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Abstract

The emergence of pervasive computing interweaving different devices and sen-
sors introduces new challenges to ensure the continuity of the communication
and collaboration between humans in distributed systems. The communica-
tion may be interrupted due to the change of context, such as a change of a
users role or an energy level diminution, thus leading to lose the cooperation
or shared data. This paper describes a framework that aims at ensuring the
continuity of communication services even if changes happen. This frame-
work is based on a multi-level modeling approach. Dynamic redeployment
algorithms based on semantic description of collaboration with a scenario for
validation are presented.

Keywords: pervasive computing, context, semantic, dynamic redeployment

1. Introduction

Collaboration between human beings should gain from the development
of pervasive computing environments. These environments should encour-
age people to communicate and cooperate everywhere at any time, because
they are immersed, willingly or not, into environments containing large sets
of devices, sensors, actuators and services that are available in a pervasive
and automatic manner [1, 2, 3]. Several issues of research arise from the use
of pervasive computing for collaboration. For example the devices used in
pervasive computing are heterogeneous in terms of communication and pro-
cessing capabilities, mecanisms to ensure interoperability are needed [4, 5] .
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Fluid communication between collaborators is needed when a change takes
place, regardless of the level change occurs at, application level or otherwise.
Indeed at the applicative level, the user’s needs are dynamic because of com-
plex situations of cooperation, such as where there is user mobility or the
change of roles that necessitates new software components. Changes may
also happen at a lower level, such as machine resources becoming limited
due to a decreased level of energy, or a limitation of hardware resources such
as main memory or CPU. In pervasive computing environments, the sessions
of collaborative activities should be spontaneously initiated and managed
(i.e. without user input), thus exploiting implicit collaboration situations.
Adaptation such as dynamic deployment of components is needed for es-
tablishing multimedia sessions. Therefore, the main adaptation actions in
a collaborative pervasive system involve component (re)deployments and/or
flow (re)configurations. The goal of the research presented here is to en-
able continuous communication between collaborators no matter what may
happen at different levels by providing adaptation mechanisms of architec-
tures of components at runtime [6, 7]. In our approach, this is made possi-
ble through model driven architecture transformations, from abstractions of
collaboration to concrete redeployment of software components applied on
collaborative sessions. For instance, if a battery level drops during a session,
the framework adapts the architecture by redeploying new components in
the network to save the session and to ensure continuous communication and
collaboration between the nodes (devices) of the session. The events that
trigger adaptation actions are the changes in the context of the application.
Context is divided into external context (e.g. user preferences, user presence
and position, priority of communications, etc.) and execution resource con-
text (e.g. battery level, CPU load and available memory of user devices, etc.)
[8, 9]. Semantic computing technologies [10] and graph models [11] have been
used as the foundation for the algorithms we have implemented for adapta-
tion concerns. We consider an intermediary level in which the semantics of
collaboration are presented at a high conceptual level. At the application and
collaboration levels, the semantics of the application and of the collaboration
are represented as ontologies and as a set of rules. At the resource level, the
set of components are represented as graphs where vertices represent software
services and components, and edges represent the communication relation-
ships between such components. Adaption algorithms use these models to
detect the change of the context at runtime and to find the best component
to deploy dynamically, in manner that ensure the continuity of communica-
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tion [12, 13]. In this paper, we focus on architectural adaptation using the
framework we have developed. The remainder of this paper is organized into
seven sections. Related work is presented in Section 2. Section 3 introduces
a scenario and an example of an application that illustrates several aspects of
the identified problem. Section 4 presents the generic approach proposed in
order to solve such a problem and a proposition of implementation. Section 5
details how our approach can be applied to the proposed scenario. Section 6
presents an evaluation of our approach being applied to the scenario. Finally,
Section 7 provides conclusions and possible directions for future work.

2. Related work

We have classified related works into three subsections in accordance with
the features highlighted in this section: model driven approaches, architec-
ture oriented, and platform or existing frameworks.

2.1. Model driven approaches

Becker and Giese [14] present an approach based on graph transformation
techniques coupled with UML stereotypes in order to model self-adaptive sys-
tems. Adaptation, which is performed at run-time, is decomposed into three
levels: goal management, change management and component control. How-
ever, in this approach, context and collaboration are not explicitly modeled.
Edwards [15] presents a system named Intermezzo that enables the construc-
tion of applications making use of rich, layered interpretations of context. It
provides a context data store and an integrated notification service. This sys-
tem is collaboration-oriented; contextual information is structured through
activities, that represent the use of resources (e.g., documents). The under-
lying context model is very rich and deals with problems such as ambiguity,
identity, evolution and equality of contextual data, providing solutions for
each one of them. However, the case of low-level resources context is not
considered.

