRAPH 2006), vol. 25, no.
3, pp. 996–1002, 2006.

[35] L. Wang, Z. Lin, T. Fang, X. Yang, X. Yu, and
S. B. Kang, “Real-time rendering of realistic
rain (msr-tr-2006-102),” Tech. Rep., Microsoft
Research, 2006.

[36] N. Tatarchuk and J. Isidoro, “Artist-directable
real-time rain rendering in city environments,”
in Proceedings of the Eurographics Workshop on
Natural Phenomena, 2006.

[37] S. Tariq, “Rain,” NVIDIA Whitepaper, 2007.

[38] A. Puig-Centelles, O. Ripolles, and M. Chover,
“Creation and control of rain in virtual envi-
ronments,” The Visual Computer, vol. 25, pp.
1037–1052, 2009.

[39] O. E. Gundersen and L. Tangvald, “Level of
Detail for Physically Based Fire ,” in Theory
and Practice of Computer Graphics, 2007, pp.
213–220.

[40] C. Horvath and W. Geiger, “Directable, high-
resolution simulation of fire on the GPU,” in
ACM SIGGRAPH 2009 papers, 2009.

[41] W. Zhaohui, Z. Zhong, and W. Wei, “Realis-
tic fire simulation: A survey,” in 12th Inter-
national Conference on Computer-Aided Design
and Computer Graphics (CAD/Graphics), 2011.

[42] M. Yi and Q. Froemke, “Ticker Tape: A Scal-
able 3D Particle System with Wind and Air Re-
sistance,” 2010.

[43] R. Hamilton, “UDKOSC : An Immersive Musi-
cal Environment,” in Proceedings of the Inter-
national Computer Music Conference, 2011.

[44] R. Hamilton, J.-P. Caceres, C. Nanou, and
C. Platz, “Multi-modal musical environments
for mixed-reality performance,” Journal on
Multimodal User Interfaces, vol. 4, pp. 147–156,
2011.

[45] C. Verron, Synthèse Immersive de Sons
d’Environnement, Ph.D. thesis, Université de
Provence, 2010.

11