Pad Ovitz et al. [16] present a context model and reasoning approach
developed with concepts from the state-space model, which describes con-
text and situations as geometrical structures in a multidimensional space. A
context algebra based on this model is also presented. This work shows how
merging different points of view over context enhances the global context rea-
soning process. The authors provide a model (named Context Spaces) that
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unifies the context views of different entities into a single context representa-
tion. The cooperative aspect of this work focuses on migration, modeling and
reasoning, partitioning, and merging context descriptions between agents for
attaining optimal reasoning and context-awareness.

2.2. Architectural adaptation

Zhang et al. [17] propose an adaptive model infrastructure for pervasive
computing environments. They propose three adaptive layers: adaptive col-
laboration layer, adaptive middleware layer and adaptive services layer. The
adaptive collaboration layer provides a service cooperation platform in dy-
namic environments. The adaptive middleware layer is a self-reconfiguring
layer that provides an optimized uniform high-level interface for implemen-
tation of distributed applications. The adaptive services layer provides an
adaptive contents service and adaptive user interfaces. Using this model,
the approach makes environmental changes invisible to collaboration among
applications and users. From the architectural point of view, this work is
similar to ours in that it defines three layers. However, collaboration in this
work is limited to the collaboration between services to adapt contents to
the user interface.

2.3. Platform oriented research

Ejigu et al. [18] propose a collaborative context-aware service platform
named CoCA. This platform is data-independent and it may be used for
context-aware application development in pervasive computing. It performs
reasoning and decisions based on context data and domain-based policies us-
ing ontologies. The platform introduces a neighborhood collaboration mech-
anism to facilitate peer collaboration between pervasive devices in order to
share their resources. The generic context management modeling deals with
the way the context data are collected, organized, represented, stored and
presented. In this work, collaboration is used between devices in order to
better achieve context data acquisition.

Lee et al. [1] present the project Celadon in order to establish an infras-
tructure enabling on-demand collaboration between heterogeneous mobile
devices and environmental devices. The Celadon project is a middleware
architecture for ubiquitous device collaboration. Collaborative environments
are organized into Celadon zones, which are public areas equipped with wire-
less access points for technologies. Collaboration in this work is limited to
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sharing hardware or software resources. Only the user context is considered
in this work.

The Conami middleware [19] is a Collaboration-based Content Adapta-
tion Middleware for dynamic pervasive computing environments. The au-
thors consider the case of Mobile Ad hoc Networks (MANETs). The middle-
ware allows devices in MANETs to collaborate with each other to perform
content adaptation. Content adaptation is derived from the context of the
user and the user environment and is done by composing available nearby
services. In this work, collaboration is considered as a technique to adapt
the content to the devices’ capabilities. In this middleware, component de-
ployment is not considered.

Perich et al. [2] present the design and implementation of a Collabora-
tive Query Processing protocol that enables devices in pervasive computing
environments to locate data sources and obtain data matching their queries.
The features of the protocol allow devices to collaborate with other devices in
order to obtain an answer for their queries regardless of their limited comput-
ing, memory, and battery resources. The presented approach deals mainly
with low level context parameters.

3. Introductive Scenario (Collaborative warships game)

The scenario presented in this section illustrates the main features needed
by collaborative applications in pervasive environments, such as context-
awareness, spontaneous implicit sessions and automatic component deploy-
ment.

This scenario has been produced in the context of Itea2’s A2Nets (Au-
tonomic Services in M2M Networks) project 1. In our case, multi-media
games are distributed over a fleet of buses and are available to passengers.
Whenever a user boards a bus, his/her personal device notices the presence
of the bus network and connects to it.

We consider a game called Collaborative Warships, which is a multi-player
extension of the classic warships board game. Each player uses his/her mobile
device to play and to interact with other players.

1https://a2nets.erve.vtt.fi/
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3.1. Ship Types

We distinguish three ship types: Battle Ships, Repair Ships and Spy Ships.
Each ship has two main attributes: life points and speed.

Battle Ships (BS) can shoot at the ships of the opposite team. Any
opposing ships that receive damage loose life points.

Repair Ships (RS) restores life points to the companion ships.
Spy Ships (SS) can detect the position of the enemy ships.
One of the Battle Ships of a team is the leader of the BSs and SSs. This

ship is called Battle Ship Leader (BSL). One of the Repair Ships of a team
is the leader of the RSs. This ship is called Repair Ship Leader (RSL).

3.2. Game Rules

Two teams are required for the game to begin. Each team must have at
least 1 BS. During the play, the positions of the enemy warships are unknown
(except to SSs).

When a ship loses all its life points, it sinks, and leaves the game. The
game ends when a team loses all its BS, and the team with ships remaining
is declared the winner.

Two main requirements of pervasive collaborative applications are high-
lighted and instantiated in this example:

• Context awareness is necessary in order to detect changes in both ex-
ternal context (e.g. user presence) and execution context (e.g. battery
level, available memory).

• Adaptation and especially adaptive deployment are necessary in order
to respond to context changes. If, for instance, the device of a BSL
has not enough energy to host several software components handling
the exchanged flows, then a set of those components has to be moved
and deployed on another mobile device in order to ensure a continuous
communication between the team members.

3.3. Team Coordination

Players need to collaborate during the game. Therefore, data flows must
be set up between the members of a team. Depending on the type of warship
used by each player, different communication flows for cooperating with the
other members of his/her team are needed. For example, when a BS reaches
an enemy with its fire, it can inform the BSL of the position of the enemy.
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Figure 1: Team coordination description.

The BSL can then transmit that position to the other BSs of his/her team
having more destruction points or having a more strategic position in order
to shoot at the discovered enemy.

According to this description, several types of communication links are
needed between the members of a team. Those links are represented in figure
1. Each RS is linked to the RSL of his/her team. BSs and SSs collaborate
with the BSL of their team. The two leaders collaborate.

In the following sections, we propose a generic approach that may be used
by developers in order to build collaborative pervasive applications.

4. Proposed approach

The main idea of our approach is to provide a generic framework which
enables modeling, session management, multi-level adaptation, and auto-
matic component deployment for pervasive applications. This enables code
modularization and reutilization.

4.1. Multi-level Architecture Modeling

In order to clearly separate different concerns in our approach, a multi-
level architecture is proposed.

A configuration is denoted as An,i, where n is the considered abstraction
level and i is the sequence number (i.e. an architecture An,i evolves to An,i+1

when it is reconfigured). For a given configuration An,i at level n, multi-
ple configurations (An−1,1, . . . , An−1,p) may be implemented at level n − 1.
Adapting the architecture to constraint changes at level n − 1 by switch-
ing among these multiple configurations allows maintaining unchanged the
n-level configuration.
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4.2. Multi-level modeling of collaborative pervasive architectures

This subsection presents how we apply the multi-level approach presented
above to collaborative pervasive systems in order to build a comprehensive
generic framework for such systems.

Adaptation at the highest level should be guided by the evolution of
activity requirements. Adaptation at the lowest levels should be driven by
execution context constraint changes.

4.2.1. Application level

The application level represents applications needing collaboration among
groups of users and/or devices. It contains software elements that are relevant
to collaboration,and is represented as the abstraction level A3,i.

Application designers also have to implement the refinement procedure
which obtains the set Ai

2 of collaboration level models that implement a given
A3,i model.

4.2.2. Collaboration level

The main issue addressed by the collaboration level is the determination
of a high-level collaboration schema that responds to the application’s col-
laboration needs. Hence, collaborative sessions may be managed from this
level. The elements needed to implement such sessions are determined from
this level. This model is inspired by classic graph-based session description
formalisms such as dynamic coordination diagrams [20].

4.2.3. Middleware level

The middleware level provides a communication model that masks low-
level details in order to simplify the representation of communication chan-
nels. The architectural model produced by this level, A1,i represents a de-
tailed deployment descriptor containing the elements needed in order to im-
plement the sessions defined by the collaboration level.

4.2.4. Context Capture and Representation

We target the adaptation of cooperative applications to different context
changes. These changes may concern resource constraints (e.g. connectivity,
energy level, available memory, etc.) or the evolution of the collaborative ac-
tivity and environment (where participants can arrive and leave, change roles,
active a “do not disturb” mode in their devices, etc.). We respectively call
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these two sets of parameters resources context and external context. Context
parameters are captured by external modules.

Relevant events that are produced in the external context are taken into
account by the application level (i.e. they are detected and translated into
modifications on the A3,i model, thus producing a new model A3,i+1).

Relevant events that are produced related to run-time resource changes
are taken into account by the middleware level. If it is possible, changes are
handled by reconfiguring the A1,i+1 model (i.e. by selecting a different model
among the possible refinements of the collaboration model).

4.3. Generic Refinement and Selection Procedures

For a given architectural configuration An,i in level n, a procedure, called
Refine() computes the set A

i
n−1. This set represents all possible architec-

tural configurations in level n− 1 that implement An,i.
Given a set of possible architectures, it is necessary to choose an archi-

tecture to be effectively deployed. We present here a procedure, Select()
(table 2), that allows for the choosing of an architecture depending on several
parameters.

This procedure uses the resources context (e.g. variations of commu-
nication networks and processing resources) to eliminate the architectural
configurations that cannot be deployed within the current resources levels.
Among the set of selected architectures, the best configuration w.r.t archi-
tectural characteristics is selected.

The choice of an architecture must first take into account the resources
context. The Context Adaptation() function (table 2, line 5) is a generic
function that depends on the resources context. For example, it can express
the availability level of a given resource (bandwidth, memory, energy level,
etc.). This function is used for two purposes: it allows discarding architec-
tures that cannot be deployed within the current resources context, and it
allows for the selection of the architectures best adapted to that context.

The function Context Adaptation() associates a given architecture to a
value that reflects its degree of adaptation to the current resources context.
Our criterion for this function is as follows: well adapted architectures are
those which have fewer nodes in a critical situation. A node is in a criti-
cal situation when its level for a certain resource is close to the threshold
defined for that resource. This function is detailed in table 1. In this func-
tion, a set of resources Resource1 . . . ResourceR (e.g. Resource1=energy,
Resource2=CPU load and Resource3=available RAM) is considered. Li

r
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Table 1: Context Aware Function

1 Context Adaptation()

2 {
3 Let A1,q be an architectural configuration at level 1

4 Let N = card(A1,q)
5 Let Resource1 . . . ResourceR the set of considered resources

6 Let R = card({Resource1 . . . ResourceR})
7 Let node

q
i be deployment node i of A1,q

8 Let Li
r the level of the resource r for node

q
i

9 Let Tr be the threshold associated with the resource r

10 Let αi
r r ∈ [1..R] be weights associated with each resource r for node

q
i

11 Let βr r ∈ [1..R] be weights associated with each resource r for A1,q

12 Let cadapt=0

13 for each i ∈ 1..N
14 for each r ∈ 1..R
15 P i

r = αi
rL

i
r − Tr

16 if Pr ≤ 0 then return -1

17 end for

18 end for

19 for each r ∈ 1..R
20 cadapt=cadapt+βrmini(P i

r)
21 end for

22 return cadapt

23 }

Table 2: Generic selection procedure.

1 Select(Policy)

2 {
3 Let An,p ∈ An, p ∈ N

4 Let C denote the context attributes

5 Select S1 = {An−1,k ∈ A
p
n−1

, k ∈ N such that:

Context Adaptation(An−1,k , C) ≥ Context Adaptation(X, C), ∀X ∈ A
p
n−1

}
6 if card(S1) 6= 1
7 if Policy == Dispersion

8 Select S2 = {An−1,k ∈ S1, k ∈ N such that:

Dispersion(An−1,k) ≥ Dispersion(X),∀X ∈ S1}
9 if Policy == Distance

10 Let An,p and An,q ∈ An, p, q ∈ N

11 Let An−1,p the current mapping at level n− 1 of An,p

12 Select S2 = {An−1,k ∈ A
q
n−1

, k ∈ N such that:

Relative Cost(An−1,p , An−1,k) ≤ Relative Cost(An−1,p, X), ∀X ∈ S1}
13 if card(S2) 6= 1
14 Select any configuration from S2

15 }

represents the available level of the resource Resourcer for the node nodei.
Li
r, expressed as a percentage, is calculated as the resource’s level before
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deployment (given by the resources context module) minus the amount of
resource consumed by each deployed component. The value Tr is a threshold
that indicates the critical percentage of the resource r, for a given node, un-
der which the deployment is not possible. The coefficients αi

r represent the
importance assigned to each level Li

r with respect to the characteristics of
nodei. For instance, the CPU load is more critical for a smartphone than for
a laptop, because the smartphone needs CPU processing for other important
functions (such as answering calls, etc.). Therefore, αi

CPU is 1 for a laptop
nodes and 0.5 for a smartphone (i.e. a smartphone will be considered as
critical when its CPU level is lower than 2TCPU). P i

r is calculated for every
node as the difference between the level of the Resourcer and the threshold
Tr. If this difference is negative for a node, this means that the node is in
a critical state with respect to Resourcer, and hence the considered archi-
tecture cannot be deployed. Therefore, −1 is returned and the considered
architecture will not be selected. If no node was found to be in a critical
situation, then the degree of adaptation to the context (cadapt) of the con-
sidered architecture is calculated, as shown in table 1, line 20. First, for
every resource, the minimum value of P i

r found on any deployment node of
the architecture is retained. Second, cadapt is calculated as an average of
these minima (weighted by βr coefficients). The βr coefficients represent the
global importance degree given to each resource (

∑R

1 βr = 1). Resources
with higher βr are considered more important than other resources. These
coefficients can be defined by the administrator or the business logic. This
definition of the function Context Adaptation leads to the selection of the
architectures having the highest values of resources for their more critical
nodes.

When several architectures have the same value of
Context Adaptation(), a policy (indicated by the parameter Policy)
is used by the Select() procedure in order to retain the optimal configura-
tion. If the chosen policy is Weight, the selection is based on minimizing the
function Dispersion() (table 2, line 8). This generic function corresponds
to the cost or the efficiency/performance of an architecture. For instance, it
may be defined as the number of software components deployed per node. If
the chosen policy is Distance, the selection minimizes the distance between
two architectural configurations at level n − 1, both implementing the
corresponding n-level architectural configuration. This is performed using
the function Relative Cost() (table 2, line 12).
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Figure 2: Model-oriented leveled framework.

4.4. A Multi-level Collaborative Framework for pervasive Systems

The proposed multi-level modeling approach for collaborative pervasive
systems remains generic with respect to implementation. As we have sep-
arated the approach and its implementation, this generic approach may be
implemented in different ways by different designers. In this subsection we
propose an implementation that can be used by application designers as a
collaboration framework for pervasive systems, with our choices illustrated
in figure 2. We first present the models used in each level, followed by the
refinement and selection procedures that enable the transitions between lev-
els.

4.4.1. Application level Model – A3,i

We have chosen an ontology based model because it constitutes a standard
knowledge representation system, allowing reasoning and inference. We have
chosen to describe these models in OWL [21], the Semantic Web standard
for metadata and ontologies.

In general, ontologies are separated in two levels: a generic ontology and
a specific ontology. The former is a domain-wide ontology, but independent
of applications. The latter ontology extends the generic one with terms
specific to an application category. We have followed the same pattern in
our implementation: there is a generic collaboration ontology (that describes
sessions, users, roles, data flows, nodes, etc.) and an application ontology
that extends the collaboration ontology with business-specific concepts and
relations.

12



Session

Component

Flow

Role

hasRole

hasHostingDevice
hasSource

hasDestination

hasDataType

hasDataType

hasComponent

hasDataType

isDeployedOn

is-a
is-a

hasFlow

belongsToSession

managesFlow

SenderComponent

Tool

receivesFlow

sendsFlow

ReceiverComponent

AudioComponent

VideoComponent

TextComponent

DataType

VideoTool

TextTool

AudioTool

is-ais-ais-a

TextFlowAudioFlow

VideoFlow is-ais-a

is-a

subRelationOf

hasId

hasDataType

is-a

is-a

is-a

Group

hasMember

belongsToGroup

belongsToSameGroup

hasHostedNode

belongsToTool

Node

Devicestring

Figure 3: Generic collaboration ontology.

4.4.2. Collaboration level Model – A2,i

The collaboration level model is a graph, inspired by dynamic collabo-
ration diagrams [20]. This model is a generic collaboration ontology that is
common to all applications, and therefore it is provided within the frame-
work. This ontology2 is represented in figure 3. The main concept in this
ontology is Session. A session contains one or more Flows, which have a
source Node and a destination Node. Nodes are hosted on Devices. Each
Node has one or more associated Roles. Flows are processed with Tools,
which are composed of several Components (e.g. SenderComponents and
ReceiverComponents). Related Flows, Tools and Components share the
same DataType (e.g. Audio, Text or Video). This graph is expressed in the
GraphML language (an XML dialect for representing graphs [11]). Further
explanations about this ontology and the associated choices can be found in
[22].

2http://homepages.laas.fr/tazi/ontologies/sessions.owl
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4.4.3. Middleware level Model – A1,i

For the middleware level, we have retained the Event Based Communi-
cation (EBC) paradigm [23]. The EBC model represents a well established
paradigm for interconnecting loosely coupled components and it provides a
one-to-many or a many-to-many communication pattern.

EBC entities are represented in the middleware level model. This model
is a detailed graph containing a set of event producers (EP), event consumers

(EC) and channel managers (CM) connected with push and push links. Mul-
tiple producers and consumers may be associated through the same CM.
Since this model is also a graph, it is also expressed in the GraphML lan-
guage.

4.4.4. Application–Collaboration Refinement and Selection

When a reconfiguration event related to the external context is detected,
it is captured by the application level and translated into changes in the
application level ontology, thus producing a new instance, A3,1. As the ap-
plication level model is represented in OWL, we use SWRL rules [24] in order
to implement its refinement to a collaboration architecture.

Some rules have been included along with the generic collaboration on-
tology. For example, let us consider the rule shown in table 3.

Table 3: A SWRL Rule for AudioFlows
AudioFlow(?af) ∧ hasSource(?af,?src) ∧ hasDestination(?af,?dst) ∧

swrlx:createOWLThing(?asc,?src) ∧ swrlx:createOWLThing(?arc,?dst)

→ AudioSenderComponent(?asc) ∧ isDeployedOn(?asc,?src) ∧

AudioReceiverComponent(?arc) ∧ isDeployedOn(?arc,?dst)

This rule states that, whenever an instance of AudioFlow is
found in the ontology, two components have to be instantiated3: an
AudioReceiverComponent having the flow’s destination node as its deploy-
ment node, and an AudioSenderComponent having the source node as its
deployment node. Similar rules are used for text and video flows, thus gen-
erating text and video sender and receiver components.

3The SWRL built-in CreateOWLThing() creates new instances of existing concepts
within a SWRL rule.
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The rules implementing the transition from the application-specific on-
tology to the generic collaboration ontology are application-dependant, and
therefore they have to be specified by the application designers along with
the application ontology.

The processing4 of the SWRL rules along with the application ontology
produces a new ontology instance (A2,1 that describes the collaboration level
graph in OWL language). This graph is translated into GraphML (by means
of a simple XSLT transformation) in order to be shared with the middleware
level. If the new model A2,1 is equal to the previous A2,0, then the process
ends, as no architecture reconfiguration is required in lower levels. Each
application level model corresponds to a unique collaboration level model.
Therefore the selection procedure at this level is straightforward.

4.4.5. Collaboration–Middleware Refinement and Selection

We use graph grammars [25] for the Collaboration-Middleware Refine-
ment.

In order to refine a given collaboration architecture into a set of EBC
architectures, the graph grammar GGCOLLAB→EBC,is used5. In this graph
grammar, non-terminal nodes are collaboration entities while terminals nodes
are EBC entities. For clarity’s sake, here only the case of audio sessions
is considered. Therefore, the productions of this graph grammar refine
AudioReceiverComponent and AudioSenderComponent (AR and AS) into
EPs, ECs and CMs. Similar grammar productions have been developed for
text and video components.

In order to select the optimal architecture among those built by the
refinement process, the generic selection procedure presented in table 2
is used. We detail here our choices for the functions Dispersion() and
Relative Cost().

The function Dispersion() is used to select architectures having fewer
CMs deployed in the same device. The goal is to efficiently balance resources
consumption and to be more robust. It associates an architecture A1,q with
the number of nodes containing at least one CM. This definition gives higher
values to architectures having CMs dispersed in more nodes.

4This processing is done with a rules engine such as Jess or a SWRL-enabled reasoning
engine such as Pellet.

5This implementation is done with a Graph Matching and Transformation Engine
(GMTE), available at http://www.homepages.fr/khalil/GMTE.
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Figure 4: Collaborative Warships application ontology.

The function Relative Cost() is used to select the closest architecture
to the currently deployed architecture. We choose as criterion of selection
the number of redeployments needed to switch from a given architecture to
another.

If the selection process is not able to find a valid architectural configu-
ration, then the high-level requirements cannot be implemented within the
current resources context. Therefore, the middleware level sends a reconfig-
uration event to the application level. This level takes this into account in
order to change the application level model into a model A3,i that can be
implemented.

4.4.6. Deployment Service

The A1,i model produced by the middleware level is the detailed deploy-
ment descriptor that implements the low-level elements of the required ar-
chitecture: producers, consumers, channel managers, and links. In order to
effectively deploy such elements into real devices, a Deployment Service is
needed. This service takes a deployment descriptor A1,i as input and then
it downloads, installs and starts the required components on each device.
The implementation of this deployment service is based on the OSGi tech-
nology [26].

5. Application to the Scenario

Designers of collaborative pervasive applications only have to create i) the
application level model, and ii) the SWRL rules that enable the refinement
of application level models into collaboration level models. In this section,
these design tasks are applied to the Collaborative Warships application.
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5.1. Application Ontology for the Collaborative Warships Application

The domain ontology6 modeling the business concepts and relations of
the Collaborative Warships application is illustrated in figure 4. The main
concept of this ontology is Warship. The different types of warships (BS, RS,
SS) are modeled as sub-concepts of Warship. Warships belong to a Team.
This domain ontology is related to the generic collaboration ontology.

5.2. SWRL Rules for the Collaborative Warships Application

Application-dependent SWRL rules are needed in order to process in-
stances of the application ontology presented in the previous subsection, and
thus generate a collaboration level model.

In the case of the Collaborative Warships application, we consider, for
instance, the rule presented in table 4. Here, we have only considered the
case of audio flows. Text and video flows are handled in a similar way.

Table 4: BS BSL audio flows Rule
BattleShip(?bs) ∧ BattleShipLeader(?bsl) ∧

belongsToSameTeam(?bs, ?bsl) ∧ differentFrom(?bs, ?bsl) ∧

swrlx:createOWLThing(?af1, ?bs) ∧ swrlx:createOWLThing(?af2, ?bs)

→ sessions:AudioFlow(?af1) ∧ sessions:hasFlow(sessionBS,?af1)∧

sessions:hasSource(?af1, ?bsl) ∧ sessions:hasDestination(?af1, ?bs) ∧

sessions:AudioFlow(?af2) ∧ sessions:hasFlow(sessionBS,?af2) ∧

sessions:hasSource(?af2, ?bs) ∧ sessions:hasDestination(?af2, ?bsl)

The BS BSL audio flows rule, presented in table 4, states that whenever
a BS and a BSL belonging to the same team are found, two audio flows
are created between them. This flow belongs to a session called sessionBS,
which is an individual of the class sessions:session already existing in the
ontology Both audio flows will be captured by the collaboration level rules
and corresponding audio senders and receivers will be created on each node
in the collaboration level graph.

6http://homepages.laas.fr/tazi/warships.owl
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Figure 5: Top-down refinement example.
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5.3. Initial Refinement and Adaptation Process Examples

This subsection presents a top-down example showing the architecture
models for the three considered levels as well as the refinement processes
between levels. The adaptation process is also illustrated.

In this example, we focus only on one team in order to illustrate the
initial refinement and the adaptation processes. The team has five players
(player1 to player5). Each player represents a node in the application.
Each node has an associated role: player1 is a BSL, player2 is a regular
BS, player3 is a SS, player4 is a RSL and player5 is a regular RS. Each
node has an associated device (m1 to m5).

This business level architectural configuration is captured by the game
application and represented in the game ontology A3,0. The resulting on-
tology instances are represented in figure 5, application level. Concepts are
drawn as ellipses, while relations are drawn as arrows going from one con-
cept to another concept. As the figure shows, concepts and relations from
the game-specific ontology (warships: prefix) and from the generic collab-
oration ontology (sessions: prefix) are instantiated together.

In order to refine this application model, SWRL rules are processed over
these ontology instances. The BS BSL audio flows rule creates two audio
flows between player1 and player2, the BSL RSL audio flows rule creates
two audio flows between player1 and player4, etc. The rule presented in
table 3 is processed for each instance of AudioFlow found, thus creating the
corresponding AudioSenderComponent and AudioReceiverComponent at the
endpoints of the audio flow.

The resulting collaboration graph is represented in figure 5, collaboration
level. This graph contains 7 audio senders (AS) and 7 audio receivers (AR).
The graph edges correspond to data flows, and are labeled by data type
(audio) and by the session to which they belong. Each component has three
attributes: the identifier, the type (sender or receiver) and the deploying
machine identifier.

In order to refine this collaboration level graph, the GGCOLLAB→EBC

graph grammar, is used. This produces a set of valid configurations A0
1. The

procedure Select() is used in order to find the optimal configuration. The
retained configuration, A1,0, is presented in figure 5, middleware level. This
configuration contains only terminal nodes (i.e. nodes belonging to the EBC
level).This refinement creates a detailed deployment descriptor that is used
by the deployment service in order to deploy the indicated components on
each device, thus implementing the required application level session.

19



Figure 6: Experimentation scenario.

6. Evaluation

We conducted evaluation experiments using our engine GMTE for ex-
ecuting the graph grammar transformations, and the rule engine Jess for
executing the SWRL rules.

In this example, we present results related to one team composed of 9
players (player1 to player9). Each node has an associated role: player1

is a BSL; player2; player6 and player7 are regular BSs; player3 is a SS;
player4 is a RSL ;and player5 and player8 are regular RSs. Each node
has an associated device (m1 to m9).

The scenario shown in the figure 6 consists of adding a new player every
2 minutes combined with important diminutions of the energy level of the
players’ devices as shown in Table 5. The underlined values in Table 5
represent degradations that trigger a new reconfiguration. Each time a player
joins the game, a refinement and a selection process is triggered. Each time an
energy level diminution of a player’s device is detected, the selection process
is triggered. In the case of this game we consider only three collaboration
sessions as mentioned above and shown in figure 1. Since we deploy a channel
manager for each session, 1, 2 or 3 channel managers can be redeployed after
each selection process. In the worst case, 3 channel managers are redeployed.

6.1. Threshold calculation

Figure 7(a) illustrates the elapsed time for the generation of the collabo-
ration ontology, the collaboration graph and the middleware graphs during
each phase.
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Table 5: Devices Energy Levels

P
P
P
P
P
P
P
P
P

Device

Phase
1 2 3 4 5 6 7 8 9

player1’s device 95% 82% 82% 82% 81% 81% 81% 62% 62%

player2’s device 90% 88% 87% 87% 86% 85% 70% 70% 70%

player3’s device 90% 88% 87% 87% 86% 85% 85% 85% 84%

player4’s device 90% 88% 87% 80% 86% 50% 50% 49% 49%

player5’s device 91% 88% 87% 87% 86% 85% 85% 84% 82%

player6’s device 92% 88% 87% 87% 86% 85% 85% 83% 83%

player7’s device 92% 88% 88% 86% 86% 85% 85% 70% 70%

player8’s device 93% 89% 89% 87% 86% 85% 83% 50% 48%

player9’s device 90% 88% 87% 87% 86% 85% 85% 83% 82%

Before starting the game, the framework needs to be initialized, at this
time no player is connected to the game so no middleware graph is generated.
Figure 7(a) (phase0) shows the time necessary for the initialization. The av-
erage initialization time is about 5 seconds. With respect to the initialization
process that occurs only once at the beginning of the session, this duration
is acceptable to the game.

This business level architectural configuration of phase 1 is captured by
the game application and represented in the game ontology A3,0. The re-
sulting ontology instance is represented in figure 5. We represent the time
elapsed to generate the ontology instance and the corresponding collabora-
tion and ECB graphs as shown in figure 7(a) (phase1) when player5 joins
the game. The generation time (about 6 seconds) is still acceptable for this
kind of application.

We now encounter an important diminution of the energy level of the
device m1, and as a result the ECB level runs the Select() procedure. This
procedure chooses a new configuration (e.g. A1,5) more adapted to the new
context parameters. Within this new configuration, m1 has fewer components
deployed on it. The deployment service uses A1,5 for effective redeployment.
To study the time consumption of the Select() procedure, the scenario
illustrates further diminutions of energy levels and the arrival of new players.

The figure 7(b) shows that the selection time is still acceptable within the
range of 0.005 to 0.017 seconds. This duration indicates that the framework
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Figure 7: Evaluation experiments

can quickly adapt the middleware to energy level diminutions and can process
frequent middleware reconfigurations. These results are in conformance of
the characteristics of mobile devices handled by the users connected to the
framework.

7. Conclusion

This paper has presented a multi-level architecture modeling approach for
collaborative pervasive systems. Architectural models for application, collab-
oration and middleware levels have been detailed. Ontologies, SWRL rules,
graphs and graph grammars have been used for implementing a rule-based re-
finement process. These rules handle both transforming a given architecture
within the same level and architectural mappings between different levels.
This implementation constitutes a framework for building collaborative per-
vasive systems. The performances of the framework have being evaluated,
especially the computing time of adaptation actions and the time of compo-
nent (re)deployment. Our approach has been illustrated by a multi-media
game distributed over a bus fleet. This game is an example of a collabora-
tive pervasive application developed in the context of the European project
A2Nets, on real field experiments using pervasive networks. A deploy-
ment service is being developed based on the OSGi technology. Also, the
possibility of implementing a centralized and a P2P version of the deploy-
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ment service for different applications is under investigation. Future research
actions include defining further adaptation rules that consider more context
parameters (e.g. by extending one of the cited context ontologies), extending
refinement procedures and extending graph grammars to handle middleware
level abstractions other than Event Based Communications. Finally, the de-
sign and implementation of mechanisms enabling the spontaneous setup of
implicit sessions will be considered.
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